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ABSTRACT

As a result of the development of the nonlinear theory, the complicated tire dynamics
can be mvestigated by means of nonlinear methods. rather than the usually adopted linear
approximation. In this paper the current practical nonlinear theory usually used wn fire
dvnamics was described, and the topics and corresponding achievements in nonlinear fire
dvnamics were reviewed.  The nonlinear methods described here mainly involve stability
analvsis and the characterization of chaotic attractors. Examples of stability analysis,
power spectruin analysis and fractal dimension analysis used i nonlinear fire dynamics
were addressed.

KEYWORDS: nonlinear fire dynamics. bifurcation. stability analysis, chaos, fractal,
power spectrum, charactenization of chaotic attractors

INTRODUCTION

Physical phenomena or processes (e.g., tire processes) concern the interrelationship of
a set of physical vanables (e.g., the temperature, the pressure, etc.) which are
deterministic (within some accuracy).  Nonlinear phenomena concern physical
processes involving variables which are governed by nonlinear equations. In other
words, an mitial change of one varable in nonlinear phenomena does not produce a
proportional change in the behavior of that vanable. or some other varnable. Different
Kinds of mathematical models are constructed to describe various physical phenomena.
From a traditional point of view, in order to grasp the essence of a nonlinear phenomenon,
one has to put aside all the secondary factors and construct simple, vet nontrivial,
mathematical models. Since few models can be solved rigorously. it is often necessary
to resort to further approximations. Therebyv linear models are usually obtained. For
nonlinear ones, we can sumulate its behavior on computer by means of numerical
techniques. While i numerical experiments, linearization 1s usually applied to seek
convergent solutions. Linearnity s beautiful, and it is verv valuable mn understanding
many features of the nonlmear processes. While as descnbed by Lakshmikantham et al.
[1]. linear models are honest and a bit sad and depressing: proportional efforts and
results.  Many other important properties of the original complex nonlinear processes
may be abandoned just because of lineanization. In a word. the situation 1s far less
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satisfactory in regard to the dynamical essence of nonlinear phenomena. To seek the
dynamics or in other words, the physical essence of a nonlinear model, nonlinearity of the
model must be investigated directly.

To date it is clear for fire researchers that extremely complex behaviors including chao:s
as the results of nonlinearity exist very commonly in a wide variety of fire systems
Indeed, complex nonlinear dynamics has by now been shown to be of potentia
importance in many different fields of fire science including explosion and flashover [2]
premixed combustion [3], kinetics of soot aggregates [4], ignition of flame [5], transitior
from one state to the other state [6], gasless or condensed phase combustion [7], etc.

The aim of the present review is to describe the current practical nonlinear theory anc
to present a number of representative developments in nonlinear fire dynamics. Despite
widespread interest and broad application, nonlinear science is a young fleld anc
consequently, the standardization of methods is less well developed. We begin with the
introduction of the present nonlinear dynamical concepts and theories, and then we
address the developments of stability and bifurcation analyses in fire dynamics. Linear
nonlinear and bifurcation stability analyses are of great importance in understanding many
complex fire behaviors governed by nonlinear relations. In the last section the
developments in characterizing chaotic fire dynamics are presented. For reasons of
length we only address the power spectrum analysis and the fractal dimension analysis.

THEORY OF NONLINEAR DYNAMICS

In recent years, the ideas of nonlinear dynamics have considerably improved our
understanding of irregular behavior of nonlinear physical phenomena, including that of
many complicated nonlinear processes involved in fire. The dynamics of a mathematica!
model described by a set of differential equations is visualized to take place in a phase
space constructed from the state variables of the system. The behavior of the system can
then be characterized by looking at the attractors that the phase space orbits settle ontc
(these may be point, periodic, or even chaotic) and their basins of attraction, that is, the
area surrounding a given attractor in phase space that will fall onto that attractor.

In general any model will depend on one or more parameters or controls. As a given
parameter is varied the behavior of the system will also vary. Most of the time a small
change in parameter will produce only a slight change in the response of the system (its
structure is qualitatively the same as before). However, at certain critical parameter
values the behavior of the system can change dramatically, and its structure becomes
qualitatively different (for example, the number of attractors could change or the behavior
type of a given attractor could go from point to periodic or chaotic). These critical
parameter values are called bifurcation points, and the changes in system behavior are
termed catastrophes or bifurcations (it is more usual to use the term catastrophe when
referring to a jump in system state). For special sequences of these bifurcations a lot is
known, and even quantitative features can be predicted, as in the case of the period-
doubling cascades. We do not, however, possess a complete classification of the
possible transitions to more complicated behavior.

For a general nonlinear model we would like to map out its structure with respect to
parameter variation. For this reason, the bifurcation points, which divide the parameter
space into regions of different behavior, are of great importance. Two techniques, which
are termed as linear and nonlinear stability analysis respectively, can be used to reveal
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how the solutions of the nonlinear equation evolve with the variation of the parameter.
In contrast to a linear stability analysis, which merely determines whether or not the basic
solution of the equation is stable to infinitesimal disturbances, the nonlinear analysis
which we employ determines the new solution to which disturbances of the basic solution
evolve. In this way we gain specific information about the transition from the basic
solution to the bifurcated solution. For further details of the basis of the bifurcation
theory see, for example, Chow and Hale [8], Keller and Antman [9]. Representative
monographs of the catastrophe theory are those of Arnold [10], Thom [11] and Gilmore
[12]. Different types of bifurcations or catastrophes existed commonly in fire processes.
Flashover, for instance, which is characterized by a sharp increase in both the burning rate
of the fire itself and the temperature of the hot gas layer which forms above [2], involves
an obvious catastrophe process.

It is well known that deterministic problems, governed only by some few nonlinear
ordinary differential equations or by iterations of maps in finite-dimensional spaces, could
give rise to chaotic turbulent-like behavior, highly sensitive to initial conditions and
unpredictable after long times of many iterations.  For the time being, there is still no
generally accepted definition of chaos. Hao [13] suggested a working or operational
definition for chaos, that is, if seemingly random motion occurs in a system, without
applying any external stochastic forces, and the individual output depends on the initial
conditions sensitively, but at the same time, some global characteristics, (e.g., a positive
Lyapunov exponent or entropy, fractal attractor dimension, etc.) turn out to be quite
independent of the initial conditions, then one may well be dealing with chaos. In
general an attractor with sensitive dependence on initial conditions is defined as a strange
or chaotic attractor.

For a dynamical system, a first bifurcation may be followed by further bifurcations, and
when a certain sequence of bifurcations has been encountered, chaos may be achieved.
As an example, Ruelle and Takens [14] proved that if a system undergoes three Hopf
bifurcations, starting from a stationary solution, as a parameter is varied, then it is likely
that the system possesses a strange attractor with sensitivity to initial conditions after the
third bifurcation. Bayliss and Matkowsky [7] investigated the models of gasless
combustion which exhibit pulsating solutions. Two routes to chaos by means of
different bifurcations in condensed phase combustion were examined.

Either in experiments or in numerical calculations, we cannot judge chaos only from
the seemingly randomness of the dynamical data. On a computer it is impossible to
distinguish a very long periodic orbit from a quasiperiodic or chaotic one by merely
looking at the trajectories. In addition, inevitable round-off errors place doubts on any
claim that the observed erratic motion is deterministic chaos. Similarly, in experimental
nonlinear science a principal difficulty is the distinction between nonperiodic dynamics
caused by deterministic processes (chaos) and that caused by stochastic processes (noise).
The former is intrinsic to the system and the latter is extrinsic to the system. For these
reasons, characterization of chaotic attractors is of great importance. As suggested by
Hao [13], a correct strategy for computer experiments and, to some extent, also for
laboratory experiments, involves two consecutive steps: identification of periodic
solutions and characterization of chaotic attractors.

Characterization of chaotic attractors employs such notions as Lyapunov exponents,
various dimensions and power spectrum. For a dynamical system, if the initial state of a
time evolution is slightly perturbed, the exponential rate at which the perturbation
increases (or decreases) with time is called a Lyapunov exponent. An n-th order system

51



of ordinary differential equations has n Lyapunov exponents. The practical calculation
of the Lyapunov exponents from evolution equations can be found in Parker and Chua
[15], Rasband [16], and Jackson [17]. From measurements of a time series Lyapunov
exponents can be obtained by many methods (see, for example, Eckmann et a/. [18], Sano
and Sawada [19], and Bryant, Brown and Abarbanel [20]). In any case, positive
exponents are generally regarded as equivalent to the presence of real dynamical chaos,
and the Lyapunov exponents are classifiers of the dynamics since they are characteristic
of the attractor and independent of any given orbit or initial condition. As far as we
know, however, it seems that few studies have adopted Lyapunov exponents to
characterize the dynamical behavior in fire processes. The reasons may in part lie in two
aspects.  Firstly, the exponents calculations often require large accurate data sets which
are difficult to obtain for general fire processes because of variations in the parameters.
Secondly, the present algorithms of Lyapunov exponents have some limitations. For
instance, in the method put forward by Eckmann et a/. an embedding dimension and
another so-called matrix dimension were defined and used to reconstruct the dynamics
representing the time evolution of the system by the time-delay method. The choice of
these two dimensions is of great importance to achieve satisfactory results. However,
the authors admitted that there exists no clear and definitive principle of how to choose
these two dimensions. In addition, many methods can only be used to obtain
nonnegative exponents, and the number of obtainable exponents is one or two.

The power spectrum of a scalar signal is defined as the square of its Fourier amplitude
per unit time. In a sense, power spectrum analysis is the immediate task one has to
carry out after drawing the trajectories and the Poincare maps, because it provides us with
the simplest method for distinguishing between chaotic and quasiperiodic motion, the
spectra of the former being noisy broad bands and the latter discrete lines without simple
frequency interrelationship. Even for periodic regimes, the fine structure of power
spectra can furnish useful information on our whereabouts in the parameter space. In
fire science, el-Hamdi, Gorman, and Robbins [21] succeeded in classifying the periodic
and chaotic modes of pulsating and cellular premixed flames by means of power spectrum
analysis. Their work will be reviewed in detail in the later sections.

Fractal theory provides a method of characterizing geometries that cannot be described
by conventional methods of Euclidean geometry. The dimension of a set is roughly the
amount of information needed to specify points on it accurately. Mandelbrot [22] was
the first to point out and popularize the notion for fractal geometry as a useful and
accurate representation for naturally occurring phenomena. It is particularly useful in
characterizing naturally occurring geometries that display a wide range of self-similar
shapes and forms. This similarity between different size scales implies that the dynamic
processes operating at each scale are similar. An important and useful characteristic of
fractal geometries is that the measured size of a fractal object varies with measurement
scale by a power law relationship. In fire science many developments have been
achieved by the method of fractal especially in determining the premixed flame speed (e.g.
Gouldin [23]).

To conclude, the nonlinear dynamical theory of physical systems is a rather
mathematical subject, in the sense that it appeals to difficult mathematical theories and
results.  On the other hand, these mathematical theories still have many loose ends. In
fire science many complex phenomena remain unresolved, and perhaps more clarified
mathematical theories are in demand. Fortunately, based on the interplay between
present dynamical theory and fire physics, plenty of fruitful developments of fire
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dynamics have been achieved, which will be reviewed in detail in the following sections.

STABILITY AND BIFURCATION ANALYSES
Dynamics of Flashover

Flashover is an important phenomenon in building fires whereby a relatively small,
localized fire can suddenly undergo a rapid increase in its rate of growth and intensity.
Such a transition is characterized by a sharp increase in both the temperature of the upper
layer (which forms under the ceiling) and the burning rate of the fire itself. Apart from
flashover, the regime of a quasi-steady low-intensity fire is possible with relatively little
heating of the upper layer.

The nature of the flashover jump suggests a nonlinear dynamical process is at work.
Initial attempts to understand this phenomenon have already been made by Thomas et al.
[24] to model flashover as a jump phenomenon. In the work by Thomas et al. a zone
model was constructed which assumes that the compartment is divisible into two
homogeneous regions: a hot/smoke zone and a cool/lower zone. A quasi-steady state
assumption was made. Thermal radiative feedback is seen as the significant factor in
this model. In general the existence of radiative heat transfer ensures that the equations
governing the behavior are highly nonlinear and likely to present a rich field of study for
nonlinear instabilities. Bishop et al. [2,25] used the approach of Thomas ef a/. and
conducted a qualitative analysis of the occurrence of flashover. They considered an
idealized energy balance of the hot layer in a compartment fire which has the following
form

%=G(T, 0= L(T, 1) (1)
where G(7, t) and L(T7, ¢) are, respectively, the rate of gain and loss of energy, E, of the
layer. The energy of the smoke layer and, hence, its temperature are therefore governed
by the forms of gain and loss that are functions of gas layer temperature, 7, and time, ¢.
The gain rate of energy of the hot layer is chiefly determined by the burning rate of the
fire. This in turn is governed by two factors. The first of these is whether the fire is
fuel or ventilation controlled. As we know, a fire with a perfect ratio (balance) of air to
fuel is termed “stoichiometric”. In the case of excess air the ratio of air to fuel flow is
greater than stochiometric and the fire is fuel controlled (i.e., limited by the amount of
fuel flow). Conversely, in the case of insufficient air the ratio of air to fuel flow is less
than stoichiometric and the fire is ventilation controlled (i.e., limited by the amount of air
flow). This switch-over mechanism constitutes the first important nonlinear behavior of
the model.

An increase in temperature of the layer will result in it emitting more radiation to the
base of the fire. This will increase the burning rate of the fire and hence the amount of
energy released into the layer. The energy increase of the layer will in turn increase its
temperature, and a positive feedback loop is created. The total radiation flux to the fire
base is given by

g =9, +x0(T" - T.%) )
where 7, is the temperature of the fire base, O is the Stefan-Boltzmann constant, and g,
is the free-burn term. The fourth-power temperature dependence of radiation feedback is
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the source of the second major nonlinear behavior of the model.

The rate of energy loss of the layer is given by a combination of energy losses from the
hot gas flowing out of the vent and heat being conducted through the walls of the room.
Both of these processes are driven by the temperature difference between the layer and the
surroundings. Having outlined the form of the governing factors we can now sketch the
gain and loss rates as two functions of temperature as shown in Figure 1. It can be seen
that depending on the relative positions of the gain and loss curves there can be up to
three intersections, one corresponding to small fire (e.g. point C, or C,), one to a large fire
(e.g. point A, or A,) and one being unstable (e.g. point B). The gain and loss rate curves
shown in Fig. 1 are a snapshot at one particular instant of time. In general the two
curves can be considered to shift relative to one another as time passes. Thus quasi-
steady approximation was used. A fire represented by intersection C, or C, would then
move up the gain curve until it eventually encountered intersection B, resulting in a fold
catastrophe of saddle node bifurcation. This would lead to a sudden jump in temperature
of the layer, to the large ventilation controlled fire represented by state A. Bishop et al
identified this jump in layer temperature and burning rate of the fire with the phenomenon
of flashover.

Two ordinary differential equations describing the temperature of the smoke layer
filling the compartment above a fire, 7, and the radius of the fire itself, R, were used to
model the growth of fire and reflect the qualitative behavior outlined above. The two
equations are

dTGL

(3)
dt c,m
and
IR ¥, 11— exp(LE T o] @
’n =V [1-exp(——">5)]

edge
In equation (3) T is the hot gas layer temperature, G and L are respectively energy gain
' rate and loss rate of the
Ventilation controlled layer, c, is the specific

A (constant air flow) heat at constant pressure
of the gas and m is the
Gain mass of the gas layer. In
A A2¢ equation (4) V; is the
and é flame spread rate, Ry, is
Loss the distance over which
B the edge of the fuel
Rates / affects the spread rate and
c, /C _ R, is the maximum
Generalized radius, representing the

size of the fuel sample.
Bishop et al con-
> sidered the fire develop-
0 Temperature of upper layer ment process to be made
up of a “fast” variable
Figure 1. Gain rate and three loss curves illustrating representing the tempera-

possible types of intersections ture of the gas and a
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“slow” variable in the form of the fire radius. To get a measure of the effective stability
of the fire’s evolution the eigenvalue of the differential equation for temperature was used
which has the form of

_ F(T+8,R)~ F(T,R) (5)
)

A

where & is small. This is found numerically and the eigenvalue may then be used to
determine the stability or otherwise of the state:

A >0 Unstable

%<0 Stable (©)

The two differential equations are integrated using a fourth/fifth order adaptive step size
Runge-Kutta. The approach of “Path followed” [26] was employed to locate attractors
and basins of attraction. In the simplest two-dimensional case analyzed here the fire
trajectories evolve on a control surface with slow variables/parameters (wall temperature
parameter and fire radius) effectively controlling the evolution of the layer temperature.
Bishop et al. found that the surface has the form of a cusp catastrophe (i.e., for some
values of fire radius and wall temperature parameter the layer temperature has more than
one possible value). The phenomenon of flashover can be identified with a trajectory
encountering the cusp, undergoing a catastrophe, and jumping from the lower to the upper
surface. The effect of a change in ventilation on the form of the control surface has also
been investigated in this paper. The model described above was tested by the
experiments of Holborn et al. [27] finished in a small-scale compartment. A comparison
between experimental data and theoretical predictions obtained from model simulations
were shown to be in reasonable agreement.

Graham, Makhviladze, and Roberts [28] also adopted similar stability analysis to
investigate the flashover development. The following equations were used to obtain the
critical temperature 7 for the occurrence of flashover:

G(T) =L(T) (7a)
G'(T)=L'(T) (7b)

Actually this criterion is equivalent to that of Bishop ef a/., which can be shown by
comparison of Eq. (7) and Eq. (6). The critical conditions have been given in a general
form in terms of two similarity parameters for walls of large and low thermal inertia.
The flashover induction time was also obtained analytically. Calculation of the
flashover induction time allows for an evaluation of the total time for fire growth from
ignition to flashover.

Flashover is a typically nonlinear phenomenon that has yet been far from being
resolved. However, as suggested by previous work, nonlinear methods can effectively
help construct models of flashover that relate fire behavior to the physical characteristics
of the system. This improved understanding should also facilitate the formulation of
effective regulations to govern fire safety.
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Stability of premixed flame

Considerable progress has already been achieved in the understanding of the nature and
character of spontaneous instabilities in premixed flames in the past two decades. It is
well known that two decades ago the mathematical theory of steady plane flames had
already been in principle complete, and there are several monographs on the subject (e.g.
Williams [29], Kanury [30], Glassman [31]). At that time, however, the situation was
far less satisfactory in regard to nonsteady phenomena in curved flames. Some
experiments had shown that there is a class of flames that prefer a characteristic two- or
three-dimensional structure rather than a plane flame [32,33]. It was noticed that cellular
structure tends to appear when the combustible mixture is deficient in the light reactant
(e.g. rich hydrocarbon-air or lean hydrogen-air mixtures). Spinning propagation of
luminous flames were also observed [34]. These observed instabilities, however, had
not yet been well explained theoretically at that time. While during the following five
years or so, say, in the late 1970’s and early 1980’s, marked progress was achieved in this
field. Plenty of theoretical and experimental results were obtained which helped
understand the nature of the curved flame and the transition from steady plane flame to it.
These achievements were largely due to the linear and nonlinear stability analyses
methods that have penetrated combustion theory from nonlinear science. It is now well
established that there exist two basic types of instabilities which can affect the mode of
propagation of an adiabatic flame in the absence of gravity. One is a hydrodynamic
instability, first described by Landau [35], which arises due to the effect of the thermal
expansion of the gas. The other type of instability, first proposed by Zeldovich [36], is
diffusional-thermal in nature and is directly related to the relative rates of diffusion for
temperature and species concentration. Thus, if the Lewis number of the mixture is
sufficiently small, corresponding to a deficiency in the lighter component of the mixture
of fuel and oxidizer, the flame will experience a cellular instability [37]. On the other
hand, if the Lewis number is sufficiently large, corresponding to a deficiency in the
heavier component of the mixture, the flame will experience a pulsating instability [38].

Linear stability analysis has been already used widely in different fields, and it can be
used to determine whether or not the basic solution is stable to infinitesimal disturbances.
It was also used in the investigation of the thermodiffusive flame instability. As early as
the mid-1940s, Zeldovich [36] proposed a qualitative explanation for why cellular flames
tend to form in mixtures that are deficient in the light reactant. A mathematical model
was constructed and linear analysis of the stability of a plane flame front to long-wave
disturbances yields the following dispersion relation [39]:

o= D,h[%B(l ~ Le) — 1]k? (8)

where = E(7, —=T.)/ RY;Z with 7, the temperature of the unburned cold mixture and
T, the temperature of the burned gas; £ is the activation energy, and R is the universal gas
constant; Lewis number Le is the ratio of the thermal diffusivity Dy, of the mixture and
the molecular diffusivity D, of the limiting reactant (the reactant that is entirely

consumed in the reaction, which is assumed to be strongly deficient); o is the rate-of-
instability parameter; and £ is the wave vector of the disturbance of the flame front F with

F ~exp(ct+ik-x). Thus the flame is stable only if the mobility of the limiting
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reactant is sufficiently low (Le> Le, :1—2/[3 ). At Le< Le the flame is

unstable.
However, as was pointed out later [37], a flame, though possibly unstable to long-wave

disturbances, is nevertheless always stable to short-wave disturbances. AtLe = Le,

using linear instability analysis the dispersion relation incorporating the relaxation effect
of short-wave disturbances is

G = Dm[%B(l ~ Le)~1]k* - 4D, 3K’ )

where [, is the thermal thickness of the flame. Thus, when the flame is unstable
(Le< Le,), there is a wavelength A_=2m/k_ corresponding to the highest

amplification rate of small disturbances (maximum o ).

What happens to the flame front after the development of progressive disturbances?
As remarked previously, in contrast to a linear stability analysis, the nonlinear analysis
can be used to determine the new solution to which disturbances of the basic solution
evolve. Consider a curved flame front in the constant-density model. The following

rigorous asymptotic nonlinear relation was derived provided Le—Lec 1s a small
parameter [40]:

E+%Ub(VF)2+Dm[%B(1—Le)—1] VEF+4D,IEV'F =0 (10)

where F is the perturbation of a plane flame front; U, is the velocity of the undisturbed
plane flame front relative to the burned gas. Qualitative arguments in favor of such a
mechanism of nonlinear stabilization have been put forward by Manton, von Elbe, and
Lewis [41], Markstein[42], Petersen and Emmons[43].  Numerical experiments on this
equation have shown that when a plane flame is disturbed it uitimately evolves into a

cellular flame, with characteristic cell size somewhat greater than A .- This structure is

essentially nonsteady, the cells being in a state of continual chaotic self-motion [44].
This phenomenon was later reconfirmed in experiments performed by Sabathier, Boyer,
and Clavin [45]. Thus, by means of stability analysis methods, despite its simplicity the
one-reactant constant-density model proved sufficiently rich not only to provide an
adequate description of the sensitivity of flame stability to the composition of the mixture
and to predict the characteristic size of the cells, but also to describe the chaotic self-
motion of the cells.

Stability analysis methods were also used in the investigations of effects of acceleration
[46], heat loss [47] and stretching [48] on the stability of flame and satisfactory results
were obtained.

Compared with diffusional-thermal instability, hydrodynamic instability is the more
difficult to analyze because it involves a full coupling of the equations of fluid dynamics
with the diffusion equations for species concentrations and temperature. However,
nonlinear stability analysis also yielded a nonlinear evolution equation for the
perturbation of the flame front and the numerical results which coincided with the
experiments [44].

Stability analysis was also used in the investigation of the flame propagation in vertical
channel and bifurcation to bimodal cellular flames was described [49].

For review of nonlinear stability and bifurcation in the transition from laminar to
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turbulent flame propagation, see, Margolis [6]. From it we can see that instability
analysis, especially nonlinear instability analysis plays a very important role in the
development of the theory of the flame transition.

Besides the stability analysis, derect mathematical modeling can also be used to
investigate the bifurcation of fire dynamical systems. Bayliss and Matkowsky [7]
numerically solved the equations governing two models of gasless combustion which
exhibit pulsating solutions by the so-called Chebyshev pseudospectral method. In this
work, instability analysis was not adopted. The governing equations were directly
computed numerically, and the bifurcations to chaos were investigated in detail. Xie and
Fan [68] established the nonlinear mathematical model of the mine ventilation system.
By means of Runge-Kutta method some bifurcation phenomena of mine ventilation
system were firstly numerically found.

To date stability and bifurcation analyses methods have played a very important role in
the development of the theory of fire dynamics. It can be expected that these methods
will continue to help understand more complicated phenomena in fire processes.

CHARACTERIZATION OF CHAOTIC BEHAVIOR IN FIRE PROCESSES

Power spectrum analysis

The power spectrum indicates whether the system is periodic or quasiperiodic. The
power spectrum of a periodic system with frequency w has Diracd's at @ and its
harmonics 2w, 3w,.... A quasiperiodic system with basic frequencies w ..., has
&'s at these positions and also at all linear combinations with integer coefficients. In
experimental power spectra, the Dirac &'s are not infinitely sharp; they have at least an
“instrumental width™ 2 n /7, where T is the length of the time series used. The linear
combinations of the basic frequenciesw ,,...,w, are dense in the reals if j>1, but the

amplitudes corresponding to complicated linear combinations are experimentally found to
be small. In fact, ~=2 is common, and higher k’s are increasingly rare, because the
nonlinear couplings between the modes corresponding to the different frequencies tend to
destroy quasiperiodicity and replace it by chaos (see Ruelle and Takens [50]).
Nonquasiperiodic systems are usually chaotic. Although their power spectra still may
contain peaks, those are more or less broadened ( they are no longer instrumentally sharp).
Furthermore, a noisy background of broadband spectrum is present. In general, power
spectra are very good for the visualization of periodic and quasiperiodic phenomena and
their separation from chaotic time evolutions.

Here we address the application of power spectrum analysis in the identification,
description, and characterization of nonperiodic flame dynamics. In mid-1980’s four
nonsteady modes of propagation were observed on burner-stabilized laminar premixed
flames [51,52,53], which were the axial mode, the radial mode, the spiral mode, and the
“drumhead” mode. The stability boundaries for the occurrence of these modes were
given experimentally by et-Hamdi et al. [53]. Later, et-Hamdi, Gorman,and Robbin [21]
constructed a classification scheme based on an analysis of power spectra to identify and
classify chaotic dynamics of the premixed flame. Here we outlined some interesting
results of their experiments.
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In pulsating flames chaotic dynamics can occur when a periodic mode is forced toward
the extinction boundary. = The power spectrum of a periodic radial mode as compared
with that of a radial-extinction mode. Chaotic dynamics is indicated by the broad fall-
off in the power spectrum. The sharp peaks corresponding to the dominant radial
oscillation are also present.

Chaotic dynamics can also occur in the transition region between two periodic
modes. In the axial mode the flame front pulsates along the bumer axis. In the spiral
mode the most intense region of the flame front moves in a complicated spiral path. As
the experimental parameters are varied, these modes can interact. In the power spectra
taken at representative points in the axial-radial transition only sharp peaks were observed
corresponding to the axial mode, the radial mode, their combinations and harmonics.
While in the power spectra taken at representative points in the axial-spiral transition, the
sharp peaks associated with each of the modes sit on top of a broad fall-off.

Chaotic dynamics is also found in cellular flames. The power spectrum of the
unsteady cellular flame has a single broad component, extending from zero and
decreasing monotonically to around 50 Hz.

A principal difficulty in experimental nonlinear science is the distinction between
nonperiodic dynamics caused by deterministic processes (chaos) and that caused by
stochastic processes (noise). Upon the above characteristics of power spectra in
different unsteady modes this distinction is usually framed by the question, ‘Is it chaos or
is it noise?’ and many tests have been put forward to make this distinction, usually by
computing quantities of interest in nonlinear science such as the Lyapunov exponent or
the fractal dimension of the chaotic attractor. However, Osborne and Provenzale [54]
have pointed out the inability of the fractal dimension to conclusively distinguish between
stochastic and deterministic dynamics. In addition, the computation of these quantities
often require large accurate data sets which are difficult to obtain in combustion
experiments because of variations in the experimental parameters. Sigeti and
Horsthemke[55] have argued that power spectra can be used to make the distinction
between deterministic and stochastic systems. They argued that the high frequency fall-
off of the power spectrum would be exponential for deterministic processes and a power-
law for stochastic processes. According to this argument, el-Hamdi et al. [21] proved
that power spectra can be used to classify the nonperiodic dynamics of the flame front by
a comparison of Jog-log and semi-log plots of the high frequency fall-off of the power
spectrum. They also argued that the analysis of Sigeti and Horsthemke is incomplete
and proposed that there are at least three classifications: systems with an exponential fali-
off, systems with a power-law fall-off, and systems in which both exponential and power-
law fall-offs give equally good fits.

From the above review of the power spectrum analysis in the identification of the
chaotic dynamics in premixed flames, it can be concluded that for systems whose
dynamics is difficult to investigate by theoretical model, power spectrum analysis can
play an important role. However, it should be pointed out that the analysis of the chaotic
motions themselves does not benefit much from the power spectra, because (being
squares of absolute values) they lose phase information, which is essential for the
understanding of what happens on a strange attractor.

Fractal in Fire Dynamics

A contemporary development with the emergence of chaotic dynamics has been the
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growing realization of the fractal nature of the world around us. Intuitively, the
dimension of a space is the minimal number of coordinates needed to specify in it the
location of a point. Geometrical objects with integer dimensions, such as zero-
dimensional points, one-dimensional lines, two-dimensional surfaces, three-dimensional
bodies and four-dimensional space-time are familiar notions. These topological
dimensions do not change under continuous deformation of the objects.  The
characterization of chaotic attractors calls for fractal, i.e., not necessarily integer,
dimensions, introduced by mathematicians at the beginning of this century, but made a
regular tool of science only during the past two decades. Credit must be given to B. B.
Mandelbrot who coined the term fractal and did a good job of popularizing the idea of
fractal geometry.

Theory of fractal has been used widely in the understanding of fire dynamics. By
means of the concept of fractal, marked progress has been achieved in modeling the
premixed turbulent flame, and here we review the corresponding results.

Experimental evidence showed that reaction in premixed turbulent flames at moderate
turbulence levels is confined to thin sheets usually referred to as flamelets [59].
Depending on turbulence
conditions the flamelets
may form a continuous
sheet, several sheets, or

Inner cutoff

A may be fragmented into
logA outer cutoff many  separate  sheets.
Analyses for premixed

A, bommm e laminar flames have shown

i { that at low to moderate
! ! levels of turbulence the
! i combustion rate per unit
& &, flamelet surface area is
log e approximately that of an
unstrained laminar flame,

Figure 2. Postulated variation of measured surface area i.e., oy, the product of

in the presence of inner and outer cutoffs the reactant gas density and

the unstrained laminar

flame speed. In this circumstance, only the knowledge of flamelet surface area is needed
to determine combustion rates.

According to the definition of fractal dimension, the measured surface area 4(¢) is

given by

A(g)ocgz'D (1
The range of scales over which the power laws of the type Eq. (11) holds is bounded by
cutoffs on both ends imposed by physical limits (Fig.2). An appropriate length for this
minimum scale or inner cutoff would appear to be the Kolmogorov scale, 77, if the Prandtl
or Schmidt number is one. Similarly, if there is a maximum length scale of surface
wrinkling, say the turbulence integral scale /, which is less than the size of the underlying
space, one would expect 4 to be independent of € for £ greater than this maximum scale.

The generally accepted theory of the effect of turbulence on premixed flame structure
and flame speed was introduced by Damkohler. He theorized that eddies larger than the
flame thickness affect flame structure by convective distortion of the flame front, while
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eddies smaller than the flame thick-ness increase the heat and mass transport rates within
the flame front and thereby alter the local laminar flame speed. Many practical
combustion systems, however, operate in a combustion regime where the small-scale
effects can be neglected. This regime of combustion is referred to as the reaction sheet
regime, and is characterized by ratios of the Kolmogorov length scale to the flame

thickness (77/6 ;) >1 and ratios of the characteristic flow time scale to chemical time

scale, i.e. the Damkohler number Da; > 1. Under these conditions and in the absence
of significant flame stretch, the ratio of the turbulent to laminar flame velocity should be
proportional to the ratio of the instantaneous lame surface area of the turbulent flame to
the flow cross section area, i.e.,

u!

{

-~

u, AO (12)
where u, and u; are the turbulent and laminar flame velocities, respectively; A, is the area

of the turbulent flame, and A, is the flow cross section. Then the fractal geometry
yields the following relationship [23]

i:fi_:(fi)D—z (13)

A, A

For nonreacting turbulent flows, Mandelbrot [60] proposed a fractal dimension of 2(2/3)
for Gauss-Kolmogorov turbulence and 2(1/2) for Gauss-Bergers turbulence.

Started with (13) and in terms of the following relation [61] for homogenous, isotropic

turbulence

o I

In=4"R" (14)
where R=1u' l/ v, Gouldin [23] obtained a prediction for #, under the assumption that
flamelets propagate at the unstrained laminar flame speed, u:

u, fuy = {[1- (1~ 4,7 R yexp(~(4, [ R)"* ufu)14,V RV y 2 (15)
where D is the fractal dimension and has a value of 2.32 to 2.4 as inferred from

experiment [62] and by analysis [63,64]. A,=0.37, based on turbulent pipe flow data.

In the analysis of Gouldin, the flame surface was assumed to behave largely as a
passive scalar surface at high Reynolds numbers. However, Kerstein [65] rejected the
passive scalar assumption. Without this assumption and with the help of dimension
analysis he derived directly from existed relations that the fractal dimension of turbulent
premixed flames is 7/3.

A freely propagating premixed turbulent flame was examined over a range of turbulent
Reynolds numbers from 52 to 1431 and Damkohler numbers from 10 to 889 [66]. This
investigation emphasizes the effects of changing turbulence intensity and laminar flame
speed on the flame front fractal dimension. The fractal dimension was found to increase

withz'/u, , from 2.13 at #'/u, of 0.25t0 2.32 at of 11.9. These results were found to
L L

agree well with results obtained in other studies using different flame configurations.
The inner cutoff was not observed due to experimental limitations, however, the Gibson
scale and an expression for the inner cutoff proposed by Gouldin were both found to over

predict the inner cutoff at low values of u'/uL :

A heuristic relationship was formulated which predicts the observed change in flame
surface fractal dimension as a function of the turbulence intensity to laminar flame speed
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ratio. The model assumes that at high turbulence intensity, the effect of turbulent
diffusion dominates. Whereas at low turbulence intensities, the process of flame
propagation dominates, smoothing the flame surface. At intermediate turbulence
intensities, the flame structure is determined by the competition between these two
processes which can be represented by the expression,

D D
DF= ’L =T (16)
| ELT+1
u, u

Using the heuristic fractal dimension relationship and the Kolmogorov and integral scales
as inner and outer cutoffs, respectively, a fractal turbulent flame speed model is obtained

which dependsonu’,u; ,and /.

Another analysis was finished by Gulder {67] who adopted a variable inner cutoff scale
as a function of turbulent and molecular diffusivities. With a fractal dimension of 7/3
and an outer cutoff approximating the integral length scale of turbulence, the analysis
yielded

ur/uL o (ul/uL)]/z Rei/d an
This model suggested a wrinkled flame structure influenced by a turbulent length scale as
well as the turbulence intensity.

For the turbulent diffusional flame surface, a one-dimensional modeling was presented
by Zou [69]} by means of fractal method, and the relationship between the surface fractal
dimension and the flame propagation speed was obtained.

From the above review, it can be seen that fractal geometry description of turbulent
flames is a promising means of treating complex problems in combustion dynamics.

OUTLOOK

Our review has led from the introduction of basic nonlinear dynamical theory to
applications of the theory in fire dynamics. In this review we have tried to introduce
nonlinear methods by presenting those topics and examples that seem to have risen to the
very important fare in fire dynamics. However, for reasons of length choices must be
made and the topics selected certainly reflect our own preferences. However, we have
tried to represent what most fire researchers seem to feel are the important topics. The
purpose of this review is to make nonlinear science accessible to a large number of fire
scientists. ~ The results presented here are the combined achievement of many
investigators, only incompletely cited. For several other recent development of
nonlinear fire dynamics, see [70~76]. We believe that the advanced nonlinear theory
such as methods of chaos control [77,78] should lead to a better understanding of the
complicated fire dynamics. We hope that the present review serves as an encouragement
for the understanding of the nonlinear fire behavior in a better “nonlinear” way.
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