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SUMMARY

This note gives a theoretical analysis of ignition due to self-heating

in a plane slab with one face exposed to a constant heat flux and with the

other face maintained at a constant temperature. The results are applicable

to practical situations such as the ,ignition of panels by nearby flue pipes

and the ignition of thick layers of combustible dust on enclosed electrical

equipment;

KEY WORDS: Ignition, self-heating, heat flux, (thermal radiation),
plane slab

Crown copyright

This report has not been published and
should be considered advance research
information. No reference should be made
to it in any publication without the written
consent of the Head of Fire Research

Department of the Environment and Fire Offices' Committee
Joint Fire Research Organization



a

LIST OF SYMBOLS

/
4> +e-80

.' 2D
A

D

E

F

M

Q

q(T)

R

pre-exponential factor of Arrhenius equation

S (leo

apparent activation energy of heat generation reaction

incident flux

€.6.J2

heat of reaction per unit mass of slab

rate of heat generation at temperature T

universal gas cor.stant

r = half-thickness of slab

T = temperature (Kelvin), subscripts P and S refer to hot surface and

cool surface of slab respectively

distance from hot face of slab
x

z x/r

~ = Frank-Kamenetskii self-heating parameter, defined for equation (3)

Sc critical value of S

8cCl;) = be. defined in terms of Ts instead of Tp

€ surface emissivity; subscripts 1, 2, 3 refer to slab, surroundings

and pipe respectively

e dimensionless temperature

8
0

= dimensionless temperature at cool surface of slab

dimensionless temperature defined in terms of T instead of Ts p

thermal conductiVity of slab

density of slab

dimensionless flux, defined for boundary condition on equation (j)
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INTRODUCTION

A number of practical examples of ignition due to self-heating occur in slabs

or layers of material with one face exposed to a source of heat and with the

other face losing heat to cooler ~urroundings. Commonly, the face exposed to

the heat source will either receive a constant flux or be maintained at a

constant elevated temperature.

Frank-Kamenetskii's 'stationary state' model of thermal explosion1 has been

extended to systems of the above kind although with greater attention being paid

to those with a constant temperature at the hot face. For this part~cular

boundary condition, theoretical results are availab~e for plane slabs2 and for

thiqk cylindrica13- 5 and spherical she~ls5 (with hot inper faces) and they have

been applied to the aralysis of experimental observations of the ignitio~ of dust

layers On hot surfaces6 and of oil-soaked lagging on hot pipes?

accuracy but

(their method 3)

a constant flux have been

capable of high

Theoretical results for the slab expose~ to

obtained by Clemmow & HUffington8, both in forms

requiring considerable computation and in a more easily used form

involving an approximation for the Arrhenius relationship akin to

Frank-Kamenetskii's well-known approxi.mation. However, th",ir analysis is in terms

of parameters which are not related in a simple way to those which have become

conventional in thermal explosion theory and it has been pointed out 2 that, at

least for the case of the' plane slab with one face at a constant ·high temperature,

their approximation gives consi4erably less accurate results than a straight­

forward application of the Frank-Kamenetskii approximation with an ,appropriate

choice ?f reference temperature.

This note presents the analysis for the constant flux problem using the

Frank-Kamenetskii approximation and the conventional parameters. The results are

related to those of associated problems and are used to predict ignition in a

wood-based material under some practical conditions of exposure to.a constant

heaf flux.
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FIG. 1• PLANE SLAB EXPOSED TO CONSTANT HEAT FLUX

Consider a plane slab, as Fig.1, of thickness 2r (for conformity with ea~lier

analyses) with a heat flux F incident on one face at :lC -:.. 0 and with the other

face, at -x =.2.J" _, in perfect contact· with a heat sink at a constant temperature ~ •

Heat, Los ses -in the negative direction at X::: 0 will be assumed initially to be

zero.•

Let heat be generated in the solid by a chemical reaction whose rate depends

on temperature in accordance with the Arrhenius equation (rate DC: (lxp(E./RT)) and

does not depend 'on time. Then, if steady state temperature distributions can

exist within"the slab, they will be given, for heat transfer by conduction, by

solutions of the following equation:

where

,- ~ temperature in plane at distance x from the exposed face

thermal conductivity of solid

rate of heat generation per unit volume at temperature T

and is given by:

-EIRT
q.(T) :: p QA e



where

P densi ty of solid

Q heat of reaction per unit mass

A = pre-exponential factor of Arrhenius·equation

~ 'activation energy' in Arrhenius equation

'R universal gas constant.

The boundary conditions for steady states are:

at )(=0 ,

_ A ciT = F
c1;,c

and., at )(. =2 1'" ,

T=1;

The surface temperature Tp , at )( =0 , is a dependent variable in this

pro1:lem.

In deriving solutions for equation (1) it is convenient to introduce the

Frap~-Kamentskii approximation to the exponential in the heat generation term

immediately, choosing the dependent variable ~p as reference temperature, and

to defer justification until later.

The approximation is

+8

where

e ':;; ~ (T--r.)
RTl P

~ . f: te is the well-known dimensionless temperature but is not a physically meani~ful

dependent variable in this probleffi unless -r and ~ are measured f~om a given

temperature. We therefore introduce a new dependent variable, Y' defined as

where

eo = £ (T. - T: )RT,2 S P,.

and, therefore,

E-
If' :: ~2 ('5 - T)

p
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With the above approximation, and putting 2" -::. x i r , equation (1) can be

written in the dimensionle~s form

il -VI
= Da (3)

d.-x.:il

where
8a60

.D ::,

and ~ ,the Frank-Kame~ets~ii se~f-heati~ parameter, has the usual form

E ~_.r.
RT.:l,.

The boundary conditions become:

at '%.: 0 ,

where ....

and, at % -:: 2 t

"

We also have, by definition, I.IJ.::. 80 at ':t =0

In accordance with the Frank-Kamenetskii thermal explosion model we seek

maximum values of the parameter]) in solut~ons of equation (3) satisfying the

boundary conditions (4i) and (4ii) a~d, thence, sets of values of ~he parameters
, '

~, toP and eo which, by hypothesis, comprise limiting conditions for the,
existence of steady states ar....d , a fCT'l;iori, critical cond.i, tions for explosion or

ignition.

The solution of equation (3) SUbject to conditions (4i) and (4ii) is as

follows:

where

4



I

At ;2: ~ 0 , equation (5) gives

L -f ,-I( o"l'/l)]c.o,J.. 0. - Cos" o, e
0..

(6)

For a given value of <p ,.n will be a maximum with respect to 80 when

d.n / d 00 :: 0 Whence, from equat ion (6) and the definition of ct it is found

that Dis a maximum when

I

where

It follows from the definition of n that

Hence dD/ctBt/ and drsld~ cannot be zero together and, when 0 is a maximum,

S assumes a highest value which is not itself a maximum as in other problems

where S is defined in terms of an independent rather than a dependent temperature

Eliminating 1) between equations (6) and (7) and expressing the inverse

hyperbolic functions in their logarithmic forms, we have

in a + j 0.2. - I

0. M + j 0.1 ,.,1- I
= "/a'2._ 1

+ (A. M )0."1.,"'1_ 1 (8)

Equations (8) and (6). may be used to calculate maximum values of D and,

thence, associated values of ~ a~~ 80 - both as functions of ~ These

values of S are the required critical values (which will be denoted 8c ) and

with the associated values of eo correspond to the highest rates of heat

generation and the highest temperature differences possible without ignition with

fluxes corresponding to the associated values of 45 incident on slabs of

thickness 2. r and with the unexposed surfaces at temperature Ts

.!4!!!.!ting cases

It follows from the definibon of (1. that, when ~ =0, ie when the incident

flux is zero,

and

5



Then, from equations (6) and (7),

0.. = :. '·8'02 ...

It follows, then, that

e. = - /-/q and oas

These are the values obtained by Frank-Kamenetskii 1 for the symmetrically

heated slab, ie with a constant temperature on both faces and cJr/dx=o at the

mid-plane. Thus,at ~ =0, the ignition condition for the asymmetrically heated

slab reduces to that for one half of the symmetrically heated slab - as is to be

expected. The value of S. ,as defined here in terms of Tp and with r

equal to one quarter of the thickness of the symmetrically heated slab, is 0.72.

When the rate of heat generation approaches zero and, therefore,

equation (6) approaches

- e =.2 4>o

or

(10 )

F = ~ Tp - Ts
21"

which is, of c?urse, the equation for steady heat conduction in an inert slab.

It may be noted further that, when <p = 0

becomes

and a.M = 1 , equation (6)

h- I ( -e.IZ)e05 e =

or

For ( 8. being negative) this reduces to
•

~c = ( 11 )

This is the result obtained elsewhere 2 for the ignition of plane slabs with

one face maintained at a constant high temperature and with the condition for

6



criticality taken as c(O/dx:O at the hot face, which is an approximation valid

for large values of /B.! However, equation (11) represents limiting steady

states which, except for that where 80 =- -1.19, are excluded by the criticality

condition appropriate here, ie equation (7). These states, except the one, are

obviously physically inaccessible in the constant flux problem when ~ '" 0

Introducing 8. defined as e.(T,,-Ts)/RTs", 'b, defined in terms ofTs

instead of I p (and denoted by ~. (Ts) ) is given by

B.
~c (T.) "" ~c I!.

From equation (11), we then have, for f).» I •

( 12)

Thus solutions of equation (11), which correspond to the upper branch of

solutions of equation (12), are seen to be analogous to the known unstable steady

states of the symmetrically heated slab which, for the Semenov model, are given

accurately by the upper branch of the equation

This analogy is of interest here but is not, of course, sufficient to

establish the instability of states represented by solutions of equation (11) in

this problem. This is outside the scope of the present paper.

Numerical values

Selected values of 8c • e. and ef> calculated from equations (6) and (8)

are given in Table 1 for ranges of practical interest and ~< and eo' are

plotted in Fig.2 'as functions of cP

Although not readily deduced from the analysis, it will be seen from' Fig. 2

that ?>. and 80 vary almost" linearly with q. over the ranges covered,

Empirical equations calculated for the substantially linear ranges are

'Sc = 0·614 + O-J.gq <P

7
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Table 1

Selected values of critical parameters

cP ~c: 80

0.4201 0.8892 - 2

1.444 1.339 - 4
2.459 1.813 - 6
3.469 2.298 - 8

5·479 3.282 -12
8.486 4.771 -18

for

and

for

In the region where these linear relationships apply, we may write

Errors are less than 2% within the indicated ranges of 4> they are

greatest at 4':: 0 , where the error is 18'/0 for ~c. and 7% for eo
Comparing equation (14) with equation (10) it will be seen that the critical

temperature increase for the self-heating slab exposed to a constant flux is

approximately equal to the sum of the critical temperature increase for the

symmetrically heated slab (8~ ~ - 1.19) and the temperature dif~erence which

would be established across the slab by the incident flux if the slab were

inert (8
Q

:. - 2q, ).
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Comparison with Clemmow and Huffington and accuracy of results

The relationships between the parameters ~D , Land h used by Clemmow

and Huffington8 and those used here are as follows:

s60
::; :Ji.f)

7: 1:1s

l'- ~ ~c. (l

- <Po
= B

7;

h = 2 7"p .1:-
~ l.

When the critical temperature rise (Tp -"'7$ ) is small, the ratio T p ITs
may be taken as unity but, otherwise, the relationship between the numerical

results of the two systems will depend on 1P /~ and will vary from one problem

to another. This situation arises from the different approximations used for the

Arrhenius term in equation (1).

The accuracy of the different approximations has already been discussed2 in

connection with their application to the problem of the slab with one face at a

constant high temperature. It is necessary here to cover some of this ground

again because, as will be seen, the conclusions for the constant flux problem

are slightly different.

As stated earlier, the approximation used here is Frar~-Kamenetskii's,

namely

(16)

and, based as it is on truncation of a binomial expansion of the form (1 + n)-1

where n < 1, it is valid strictly only for (T - T p )/TP «J .
Physically, the use of this approximation in the problem of the ~lane slab

with one face at a constant high temperature 2 was justified on the grounds that

the approximation was good in the neighbourhood of '-p where the rate of heat

generation was high and, in problems of practical interest for which values of

~Tp/c tended to be small, the rate of heat generation decreased rapidly with

decreasing temperature and became negligible towards the cool face of the slab

where, of course, the approximation was most seriously in error. It was then

possible to show, from series integration of the exact equation (1) for fixed

temperature at the hot and cool faces, that the error in 8. introduced by the

9



approximation was less than about 9% for 'RTp If.
practical applications)~

0.04 (a typical value in

An error of this magnitude, which is only about twice that arising from

the use of the Frank-Kamenetskii approximation for symmetrical heating, is quite

acceptable - corresponding in practice to an error of about 1K in estimates of

critical temperature and about 5% in critical size.

The approximation used by Clernrnow and Huffington is given in the present

notation by

which can be re-written as

(17 )

With this modified Clernrnow and Euffington approximation, S> Co becomes

E ..= __ .r.
~T.Tp

Approximation (17) is exact at both ~ and ~

equation (15) that

It follows from

for

and accordingly, approximations (16) and (17) tend here to be almost equally

satisfactory in practical applications. This is unlike the case of the plane

slab with one face at a constant high temperature (equation 11) where we have

c- e2.
Dc cC 0 for

In this case, as has been pointed out elsewhere2, estimates of, for example,

heat production from the model using approximation (17) will tend tv be too large

by a factor of Tp fT, . Estimates of critical size will tend to be too large by

,/Tp ITs. In practical cases, Tp/T, can be as large as 2.

Because, again,
.,2.rather than on V o

for the case of constant flux,

we may expect the error in So.

10

'8c tends to depend on 8
0

arising from the use of the



Frap~-Kamentskii approximation to tend towards half the value of 9% estimated

for the case of constant temperature 2•

The model is otherwise subject to limitations arising from the usual

assumptions of inexhaustible reactant and of physical constants independent of

temperature. With large temperature gradients in the slab at criticality, these

limitations may be more severe than for the case with symmetrical heating-but,

at present, there is no available analysis of their magnitude. For the time being

their effect will be ignored - as elsewhere 2- 7•

APPLICATIONS

General

In most real situations, the above model will represent only the kernel of

the problem. Generally there will be heat losses at a finite rate by radiation

and convection from both surfaces of the slab to cool surroundings. Use of the

model then requires the internal and external heat transfer rates to be matched

at the surfaces of the slab. This can readily be effected by trial and error.

Given finite heat losses from the cool face of a slab, two different

practical situations can be envisaged. The first, with zero heat loss from the

heated face and, the second, with finite heat loss from the heated face. The

first will correspond to a continuous source of heat in an enclosure covered by

a combustible layer on the outside, such as a large electric motor (with a smooth

surface) covered with a thick layer of sawdust in a saWThill. The second will

apply to examples such as a combustible panel exposed to a hot flue pipe. Some

calculations for typical cases are given below using data obtained elsewhere6,4
for ignition of wood fibre insulating board - which has been chosen as a wood-based

material having self-heating properties of practical significance at elevated

temperatures.

futa

The constants governing heat generation in the wood-fibre insulating board,

and values for· thermal conductivity and density are as follows4:

f'QA
rs:

"'1/ ....3'" 1·4S )<10

FJR =: l'2bY"oK

A
-~ W/ ..... K::: s-·o x 10

~ = 7.70 kg/ ..... :3

11



whence, from the definition of ~<- and 8
0

, we have

20 '2.

~ = 3.6Sxlo r
c :r,.

p

J~6.o
,;2.

P

( 18)

Criticality with zero heat loss at heated face of slab

The solution of problems in this class consists of equating the internal

heat flux at the cool surface of the slab at criticality with the heat loss to

the sur-r-ound.inga ; Using equation (5) to determine d'l'fd'X. at llt. =.2. ,the

critical internal flux at the cool face is given by the following equation:

(20)

This equation can be simplified in the obvious way when I ~I »J
For comparison with experimental results obtained for ignition of slabs of

6wood-fibre insulating board on a horizontal hot surface at constant temperature,

we use the appropriate expression for the rate of heat loss by natural convection

and radiation from a horizontal surface facing upwards in air9• Whence we have,

at the cool surface (SI units):

+

where

L diameter of slab (m)

~ temperature of surroundings (K) (ambient temperature)

&.. E... = emissivities of surface of slab and surroundings respectively.

Application to a given problem then involves solution of the set of

simultaneous equations (18), (19), (20), (21), (13) and (14) or, where 4> is

too small for equations (13) and (14) to be used, equations (6) and (8).

A convenient procedure for use with a desk calculator, given a slab of

thickness 2r and a given ambient temperature, is to assume a value for T~ and

find a value for T p by trial which will allow equations (15), (18) and (19) to

be satisfied simultaneously. Then, with the corresponding value for ~ obtained

from either of equations (13) and (14), the chosen value of T$ is tested in

12



equations (20) and (21). This process is repeated until equations (20) and (21)

can be satisfied simultaneously.

Solutions for slabs of wood-fibre insulating board of two thicknesses and

an ambient temperature of 25°C are given in Table 2. The emissivity or the wood

fibre insulating board has been taken as 0.9 and that of the surroundings as

unity.

Table 2

Computed critical data for ignition of horizontal plane slabs
of wood-fibre insulating board exposed to a constant

heat flux on the underside and to surroundings at 25°C

ness Ambient Critical Hot surface Cool surface
lab temperature eo 8, o;P flux temperature t emper-at.ure

°c W/m2 oc oc
--

25 - 8.05 2.32 3.49 547 253 76

25 - 8·91 2·53 3·92 176 208 44

-- -

Thick
of s

mm

14

41

Figure 3 compares the critical temperature distribution (sketched) for

ignition of the 41 mm slab of wood-fibre insulating board exppsed to a constant

flux with the temperature distribution for ignition under conditions of constant

temperature at the hot face - for which the indicated hot face temperatur", is

the value found experimentally.

13



, '

HOT FACE
TEMPERATURE

°c

CONSTANT TEMPERATURE
245AT HOT FACE* ,,,

\

\

CONSTANT FLUX
,

AT HOT FACE- 208
,

176 W/m2 - , ,, ,,
CONSTANT- FLUX' \ \
ON INERT SLAB 187 \ \1'76 Wjiri2- ....

\ '.... .... ,
....

\" .........'

_41 mrD_

-.

COOL FACE
TEMPERATURE

°c

AMBIENT TEMPERATURE
25°C

49 ' HEAT LOSS, 265 W/m2

44 HEAT LOSS, 200 W/m2

(including generated
heat)

, '.. ", '. " , i'

'FIG.3. COMPARISON OF CRITICAL TEMPERATURE DISTRIBUTION
IN '41 MM SLAB OF ·WOOD-FIBRE INSULATING BOARD

FOR TWO MODES OF SELF-IGNITION

*Note that temperature gradient here is actually positive at the hot face

and a small temperature maximum occurs close to the hot face when eD

is large.

The critical temperature rise under constant flux conditions is 21 0 C higher

than for the inert slab and, as indicated earlier, is comparable with the

critical temperature rise for a symmetrically heated slab. Under constant

temperature conditions at the hot face where, effectively, the system is

stabilised by contact with an infinite isothermal reservoir, this critical

temperature rise can be, and indeed is, considerably higher.

Criticality with finite heat loss from the heated face of the slab

Lawson et a1 10 have evaluated configuration factors for the radiant heating

of vertical plane panels exposed to hot vertical flue pipes of circular section

ar~ any length. It is convenient to use this arrar~ement as an example, but it

14



will be necessary to assume that the lack of uniformity of temperature in the

plane of the panel can be ignored and that criticality can be expressed in terms

of the thermal equilibrium along the line of nearest approach of the panel to the

cylindrical pipe.

Assuming that the panel is large enough for turbulent convective heat

transfer9 at the hot face, the thermal equilibrium at criticality can be written

as

1-33
- 1-'31 (Tp -T.) W/?l1

2
(22)

where s6 ; ccnfiguration factor at panel along line of nearest approach

to pipe

if; temperature of flue pipe surface (K)

6 3; emissivity of flue pipe surface

The convective heat loss from the cool face of a large vertical panel differs

by only about 18% from the convective loss calculated above for the small

horizontal slabs. Therefore for illustrative purposes, the data in Table 2 may be

matched directly to equation (22) with little error.

Taking the emissivity of the pipe surface as unity and, as an example, a

value of 0.5 for the configuration factor, values of the pipe temperature,'lr~

necessary to give nett fluxes on the panel equal to those in Table 2 may be

calculated as 424°C for the .14 mm panel and 3430C for the 41 mm panel. The actual

incident fluxes will then be 4.1 kW/m 2 for the 14 mm and 2.3 kW/m2 for the' 41 mm

panel. The excese over the values in Table 2 corresponds to the convective and

radiative heat losses from the hot face of the panel.

A configuration factor of 0.5 corresponds, for a long pipe, to a pipe with

its axis at a distance of one diameter from the panel; in particular, for a pipe

of 100 mm diameter, the shortest distance between the surface of the pipe and the

panel for safety will be 50 mm.

DISCUSSION

Applied to the problem of thermal explosion in a plane elab with one face

exposed to a constant flux, a modified Clemmow and Huffington approximation and

15



the Frank-Kamenetskii approximation are almost equally accurate. This is contrary

to the result obtained when these approximations are applied to the 'constant

temperature' problem - where the 'latter approximation is markedly superior.
*However, use of the Frank-Kamenetskii approximation is preferable in that it yield~

solutions to the 'constant flux' problems which are of considerable simplicity in

a region of practical utility and, at the same time, provides deeper insight into

the physical significance of these solutions.

The numerical estimates of critical ignition conditions for wood-fibre

insulating board need experimental confirmation but, for the time being, may be

accepted as reasonably sound for practical purposes - especially as they are based

on experimental data obtained under asymmetrical conditions of heating.

The 'steady state' model, of course, provides no estimates of times to

ignition. However, experimental observations indicate that for the range of

dimensibns considered these times will be of the order of from! h to several

hours.

The incident flux required for ignition of wood-fibre i~sulating board by

self-heating, and in the presence of heat losses from the exposed face, is at

least an order of magnitude lower than the minimum intensities, about 40 kW/m2,

observed by Simms for spontaneous ignition under similar conditions11~13 with the

production of flames within short periods (25 s or so). This spontanecus ign~t~on

occurred in the volatile thermal decomposi~ion products. Under these conditiops

of relatively high flux and rapid heating, experimental results were correlated

adequately by a theoretical model which regarded the exposed material as a semi­

infinite solid and related ignition times to the attainment of a certain surface

temperature - namely, about 5000C for the spontaneous production of flame. It

was possible to ignore the contribution of self-heating within the material, if

it occurred at all under these conditions of exposure. Clearly there will be a

region, between the extremes represented by the pure self-heating case consid~red

in the present paper and the rapid heating case studied by Simms, where a more

comprehensive model will be needed. Such a model will be considerably more com~lex

than either since it will need to take account of the kinetics and thermal effects, '

of pyrolysis, including diffusion and changes of properties, in addition to

oxidative self-heating in both the sol~d ~d gas phases.

It may be estimated that, for the ignition of wood-based materials, the heat

generation is only a small fraction of the incident flux required for ignition and,

* Together with the conventional variables

16



in any experimental study, will be difficult to measure. Thus, the heat due to

reaction in the slab which leaves the cool face at criticality is the difference

between the heat loss to the surroundings at the cool face and the nett flux

absorbed at the exposed face. For the 41 mm slab, this is 200-176 ~ 24 W/m2,

which is 13% of the critical incident flux for ignition with zero heat loss from

the exposed face and cnly 0.1% of the critical incident flux with heat losses

from the exposed face.
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