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Abstract  : The present paper indicates finite element models which are capable of pursuing 
behaviors of high strength bolted beam-beam rigid joints and overall steel frames subject to 
fire. The finite element analysis takes into account thermal expansions and nonlinear 
stress-strain relationships of heated materials, and geometrical nonlinearities due to finite 
deformation. The beam joints in the finite element models consist of 3D H-sectional models 
assembled by flange plates, web plate and splice plates which are 2D rectangular elements. A 
gap between the splice plate and the beam is connected with a bolt element which has an 
elasto-plastic shear spring. The bolt elements have relationships between shear stresses and 
shear deformations for JIS F10T under various member temperatures. Further, a typical 
collapse mode of a steel frame with beam joints is clarified with the above finite element 
analysis. 
Key words:  steel frames, fire resistance, high strength bolts, beam joints, finite element 
models,  
                                                                                  
1. Introduction 
A high strength bolted joint is the most typical member connection in steel frames. In Japan, 

F10T grade high strength bolts are widely used in steel buildings, which are satisfied with JIS 
standards that each yield strength and tensile strength at room temperature are respectively 
above 900kN/mm2 and 1000kN/mm2 Ref[1]. A joint between beam and beam with high strength 
bolts is called a high strength bolted beam-beam rigid joint (further, beam joint), this is 
capable of transferring bending moments and shear forces between beams. In the allowable 
stress design and ultimate strength design for buildings in Japan, beam joints are designed by 
the recommendation that beam joints must have greater bending and shear strengths than 
beams at room temperaturesRef[1]. There is, therefore, no case that the bending or shear 
collapse of beam joint precedes the beam collapse at room temperatures. 
On the other side, the above description is not always true at high temperatures. This is 

because that the strength reduction of high strength bolt with temperature rising is fiercer than 
mild steels Ref[2], Ref[3]. Furthermore, thermal stresses are growing into heated beams, these 
significantly affect behaviors of beam joints for high and middle temperatures. Hence, there 
is a possibility that plastic shear deformations of high strength bolts is completely 
consumed and beam joints lead to failures in early fire stages. For the above reasons, it is 
necessary to develop analytic methods to investigate behaviors of beam joints in steel frames 
subject to fire. 
The present paper indicates finite element models which are capable of pursuing behaviors 
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of beam joints and overall steel frames subject to fire. This finite element analysis takes into 
account thermal expansions and nonlinear stress-strain relationships of heated materials, and 
geometrical nonlinearities due to finite deformation. Further, a typical collapse mode of a 
steel frame with beam joints is clarified with the above finite element analysis. 
2. Finite Element Models for beam plates and spliced plates 
 
2.1 Dividing a Beam Joint Model by 2D Rectangular Elements 
The finite element model for a beam joint consists of 3D H-sectional models assembled by 

flange plates, web plates and splice plates which are 2D rectangular elements. These models 
are shown Fig-1. Rectangular elements on webs in the beam joint possess degrees of 
freedoms in the directions of each x and y coordinate axis, and those on flanges possess 
degrees of freedoms in the directions of each x and z coordinate axis. The degree of freedom 
in the direction of y coordinate for flange elements locating on the same coordinate of x are 
equal to the degree of freedom in the direction of y coordinate for web elements locating on 
the intersection of the flange and web elements. Spliced plate elements make to be divided 
with the same meshes as beam elements. However these nodes do not hold the degrees of 
freedoms in common, and are connected with bolts elements.  
No rectangular elements possess bolt holes. To make up for this, we have adjusted a 

thickness of all rectangular elements to be equal to an effective sectional area which is 
eliminated all bolt holes. The above method about an effective thickness is detailed in Fig-2. 
A plate in the figure (a) has two bolt holes with a bolt diameter d . The effective sectional 
area eA  for this plate is given by the following equation (1), and an equivalent thickness et is 
given by the equation (2). 

bee AtbA −×=      (1) 
bAt ee /=      (2) 

In this finite element models, we are not able to analyze phenomena such as stress 
concentrations and local fractures around bolt holes. These phenomena are important effective 
factors by which fractures of bolted joints are caused Ref[1]. We consider theses problems as to 
be future themes of studies. 
All 2D rectangular elements possess 4 nodes, these nodal displacements are shown in Fig-3 

(a) and (b). All nodes of rectangular elements on webs possess 8 degrees of freedoms (u and 
v) in the directions of each x and y coordinate axis, those on flanges similarly posses 8 
degrees of freedoms (u and w). 
Strain components xε , yε , and xyγ for any positions x and y into rectangular elements on webs 

take geometrical nonlinearities due to finite deformations into account, which are given the 
following equations approximated the Lagrange strains. 
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   yxyxyxxy vvuuvu +++=γ    (5) 
The strain components xε , zε , and xzγ  for the flanges are similarly given the following 
equations. 
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Each subscripts in the equations (3)-(8) respectively express a partial differential for 
directions u, v, and w. 
 
2.2 Material properties for rectangular elements under various temperatures 
Materials for any plates on beam joints are equivalent to JIS SS400 grade steels, these 

stress-strain relationships under various temperatures are given the following equation (9) 
which have suggested by the reference [4]. These can determine a value of stressσ  from 
giving two values of a strainε  and a member temperature T . 
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ptlt EEE −′= , 05.02 =ε  
Where, 

E′ : Young’ modulus of material 
yσ : yield stress of material 
ptE : coefficient about strain hardness of material 
otσ : value of stress to determine the tensile strength of material 

n : coefficient about the shape of equation. 
Fig-4 is shown the stress-strain relationships under various temperatures due to the equation 

(9), and the values for nEE otpty ,,,, σσ′  are shown in Table-1. 
The above equation (9) are to expand stress-strain relationships suggested by the reference 

[5] into large strain ranges such as over 0.05%. Agreements with stress-strain relationships 
due to the equation (9) and experimental results are described in the reference [6]. In 
accordance with this reference, stresses giving from the equation(9) satisfactory agree with 
experimental results for high temperatures up to 500℃. On the other side, for low and middle 
temperatures (from RT to 400℃), the former is below the latter. This is because that the 
equation (9) does not be considered a blue shortness effect of steels for middle temperatures 
ranges. As a result of this, the stress-strain relationships shown in Fig-4 nearly seem to the 
same shapes of curves from RT to 400℃. 
A linear coefficient of expansion for steels is given byα which is a constant value not to 

defend upon member temperatures. The coefficient α and a strain of linear expansion thε  are 
given by the following equation (10). 

)( RTTth −=αε ,  α =12×10-6 ℃-1  (10) 
thε is dealt with a initial strain. The law of elasto-plastic constitutive equation is based on the 

law of Prandtl-Reuss, and we get incremental equations of strain-stress relationships under the 
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states of plane stresses Ref[7]. 
An increment equation of equilibrium of forces for the 2D rectangular element is given by 

the principle of virtual work. This increment equation and the Newton-Raphson method for 
solving non-linear problems are shown in the reference [7]. In this reference, the increment 
equation for a 3D out-of-plate element is described, while we have taken it up as only 2D 
in-plate behaviors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Bolt elements 
 
3.1 Finite element models for high strength bolts 
A bolt element which transfers shear forces between a beam plate and a spliced plate will be 

given in due order bellow.  
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Table-1 Values for modulus in equation(9) 
SS400 

( ) ETE ⋅⋅⋅−=′ − 2610905.00.1        1 tf  = 9.8 kN 

( ) yy T σσ ⋅⋅−= − 2610592.3001.1            1 cm = 10 mm 
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Slip loads of high strength bolted joints are markedly decreasing with temperatures rising. 
This is because that an initial tension of high strength bolt and a coefficient of friction at the 
plate surfaces are decreasing with temperatures rising Ref[8]. After it was for high strength 
bolted joints to occur slips, shear forces are transferred through bearing stresses of high 
strength bolts. At high temperatures, shear forces which are transferred with the bearing 
stresses of bolts are so larger than with the frictional effects Ref[9]. Hence, we assume that the 
share forces between a beam plate and a spliced plate in the finite element models are 
transferred through only bearing stresses of bolts. 
Fig-5 shows slid displacements between a beam plate and a splice plate. A bolt element 

consists of a shear spring element which interconnects two nodes for the beam plate and the 
splice plate. The slid displacements for two nodes are equal to shear displacements of a spring 
element (Fig-6), and the restoring force of a spring element is equal to a shear force acting on 
a bolt element. 
Fig-7 shows nodal displacements of a bolt element on webs. The number 1 or 2 in Fig-6 

respectively show nodal numbers on the side of a beam plate or a spliced plate. The number 1 
node on the side of beam plate has two nodal displacement u1 and v1, and the number 2 node 
on the side of spliced plate similarly has u2 and v2. The relative displacements u and v are 
indicated by the following equation (11) with the four nodal displacements u1 , v1, u2, u2. 
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The equation (11) is hereinafter abbreviated by the following equation (12). 
   }]{[}{ UBu =      (12) 
A shear displacement *u  for a bolt element in Fig-6 is given by the equation (13) with the 
relative displacement u and v. 

22 vuu +=∗     (13) 
 
3.2 Material properties for bolt elements under various temperatures 
Relationships between shear stresses and shear displacements under various member 

temperatures will be determined by the followings. 
 
3.2.1 Relationship between shear stress and shear displacement for a unitary high 
strength bolt at room temperature 

A relationship between shear stresses and shear displacements for a unitary high strength 
bolt at room temperature is given by the following equation (14). This equation had been 
suggested by J.W.Fisher Ref[10]. 

( )( )λμττ Δ−−= exp0.1B     (14) 
Where, 

τ : shear stresses of a unitary high strength bolt (tf/cm2) 
Δ: shear displacements of bolt and bearing displacements of plates with a bolt hole (cm) 
μ: coefficient ( =9.06 (1/cm) )  
λ: coefficient ( =0.4 ) 

When a steel grade of high strength bolts is ASTM A325(equivalent to F8T) or ASTM 
A490(equivalent to F10T) and that of spliced plates is ASTM A440(equivalent to SM490) or 
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ASTM A7(equivalent to SS400), a maximum shear displacement of a unity bolt is about 
0.5cm – 0.7cm. This does not defend upon grip lengths of bolt nor steel grades of each high 
strength bolt and spliced plate Ref[10]. Accordingly, letting the maximum shear displacement of 
bolt element at RT be 0.5cm leads to a safety evaluation. 
 
3.2.2 Experiment on high strength bolted connections under various temperatures 
Hirashima et al. have obtained relationships between acting tensile forces and tensile 

displacements for specimens of high strength bolted connection under high temperatures Ref[9]. 
In this experiment, a specimen consists of one main plate (thickness of plate = 25mm) and 
two spliced plates (thickness of plate = 12mm), and a high strength bolt (S10T-M22) with 
double shears. The total length of specimen is 1400mm, and the middle territory (350mm) of 
specimen contained a high strength bolt is heated. Tensile displacements obtained from this 
experiment, therefore, contains total tensile deformations of both main and spliced plates. 
Fig-8 shows a strength ratio of S10T under various member temperatures. Marks(△) are 
shown shear strengths for bolted connections obtained from this experiment Ref[9]. The vertical 
coordinates of marks(△) show the ratio of experimental value to a standard shear strength at 
RT( = Bσ6.0 , Bσ : a standard tensile strength of S10T grade bolt). On the other side, Marks (○) 
show experimental results of tensile strengths by S10T coupon tests under constant material 
temperatures. Furthermore, tensile strengths by SS400 coupon tests are shown by marks (●) 
Ref[2], Ref[9]. As in Fig-8, we can understand two facts; Tensile and shear strengths of F10T are 
reduced fiercer than tensile strengths of SS400 for high temperatures, the strength reduction 
for shear strengths of F10T with temperatures rising is the same as tensile strengths of F10T. 
 For the above experimental results, we assume that a ratio of strength reduction )(TBκ  and 
a maximum tensile stresses Bσ  and a maximum shear stresses Bτ  for F10T under various 
member temperatures are respectively gotten by the following equations (15), (16), and (17). 
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Fig-9 shows relationships between shear stresses and tensile displacements for the 

specimens in the above experiments. The figure (a)-(d) respectively show experimental results 
at RT, 400℃, 500℃, 600℃.  Solid lines show experimental values, and inclinations of 
additional lines (thin lines) in Fig-9 are nearly equal to an initial elastic modulus of a 
specimen obtained by this experiment. Dash lines will be described latter. 
It is considered that displacements 1Δ  which show total displacements of a specimen from 

the point of after-slipping to the point of maximum shear stress are nearly equal to shear 
displacements of bolt. The values of 1Δ  are about 0.5cm not defended upon the member 
temperatures. At room temperature, a bolt failures as soon as it leads to the maximum shear 
stress. On the other side, such a phenomenon dose not appear for high temperatures above 
400℃. This is because that bolts have residual shear stresses after a peek of shear stress for 
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member temperatures above 400℃. For these regions, residual shear stresses gradually 
decrease with the shear displacements increasing. Displacements Δ2 which show 
displacements from a point of strength degradation beginning to a point at which the bolt 
unresisting increases about 1.7cm from 400℃ to 600℃. 
This interested phenomenon about the shear strengths of high strength bolts at high 

temperatures is only reported by Hirashima et al. 
 
In this paper, we set up the relationships between shear stresses and shear displacements 

from the following equations (18) and (19), which are based on the above past studies. 
  when, cm5.0≤Δ  

     ( ) ( ) ( )( )λμσκτ Δ−−⋅=Δ exp0.16.0, BB TT      (18) 
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Straight lines connected two points ( )( )cmTcm 5.0,,5.0 τ  and ( )( )0,5.0 2 cmTΔ+    (19) 
 
Values of ( )T2Δ  in the equation (19) are given by the following equation (20). 
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Fig-11 shows the values of ( )T2Δ , and Fig-10 shows the relationships between τ and Δ under 
various temperatures. The preceding shear displacement *u of a bolt element is the same of Δ 
in the above equations (18) and (19). 
In Fig-9, the τ-Δ curves described from the equation (18) and (19) are shown as dash lines, 

these curves add elastic displacements of the specimen to shear displacements Δ. The dash 
lines in Fig-9 roughly grasp the experimental behavior (solid lines) at each temperature. 
 
3.3 Increment equation of equilibrium of forces for a bolt element 
An increment equation of equilibrium of forces for a bolt element is shown by the following 

equation (21), this is based on the principle of virtual work. 

  B
T AdudPU τδδ ⋅= ∗}{}{      (21) 

Where, 
 }{P : A vector for nodal forces coupled nodal displacements }{U . 

BA : A shear section of a bolt element. 
 d : This symbol shows an increment. 

δ : This symbol shows a variation. 
T}{ : This symbol shows a transposed vector. 

Each value in the equation (21) is obtained from the following equations (22) and (23). 
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}]{][[}]{[* dUBTKduTKduKd ttt ===τ     (23) 

Where, 
 θ : inclination of slid displacement on the bolt element (Fig-7). 
 ]sin,[cos][ θθ=T  
 tK : A tangent modulus of the τ-Δ curves described from the equations (18) and (19). 
Substituting the two equation (22) and (23) into the equation (21), we are able to obtain the 

following equation (24). 

}{]][[][][}{ dUBTTBKAdP TT
tB ⋅=     (24) 

A term of ]][[][][ BTTBKA TT
tB  in the right side of the equation (24) shows the increment 

stiffness matrix for a bolt element. 
 
4. Connecting models between a beam element and beam joint models 
 



 268

In this finite element models, 3D beam joint models assembled by 2D rectangular elements 
are incorporated into adjacent beam elements. The connecting model between the 3D beam 
joint models and the beam element is shown in Fig-12. In this figure, a left side of the 
connecting model is shown. The beam element dealt in this paper is the same model 
suggested by the reference [11]. This takes the following two factors which are needed to 
analyze behaviors of steel members subject to fire into account. 
 
1. The beam elements have stress-strain non-linear relationships, which are the same as the 

previous equation (9). 
 
2. The beam elements are considered geometrical nonlinearities due to finite deformations. A 

strain ε for the beam element is shown by the following equation (25). 

   2

2
1

bbbb wwzu ′+′−′=ε     (25) 

Where, 
bu : It shows a displacement along the direction of the axis of beam. 
bw : It shows a displacement along the direction of in-plate deflection of beam. 

bz : It shows a displacement along the direction of the sectional axis. 
/  : It shows a differential with respect to the axis of beam. 

The equation (25) also indicates to keep the Bernoulli-Euler's hypothesis for all 
displacements in beam elements. 
Being connected between the beam element and the beam joint model not to be 

contradictions on a viewpoint of the statics, a rigid beam element and some rigid truss 
elements are used as in Fig-12. The rigid truss element from B to C is parallel to the axis of x. 
To avoid that shear forces concentrate on a point of A in Fig-12, rigid rectangular elements are 
arranged on the end of beam joint. Furthermore, two special rectangular elements are used on 
the flange and web elements of beam joint since displacements of beam joint are confined by 
rigid rectangular elements; The flange special elements which have rigid stiffness with respect 
to εx ,γxz and perfect flexible stiffness with respect to εz, the web special elements which have 
rigid stiffness with respect to εx ,γxy and perfect flexible stiffness with respect to εy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Finite element analysis of steel frames with beam joint 
 

 

Fig-12 Connecting between a beam element and beam joint models. 
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5.1 Analyzed frame models 
We deal with an analyzed frame model in Fig-13. This is a left-half of two-storied and 

nine-spanned moment resisting steel frames, and fire occurs at the innermost room. A column, 
beam and beam joint which are shown as black-lacquered members in Fig-13 come to be at 
high member temperatures. In this model, thermal expansions of the heated beam are strongly 
restricted by the neighboring frames been at room temperatures. 
Story heights are 350cm, and half spanned lengths are 300cm. A distance from heated 

column to beam joint is 100cm. Each column section and beam section are respectively 
□-350-350-10 and H-460-200-10-15. The detail in beam joint is shown in Fig-14. This is 
designed by the allowable stress design in Japan, and diameters of each web and flange bolt 
are determined to be satisfied with optimal solutions of the allowable stress design Ref[1]. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.2 Analytical results 
Analytical results are shown in Fig-15 (a)-(d). The figure (a) or (b) respectively shows shear 

stresses or shear displacements for web bolts with temperatures rising, and the figure (c) or 
(d) similarly shows those for flange bolts. Four lines in Fig-15 represent each behavior of 
numbered bolt in illustrations of the beam joint in the figures (a)-(d). In the figure (a), an 
average shear stress Uτ  due to distribute loads on beams is drawn, and estimated by the 
following equation (26). 

∑
∈
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Where, 
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q : distribute loads on the heated beam 
L : a half beam spanned length 
l : a distance between the heated column and the beam joint 

BA : a shear section of web bolt 
For the member temperatures bellow 400℃, thermal stresses grown into the heated beam are 

increasing with a vengeance. This is because that thermal expansions of the heated beam are 
strongly restricted by the neighboring frames. The thermal stresses stop to increase as soon as 
member temperatures lead to above 400℃ , and after that, begin to decrease. These 
phenomena are caused by stress redistributions with plastic deformations growing into the 
heated beam. 
A difference among each shear stress in the figure (a) corresponds to a difference in loaded 

bending moments for web bolts. A shear stress of No.1 bolt is bigger than the others in order 
to superpose two axial forces due to the thermal stress and the bending moment. As in the 
figure (a), we understand that each share stress is decreasing with the thermal stresses 
decreasing and loaded bending moments for web bolts similarly are decreasing at 
temperatures above 500℃. This decrease in bending moments is redistributed into the flange 
bolts with plastic deformations of web bolts growing. After that, shear stresses of all web 
bolts gradually come to be uniformly with temperatures rising. 
When the member temperature leads to 702℃, shear stresses of all web bolts approximately 
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come to be equal to Uτ , and the beam joints can transfer shear forces no longer. This namely 
indicates that no thermal stresses and no bending moments are shared in web bolts. This state 
is exactly an ultimate state for this frame, and an ultimate temperature is 702℃. A collapse 
mode of this frame is a shear failure of beam joint. Actually, as in the figure (b), shear 
displacements of all web bolts are sharply increasing. On the other side, those of all flange 
bolts are about 0.05cm, and have been sound until it leads to the ultimate states. 
The shear displacements of all bolts in the beam joints have been under 0.5cm for member 

temperatures bellow 702℃. It is, consequently, considered that the plastic shear deformed 
capacity for a bolt is sufficient to induce stress redistributions for the overall frames and the 
beam joint in this analytical result. 
 
6. Conclusions 
 
This paper has presented finite element models for beam joints in steel frames subject to fire, 

and these have the following features. 
1.  This finite element models for beam joints consist of 3D H-sectional models assembled 

by flange plates, web plates and splice plates which are 2D rectangular elements. An 
Acting shear force between the beam and the spliced plate are transferred through a bolt 
element which has an elasto-plastic shear spring. 

2.  In this paper, relationships between shear stresses and shear displacements for a heated 
high strength bolt are estimated from the equations (18) and (19). These equations are 
based on the past experiments on shear strengths of high strength bolts for various 
temperatures. 

3.  To analyze behaviors of overall steel frames with beam joints, the 3D bolt joint model is 
incorporated into adjacent 2D beam elements with rigid beam elements and truss elements 
in this finite element models. 
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