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ABSTRACT 
 
Water sprays are being currently used for fire suppression in the essentially two distinctive regimes: 
as relatively coarse sprinkler sprays, or as fine water mists.  The most efficient way of fire suppression 
is associated with the latter mode. For an efficient delivery and heat absorption the parameters of the 
spray, in particular droplet size must be optimized. 
 
In the present study, a criterion for the optimum spray dynamics is proposed, and an analytical 
estimation is provided for optimum droplet size in the spray as a function of Heat Release Rate of fire. 
Mathematical model is based on approximate solution of the Lagrangian equation for the motion of 
water droplets. 
 
The present approach provides a quick estimation of optimum spray parameters for a particular fire 
application.  
 
It is argued that a proper scientific definition of water mist sprays need be based on consideration of 
spray dynamics under specific fire conditions. 
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NOTATION 
 

DC  drag coefficient 

pc  
gas specific heat 

d  droplet diameter 

0d  
initial droplet diameter 

optd  
optimum droplet diameter 

gF
r

 
gravity force 

g  gravity acceleration 
evk  

evaporation constant 

gk  
gas thermal conductivity 

L  latent heat of vaporization 
fL  

mean flame height 

m  droplet mass 
Q&  

fire Heat Release Rate  

cQ&  
fire convective Heat Release Rate 

pRe  
particle (droplet) Reynolds number  

∞T  
ambient temperature 

gT  
gas temperature 

sT  
droplet surface temperature 
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t  time 
U  

 
fire plume velocity 

V droplet velocity 

0V  
initial droplet velocity  

z  height 
maxz  initial droplet height 

minz  bottom point of droplet trajectory 

0z  fire plume virtual origin 
  
Greek symbols  
ν  gas kinematic viscosity 
ρ  gas density 

pρ  
particle (droplet) density 

∞ρ  
ambient density 

 
 
INTRODUCTION 
 
Droplet size distribution in water spray is of great importance for fire fighting. It has strong influence 
on spray/fire plume interaction, controls the rate of spray evaporation in the flame and eventually the 
efficiency of flame suppression. These features have been extensively observed in fire suppression 
studies1-3. It has been realized3 that fire suppression by water spray can occur in the two distinctive 
regimes: via fuel cooling (surface suppression) or via flame cooling (gaseous suppression). Either of 
these strategies requires the spray parameters to be optimized. 
 
The parameter of primary importance is droplet size in the spray. Over years, there has been a number 
attempts to address the issue of “optimum” droplet size for fire fighting. Definitions of the “optimum” 
droplet behavior vary between different investigators. Obviously, the choice of an optimum droplet 
size depends on a particular suppression strategy. 
 
Several possible approaches have been discussed in the literature4. An optimum mean diameter of          
dopt ~ 350μm has been proposed5 derived from optimizing the terminal velocity to droplet diameter 
ratio. Use of high-momentum sprays with the initial velocity ~ 80 m/s in conjunction with droplet 
sizes ~ 70 μm has been proposed6 in order to achieve rapid deceleration of droplets, sufficient 
residence times and high evaporation rates.  
 
Computational studies7 relating heat absorption capacity of the spray to its initial droplet diameters 
indicated best extinguishment performance in the range of 300μm - 900μm droplet sizes. However, 
the exact droplet dynamics has not been considered in the latter paper. Droplet trajectory has been 
divided into two zones: above the flame and inside the flame. Detailed gas velocity profiles have not 
been considered in either of these two zones, and the absence of exact droplet momentum equation 
did not allow reasonable dynamical predictions to be made. 
 
In the present study an alternative concept of optimum diameter is presented. It is based on a concept 
of flame suppression in the gaseous phase, and applies therefore, in general, to fire suppression 
regimes delivered by water mist systems. A major feature of the model is that estimation for the 
optimum diameter is derived considering exact equation of droplet motion and exact flow velocity 
profile in fire plume and flame. Starting from exact equations, the model however provides 
surprisingly simple formulas for optimum droplet diameter in fire fighting sprays.  
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MATHEMATICAL MODEL 
 
Consider the basics of water droplet interaction with flame and fire plume (Fig. 1). 
 
The equation of droplet motion is taken in the form8: 
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According to arrangements of Fig. 1, components of the velocities obey V<0; U>0; V-U<0.  
 
Taking this into account, equation [2] in components becomes: 
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At this point, an approximation regarding the form of dependence of the drag coefficient on the 
particle Reynolds number is made. It is customary to characterize particle drag coefficient, for 
example, by the following correlation9: 
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In the present analysis, this dependence is replaced by the following simplifying one: 
 

]5[10Re,Re/27 4<= ppDC  
 
 
Comparison between the correlations [4] and [5] is presented in Fig. 2. It is seen that the 
approximation [5] is not unreasonable, and it will be demonstrated below that it leads to good results 
in the context of the present analysis. 
 
The use of a simple universal correlation [5] greatly simplifies equation [3]. Indeed, on the RHS of [3] 
one has: 
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Finally, the basic approximate equation of the droplet motion used throughout the present paper is: 
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FIGURE 1.  Schematic of droplet injection into fire 
 
 
The profile U(z) in the above equation is assumed to be known, and is determined by a particular fire 
under consideration. 
 
Even in the case of constant droplet diameter no analytical solutions for equation [7] are known, 
although the equation form itself is rather well-known. In the latter case the equation [7] belongs to 
the class of Abel Equations of the Second Kind. Existence of closed-form solutions for these 
equations depend on the form of a known function on the RHS, in our case, essentially, on the form of 
the profile U(z). Unfortunately, the case of velocity profiles in fire plumes (U(z)~z-1/3) does not fall 
into the classified cases which admit integration10. 
 
 
RESULTS AND DISCUSSION  
Non-evaporating Droplet 
 
To illustrate the method for estimating optimum diameter, consider movement of a non-evaporating 
particle first. This case illustrates essential properties of the solution of equation [7].  
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FIGURE 2.  Approximation of the drag coefficient dependence on the particle Reynolds number 
                     1 – approximate dependence [5];  2 – experimental correlation [4] 
 
 
In general, the optimum should be defined in the following way: droplet posses the optimum diameter 
if upon injection it evaporates exactly in the flame region (i.e. neither penetrates to the surface nor 
evaporates in inert fire plume). In application to a non-evaporating particle, it is sensible to impose the 
following criterion: droplet zero-velocity point is inside the flame. This point will also be a reversing 
point for a droplet trajectory, since upon achieving this point the droplet will still experience 
acceleration by fire plume, and will start to move upwards. The rationale for such a criterion is that if 
the droplet had a capability to evaporate, complete evaporation is likely to happen in the vicinity of a 
reversing point where the temperature is high (flame temperature) and droplet motion is slow 
(residence time large). 
 
It will be demonstrated below that a similar, slightly modified criterion is suitable for a general case 
of evaporating droplet. 
 
Using the identity 
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The equation [7] can be transformed into: 
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This equation can now be integrated between the initial and final points of the trajectory to get: 
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The integral term containing plume velocity profile U(z).is a known function, obtained upon 
specification of the latter profile. 
 
The term involving unknown profile of the particle velocity V(z) needs, however, be estimated.  
 
This integral term can be written (using [8] again) as: 
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and the simplest estimation (mean value theorem) yields: 
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Therefore, the equation [10] gives: 
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and  
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Finally, one arrives at the estimation: 
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At this point, plume velocity profile must be specified. The reference fire used for calculations is a 
methanol pool fire, which exhibits nearly constant burning rate over a wide range of pool diameters. 
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For a particular fire HRR, a corresponding pool diameter can be found from the burning rate assuming 
complete combustion of the fuel. Then, flame heights, virtual origin position, and plume velocity 
profile can be predicted by well-known correlations of Heskestad11. The plume profile, in particular, is 
given as: 
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Velocity distribution in the flame zone is different. Velocity is nearly constant in the intermittent zone, 
and falls to zero following square-root dependence in the continuous zone11. Intermittent zone 
typically covers about 60% of the total flame height11. Based on these estimations, velocity profile [17] 
can be extended into the flame zone as: 
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This procedure uniquely relates HRR to the plume geometry and thermal properties. 

 
In the present example, half height of the flame is taken as a trajectory reverse point, i.e. zmin=L f /2. 
 
Upon integration of the profile [17]-[19], the following expression is obtained: 
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Equations [16] and [20] provide the estimation of the optimum droplet diameter. 
 
Quality of prediction is tested against numerical solution of the equation of the droplet motion, 
coupled to the mass transfer equation. Description of the Lagrangian method of particle (droplet) 
tracking is widely available in the literature, e.g.1,2.   
 
Droplet initial velocity was kept constant in the computations at V0=20 m/s. Initial droplet height was 
3 m for the present case, and 5 m for the evaporating droplet analysis (below).  
 
Prediction results for a non-evaporating droplet are presented in Fig. 3. There is an excellent 
agreement between the analytical estimation and the solution obtained from numerical analysis. 
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   FIGURE 3.  Comparison between optimum droplet diameters predicted by analytical formulae 
                        (16, 20) and by numerical analysis 
                          - analytical;   - numerical 

Evaporating Droplet 
 
Similar ideas are applicable for the droplet experiencing evaporation in fire plume and flame. 
 
The optimum is defined in the following way: droplet trajectory ends at the surface of the material due 
to complete evaporation. This ensures, first of all, that droplet is delivered into the flame zone and 
completely evaporates in this zone, i.e. is not carried away by the plume. Secondly, major part of 
evaporation process is expected to occur in the flaming zone, since droplet will decelerate before it 
disappears at the surface. (Note that the point of complete evaporation is always also a point of zero 
velocity for the droplet trajectory). Therefore, the droplet will have large residence time in the flame. 
Strict mathematical proof of the above criterion is yet to follow. 

 
Equation [9] is slightly modified to give: 
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For the droplet diameter history, a d2-law of evaporation is assumed. This is a good approximation in 
most cases, including droplets moving in fire plumes, as can be confirmed, for example, by numerical 
analysis of the droplet motion. 
 
Specifically, the d2-law implies that the droplet surface area diminishes at a constant rate: 
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The evaporation constant, kev, is estimated as follows12: 
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Integration of equation [21] from the initial point down to the fuel surface gives: 
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It should be noted that integration by parts is performed on the LHS, with the relation [23] being taken 
into account. 
 
Estimating the last two integrals on the RHS of [25] gives: 
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and, finally; 
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The integrated gas velocity profile for the present case takes the following form: 
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Comparison with the numerical integration results are presented in Fig. 4 for a range of fire sizes 
spanning nearly order of magnitude in HRR. The agreement is particularly good for smaller fires (~1 
MW) with the optimum diameter starting to be slightly underpredicted for larger fires. Overall, 
deviation of the analytical estimation from “exact” (numerical) solution does not exceed 13%. 
 
Of the particular interest is a dependence of an optimum diameter on the fire HRR. The rate of the 
diameter increase with fire size is easily deducible from [27] in the form: 
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In reality, the rate is slightly bigger, as suggested by Fig. 4. It is intended to perform more 
sophisticated analysis of the equation [21] in order to improve predictions.  
 

0,00
100,00
200,00
300,00
400,00
500,00
600,00
700,00
800,00
900,00

1000,00

250 500 750 1000 1250 1500 1750 2000

Heat Release Rate, MW

do
pt

1
2

 
FIGURE 4. Comparison between optimum droplet diameters predicted by analytical 
formulae [27], [28] and by numerical analysis (1 - analytical; 2 - numerical) 
 
 
The proposed concept of optimum droplet diameter allows scientifically clear definition of water mist 
to be proposed. At the present, definitions used in the literature are rather arbitrary. One can define 
water mist spray as such that aims at gaseous flame suppression, rather than surface suppression. In 
this mode, droplets will evaporate above the surface of burning material. If such a definition is 
adopted then it becomes clear that the actual droplet size in water mist spray cannot be specified 
without referring to a particular fire. Indeed, minimum diameter of droplets penetrating through the 
flame towards surface is a function of fire Heat Release rate (Fig. 4). With the help of the estimation 
of optimum droplet diameter proposed in the present paper, one can quantitatively define water mist 
spray for a particular fire with a specific HRR as such that droplet diameters in the spray satisfy 
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CONCLUSIONS 
 
Equations of droplet motion and evaporation in fire plumes do not admit exact solutions. Despite of 
this, it is not difficult to derive a range of useful quantitative results in an analytical manner. One 
possible application of the analysis, demonstrated in the present paper, is the concept of an optimum 
droplet diameter for fire fighting. 
 
A new concept of an optimum diameter has been proposed, based on the strategy of complete droplet 
evaporation in the flame. Such definition would be of particular importance for water mist 
suppression systems, relying on gaseous flame suppression. 
 
The proposed definition of the optimum droplet requires analysis of the droplet motion and 
evaporation within fire plume and flame. The analysis has been performed using well-established 
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equations of the droplet dynamics. Despite the absence of exact solutions, the nature of applied 
optimum criterion allowed quantitative results to be derived. 
 
An optimum diameter has been predicted for the fires in the range from 250 to 2000 kW to within 
13%. An optimum diameter has turned out to be a weak function of the fire Heat Release Rate. The 
form of the latter dependence has been established. 
 
Results are encouraging in a sense that a rather complicated problem has been solved with a good 
accuracy by fairly simple considerations. It is planned to perform more sophisticated analysis in order 
to improve results further. 
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