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ABSTRACT 

Backdraft is a fire phenomenon in which the hot gasses formed from combustion at low oxygen levels 
rapidly combust due to abruptly supplying abundant fresh air. This transient phenomenon is an example 
of typical catastrophe behaviour. In this paper, a simplified mathematical model of backdraft in 
compartment fires is established based on an energy balance equation. Its catastrophe manifold function 
equation based on catastrophe theory was created, and the corresponding relationship between system 
control variables and fire operating conditions was studied. It is indicated that the catastrophe form of 
backdraft is a swallowtail catastrophe, and whether backdraft takes place is determined based on its 
bifurcation set. 
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INTRODUCTION 

Fire is a very complex phenomenon involving combustion, heat transfer and fluid mechanics. Some fire 
phenomena such as backdraft in a compartment are even more complicated as the heat and mass 
produced are confined in the enclosure1. Backdraft can develop from fires of either ordinary 
combustibles or ignitable liquids that become oxygen starved yet continue to generate a fuel-rich 
environment. If the fresh air is allowed to flow into the vitiated space, such as by opening a door or 
breaking window glass, a gravity current of colder air will flow into the space while the hot fuel-rich 
gasses flow out through the top of the opening. The air and fuel-rich gasses will mix along the interface 
of the two flow streams. Once a localised flammable mixture is formed and is in contact with an ignition 
source, the fuel-rich gasses will combust acutely, the temperature will rise rapidly and the initial fire 
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stage will develop into flashover or deflagration. The deflagration will cause the gasses to heat and 
expand within the fire space, thus forcing unburned gasses out of the open vent ahead of the flame front. 
These gasses will mix with additional air outside of the fire space. As the flame traverses the room and 
penetrates the doorway, it ignites the gasses outside the space resulting in a fireball and a blast wave. 
This phenomenon is termed backdraft2-4. Such transition phenomena are suggestive of a catastrophe 
process. Therefore, it is possible to analyse this catastrophe behaviour of backdraft in compartment fires 
and create a catastrophe manifold function equation based on catastrophe theory. 

Catastrophe theory is concerned with discontinuities. It is a special form of bifurcation theory in which 
smooth incremental changes in system control variables can result in “jump” between stable and 
unstable behaviours5-6. Thom7 suggested a number of standard or basic forms of catastrophes and each 
of these had a manifold or hypersurface that defined the equilibrium points for the system. Hence it is 
possible to manipulate the system equations into the standard form of one of these catastrophes. 
Catastrophe theory has been applied to the stability analysis of ships, airplanes and structural systems8. 
In this paper, catastrophe theory is applied to analyse backdraft in compartment fires. 

Even though backdraft is known to be related to hot smoke components, temperature, and environment 
conditions, there are currently no sound mathematical models. Therefore, the study on backdraft is 
deemed as one of the difficulties of fire science9. The present study methods of backdraft are restricted to 
experiments3. However, due to its suddenness, it is difficult to understand the physical mechanism using 
present experimental techniques. Armed with a catastrophe theory, a mathematical model for backdraft 
can be investigated with a view to verifying the predictive power. Large fire simulation models can then 
built on this sound framework of knowledge of fundamental physical events, allowing the model to 
evolve and to incorporate finer details of structural form. Additionally, the model can be used to 
determine the methods of escaping the occurrence of backdraft without expensive experimental studies. 

The simplified mathematical model of backdraft in compartment fires based on an energy balance 
equation and its catastrophe manifold function equation (based on catastrophe theory) will be presented 
in the following section. The corresponding relationship between system control variables and operating 
conditions will be discussed. Conclusions and future work are then presented. 

 

Simplified mathematical model of backdraft 

Vitiated compartment fires may develop in two situations as shown in Figure 1. The development of the 
first situation is 1-2-3-4-5-6, i.e. ignition, free combustion, combustion with lack of oxygen or 
smouldering, backdraft, developed combustion and decay. The development of another situation is 
1-2-3-7, i.e. ignition, free combustion, combustion with lack of oxygen or smouldering and decay. 
Backdraft in compartment fires can take place only in the first situation. There are three key 
time-variables to differentiate these stages. tc is the transform time from combustion to combustion with 
lack of oxygen or smouldering, to is the time of supplying oxygen, and td is the transform time from 
developed combustion to decay. 

In order to establish the mathematical model of backdraft in compartment fires, the following 
assumptions are introduced: 

• The compartment can be divided into two zones, which may be represented by average 
temperatures. 

• The wall surfaces surrounding the lower zone and the corresponding wall surfaces below the thermal 
discontinuity are assumed to be at an initial temperature. 
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• The flame in compartment at to is entirely extinct. 

• The hot gas and the colder air in the compartment at to is assumed to form steady gravity currents 
below the thermal discontinuity, i.e. the reaction zone of the hot gas and the colder air is only below 
the thermal discontinuity. 

The equation of energy conversation takes the form of a heat balance: 

       LG
dt
dTmc p −=                (1) 

where m is the total mass in the hot layer in the compartment, cp is its specific heat capacity (at constant 
pressure), T is the temperature of the hot zone, t is time, G is the rate of heat gain of the hot zone in the 
compartment, and L is the rate of heat loss from the hot zone in the compartment. 

)exp(00 RT
ElkQDACG V

n −=                                                        (2) 

where C0 is the concentration of combustible mixture, n is the reaction order, Q is the heat of combustion, 
D is the fractional height of the thermal discontinuity plane, Av is the area of the vent, l is the length of 
reaction zone, k0 is pre-exponential factor, E is the activation energy, and R is the gas constant. 
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where  is the total mass flow of gas from the opening, cd is the discharge coefficient, ρ0 is the initial 
density,  is the acceleration due to gravity, Hv is the height of the vent. Au is the surface area of wall 
surrounding the gas layer, hc is the convective heat transfer coefficient for the hot wall surface, Tw is the 
surface temperature of the walls surrounding the hot zone, hv is the convective heat transfer constant for 
the vent, αg is the emissivity of the gas layer, and AL is the surface area of walls surrounding the lower 
zone. 
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where θ is the dimensionless temperature, ε is a small quantity, τ is the dimensionless time,  t* is the 
characteristic time of heating of the upper layer by heat from reaction zone, θW is the dimensionless 
temperature of walls, β is the temperature factor of walls, tout is the characteristic time for enthalpy flow 
from the vent, ϕout is its dimensionless scale, tR,j(j=W,L) is the characteristic time for radiative heat 
transfer from the hot zone to the hot walls and to the lower zone, ϕR,j(j=W,L) is its dimensionless scale, 
tc,K(K=H,L) is the characteristic time for heat convection from the hot layer to the wall surfaces and the 
vent surface, and ϕc,K(K=H,L) is its dimensionless scale. 

Equation 1 becomes: 
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where the approximation of the quadratic multinomial is used11: 
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The diffeomorphic mapping is defined as: 
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From this analysis the following equation is obtained: 

)(
5

~ 2354 kwxvxuxxaU ++++                                           (7) 

It is obvious that Equation 7 is the potential function of a swallowtail catastrophe. 

The equilibrium surface M is: 

0235 24 =+++=′ wvxuxxU                                              (8) 

The singularity set S is: 

02620 3 =++=′′ vuxxU                                                  (9) 

By removing x  from Equations 8 and 9, the equation of bifurcation set B is obtained. It is a curved 
surface of 3-dimensional control space C. The schematic outline is shown in Figure 2. 

 

Operating conditions  

In this paper, the control variables v and w are discussed while conserving the invariance of the control 
variable u(u ≥ 0, < 0). This is because of the symmetry characteristic of the bifurcation set of the 
swallowtail catastrophe. This is done in order to discuss directly the corresponding relationships of 
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control variables and operating conditions. The conclusions will now be given. 

 

 u ≥ 0 
Figure 3 shows the bifurcation set of the swallowtail catastrophe at the control variable u ≥ 0  (u = 10). 

The following results are shown with reference to Figure 3: 

(1) The space v-w can be divided into six regions in which the borderline between Region IV and Region 
II, III is defined according to Equation 10: 
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                                                      (10) 

(2) From, θ = x – a3/4a4 , x has physical meaning only at x > a3/4a4 (≥ 0) Based on Equation 10: v is the 
odd function of x, and w is the even function of x. Regions III, IV, V and VI are the ones in which the 
operating points may not be reached. 

(3) The potential function U(a4 < 0) of Region I based on Equation 7 shows that U has two critical points, 
one maximal point and one minimal point, and both corresponding x are positive. The maximal point 
is an unstable point, and the minimal point is a stable point. However, xmin corresponding to the 
minimal point is less than xmax corresponding to the maximal point. So x will increase with U 
decreasing at x > xmax until backdraft takes place, so Region I is a backdraft region. Otherwise, x will 
fall to xmin with U decreasing at 0 < x < xmax, and Region I will be an extinction region. 

(4) The potential function U of Region II has no critical points, i.e. x has no real roots. But x will increase 
with U decreasing until backdraft takes place. So Region II is a backdraft region. 

From this analysis, Regions III, IV, V and VI are the ones in which the operating points may not be 
reached. Region II is a backdraft region (x > a3/4a4). Region I is a backdraft region at x > xmax, and an 
extinction region at 0 < x < xmax (x > a3/4a4). 

 

u < 0 
Figure 4 shows the bifurcation set of a swallowtail catastrophe at the control variable u < 0 (u = -50). 

The results derived from Figure 4 include: 

(1) The space wv −  can be divided into ten regions, in which the borderline between Regions I, III, IV, 
VI, VIII, IX and Regions II, V, VII, X is defined according to Equation 10. 

(2) Firstly, the operating conditions of Region I, III, IV, VI, VIII and IX are studied. Based on their 
symmetry characteristics, only the conditions at v = 0 are considered. Therefore, the solution of 
Equation 8 is: 
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(a) At Regions III and IV, i.e. w = 9u2/20, Equation 11 has no real roots, and the potential function 
U has no critical points. But x will increase with U decreasing until backdraft takes place so 
Regions III and IV are backdraft regions. 

(b) At Regions I and VI, i.e. 0 < w < 9u2/20, Equation 11 has four real roots, two positive and two 
negative, and the potential function U has four critical points, two maximal points and two 
minimal points. The maximal point corresponding to the positive root is an unstable point, and 
the minimal point corresponding to the positive root is a stable point. But xmin corresponding to 
the minimal point is less than xmax corresponding to the maximal point, so x will increase with 
U decreasing at x > xmax until backdraft takes place. Therefore, Regions I and VI are backdraft 
regions. Otherwise, x will fall to xmin with U decreasing at 0 < x < xmax, and Regions I and VI are 
extinction regions. 

(c) At Regions VIII and IX, i.e. 0<w , Equation 11 has two real roots, and the potential function 
U  has two critical points, one maximal point and one minimal point. But xmax  corresponding 
to the maximal point is more than zero, and xmin corresponding to the minimal point is less than 
zero. So x  will increase with U  decreasing at x > xmax until backdraft takes place, so Regions 
VIII and IX are backdraft regions. 

(3) Based on the potential function U of Region II, U has two critical points, one maximal point and one 
minimal point, and both corresponding x are positive. The maximal point is an unstable point, and 
the minimal point is a stable point. But xmin corresponding to the minimal point is less than xmax 
corresponding to the maximal point, x will increase with U decreasing at x > xmax until backdraft 
takes place, so Region II is a backdraft region. Otherwise, x will fall to xmin with U decreasing at   
 0 < x < xmax, and Region II is an extinction region. 

(4) The potential function U of Region V has two critical points, one maximal point and one minimal 
point, but both corresponding x are negative. However, x(>0) will increase with U decreasing until 
backdraft takes place. Therefore, Region V is a backdraft region. 

(5) The potential functions U of Region VII and X each have two critical points, one maximal point and 
one minimal point. But xmax corresponding to the maximal point is positive, and xmin corresponding to 
the minimal point is negative, so x will increase with U decreasing at x > xmax until backdraft takes 
place and Regions VII and X are backdraft regions. 

This analysis has shown that Regions III, IV and V are backdraft regions (x > a3/4a4), Regions I, II, VI, 
VII, VIII, IX and X are backdraft regions at x > xmax, and Regions I, II and VI are extinction regions at 0 
< x < xmax (x > a3/4a4). 

 

CONCLUSIONS AND FUTURE WORK 

A simplified mathematical model of backdraft in compartment fires has been established based on an 
energy balance equation and its catastrophe manifold function equation based on catastrophe theory. In 
addition, the corresponding relationship between system control variables and operating conditions is 
discussed at the control variable u ≥ 0 and < 0. The catastrophe form of backdraft was found to be a 
swallowtail catastrophe. In the bifurcation set of the swallowtail catastrophe, few regions at limited 
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conditions are backdraft regions. Therefore, in order to determine whether backdraft takes place in the 
development of a fire, the operating point must be in a backdraft region. The critical temperature of 
backdraft is also evaluated from the bifurcation set of the swallowtail catastrophe. 

Future work should focus on practical applications for backdraft based on catastrophe theory. For 
example, performance design for building fires to determine the materials of buildings to avoid the 
occurrence of backdraft. Other future work should extend catastrophe theory to typical catastrophe 
behaviour of fire phenomena such as flashover in compartment fires. 
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Figure 2:  Schematic outline of 
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(small figures are potential functions). 
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