LIBRARY REFERENCE ONLY

THE LIBRARY	١
FIRE RESEARCH STATIC N	
BOREHAMWOOD	ļ
HERTS.	I
NOACENER N 1040	
	L

Fire Research Note No 1040

THE ACUTE INHALATION TOXICITY OF CARBON MONOXIDE FROM BURNING WOOD

by

J A G Edginton and R D Lynch

August 1975

FIRE RESEARCH STATION

Fire Research Station BOREHAMWOOD Hertfordshire WD6 2BL

Tel: 01 953 6177

. .

2

•

, *****.

FR Note No.1040 August 1975

THE ACUTE INHALATION TOXICITY OF CARBON MONOXIDE FROM BURNING WOOD

by

J A G Edginton* and R D Lynch*

SUMMARY

The acute inhalation toxicity to rats and guinea pigs of carbon monoxide as a pure gas, or as evolved during the controlled burning of two different plywoods has been measured. There were significant, though very slight, differences. The slightly greater toxicity with the plywood exposures was probably due to changes in the respiratory minute volume produced by the irritants in the wood pyrolysis products, although this is unproven.

*Chemical Defence Establishment Porton Down Salisbury Wiltshire

© Crown copyright 1975

Department of the Environment and Fire Offices' Committee Joint Fire Research Organization

FOREWORD

This note reports part of a study of the toxicity of the combustion products of wood and plastics carried out at the Chemical Defence Establishment, Porton Down, under contract to the Fire Research Station.

A complete account of the work under the contract and discussion of its implications, is to be published elsewhere. All enquiries concerning the work described in this note should be directed to the Fire Research Station.

The principal objective of the study has been to determine whether or not the inhalation toxicity of the combustion products from wood and from a selection of plastics materials commonly present in buildings, can be accounted for entirely by the carbon monoxide present. The inhalation toxicity has been measured in terms of the LCt_{50}^* with respect to the carbon monoxide present for half-hour exposures of rats and guinea pigs.

The work reported in this note compares the toxicity of carbon monoxide in the combustion products from birch plywood, and from flame retardant grade birch plywood (Class 1) treated with mono-ammonium phosphate, with the toxicity of pure carbon monoxide gas.

P.C.B.

*Product of concentration and exposure time giving a mortality of 50 per cent. THE ACUTE INHALATION OF TOXICITY OF CARBON MONOXIDE FROM BURNING WOOD

by

J A G Edginton and R D Lynch

INTRODUCTION

The acute inhalation toxicity of carbon monoxide (CO) to rats and guinea pigs, as a pure gas or as evolved during the controlled burning of two different types of plywood, was investigated under contract to the Joint Fire Research Organisation of the Department of the Environment and Fire Offices' Committee 1.

METHODS

All the experiments were carried out in a 10 m^3 chamber (Plate 1).

For the 'pure gas' experiments cylinder-CO was metered into the chamber until the required concentration was reached. For the generation of 'pyrolysis' CO, standard plywood or 'flame proofed' plywood, in slabs 228 mm x 228 mm x 12 mm was burnt in the BSI Fire Propagation Test Box 2 . (Plate 2).

CO and CO_2 concentrations within the chamber were measured with nondispersive infra-red gas analysers, O_2 by means of its paramagnetism, and smoke by weight after sampling onto filters. Thermocouples measured the furnace and chamber temperatures, and their outputs were recorded along with those from the gas analysers.

Originally it was hoped that rigorous compliance with BSS 476/6 (Appendix 1) in the operation of the test box would be possible, and to this end the calibration required in the standard was carried out. However, although the thermal characteristics of the box were satisfactory, the CO concentrations produced were far too low and permission was obtained from the contractees to vary the standard running conditions. The major changes were:

The air inlet at the base of the box was closed down to restrict ventilation.
The electrical energy input was increased, both by using electrical heating from the beginning of each run and by not reducing power during the run.

3. The 'burn' phase was continued for 60 minutes.

The exact power inputs are listed for a typical experiment in Appendix 2.

Animals

Male rats and guinea pigs, supplied by Allington Farm, were used for all exposures. Body weights are given in Appendix 3. Fifteen animals of each species were used for measuring the equivalent L Ct_{50} , and an additional five of each species were exposed and then sacrificed at the end of the exposure for blood carboxyhaemoglobin (COHb) estimations. In all cases where animals were used for COHb estimations they were randomly allocated for this purpose before the experiment.

It was planned to observe animals for 14 days following an exposure, but experience indicated that results were always stable within 24 hours.

Carboxyhaemoglobin Estimations

At the end of an exposure animals allocated for COHb estimations were sacrificed with CO_2 unless dead already. Blood was taken by heart puncture and the COHb content estimated spectrophotometrically³. Calibration standards were prepared by bubbling CO through whole blood.

Procedure

The general protocol for an experiment using wood was as follows: 1. One hour for pyrolysis of plywood, followed by the ventilation of the chamber and injection of 0_2 to obtain the required CO levels and 21% oxygen.

2. Emplacement of animals for 30 minutes exposure.

3. Ventilation of chamber and withdrawal of animals.

It was thought better to burn the wood to standard time and CO levels and then to reduce the CO concentration by ventilation, since this method kept the ratios of other pyrolysis products to CO more consistent.

Although power to the furnace was turned off before the animals were emplaced, there was always a slight but continuous evolution of smoke and gases during the exposure. When the furnace was cool the residue of unburnt wood was weighed.

The wood samples were specified and/or supplied by the Fire Research Station. They were:

12 mm Finnish Birch Exterior WPB plywood, and the equivalent to this but treated commercially to be flame retardant (Class 1)*.

*Pressure impregnated with aqueous solution of mono-ammonium phosphate.

RESULTS

There were five groups of experiments:

Two separate series of exposures to carbon monoxide gas alone, and one each to:

- a) a mixture of CO and CO_2 ,
- b) the effluent from burning plywood,
- c) the effluent from burning flame retardant treated plywood.

Under the conditions of the experiments only rats died; no guinea pig was visibly affected. In all cases, any rat that died did so either during the exposure or within a very few minutes of the exposure ending.

Death was preceded by slight excitation, uncoordinated rearing and then unconsciousness. Unconscious animals that did not die recovered within one hour, and appeared normal at 24 hours or one week. Excitation appeared to be greater during the wood burns than in the 'pure gas' experiments, but due to the large quantities of smoke evolved, visibility was bad and examination difficult.

Analysis of Mortality Results for Rats

The results (Appendix 3) were subjected to Probit Analysis⁴. to determine L Ct₅₀'s and 95% confidence limits, together with the slopes (b) of the regression lines relating mortality to CO dosage.

L Ct_{50} 's and associated statistics are summarized in the following table for the 5 series of experiments.

	Experiment	L Ct ₅₀ (mg min/m ³)	95% Limits	Slope (b)	S.E. (b)
1.	CO alone (Series 1)	178,900	149,800-215,600	. 12.4	3•9
2.	CO alone (Series 2)	157,700	122,500-179,600	5•4	1.6
3.	CO/CO ₂ mixture	173,000	156,600-191,000	9•4	2.2
4.	Standard Plywood	145,100	128,500-158,800	11.1	3.1
5.	Flame retardant treated plywood	141,500	125,700-161,400	7•4	1.9

The full details of the above results are given in Appendix 3.

3

There was little difference between the L Ct_{50} values but, in order to examine any significance of small differences, potency ratios (L Ct_{50} A/L Ct_{50} B) were determined for all pairs of experiments.

The results indicate that

- A. No significant difference (P 0.05) existed between:
 - 1. The two pure CO experiments.
 - 2. The two pure CO experiments either separately or pooled, and the CO/CO_2 experiment.
- B. Significant (P 0.05) but trivial differences existed between:
 - 1. Either pure CO or the pooled CO experiments, and flame retardant treated plywood.
 - 2. Some of the pure CO experiments and standard plywood.

Thus it appears that the toxicity with respect to CO generated by pyrolysis of plywood is slightly greater than that for pure CO, though the maximum increase is only 13%.

Carboxyhaemoglobin (COHb) results

The individual results for the COHb measurements on animals exposed to the two series of wood burns are contained in Appendix 3. In summary:

The lowest COHb % for any death was 86%

The highest COHb % for any survivor was 69%

Since there was no overlap in COHb values between animals that died and those that survived it is not possible to calculate a COHb value for a 50% chance of death. A COHb content of 75% is the mean of the two figures and appears to be a reasonable estimate of the concentration of COHb in heart blood to cause 50% mortality in rats.

DISCUSSION

All the results indicate that death in every case was due to carbon monoxide intoxication. In the case of the 'pure gas' exposures no other toxic principle was present. With respect to the 'wood' exposures the COHb measurements are quite unequivocal. Stewart and Stolman⁵ list COHb figures for man, Hofman and Oettel⁶ for rats, and Kishitani⁷ for men and mice, for man and rats the

4

concentration of COHb measured after death has a mean of between 70-80%. The slightly greater toxicity of the effluent from burning wood,then, does not need to be ascribed to some other toxic product. At first it was thought that the very slight differences were due to high levels of CO_2 causing a larger respiratory minute volume, resulting in higher doses of CO, and to examine this possibility the CO, CO_2 mixture exposures were carried out. No differences were found, however it is still possible that irritant products of pyrolysis cause over breathing in particular as the smoke is an aldehyde rich complex^{8,9}.

CONCLUSION

The work reported here suggest that the sole toxic principle released in hazardous amounts by burning plywood or flame retardant treated plywood* is carbon monoxide.

REFERENCES

- 1. F.R.O. 2805 Measurement of Toxic Hazards from Combustion Products. (Contract).
- 2. British Standard 476 : 1968

Fire Tests on Building Materials and Structures

Part 6. Fire Propagation Test for Materials.

- 3. KAMPEN Van & KLOWEN. Recherches Travailles Cliniques 73 (119) 1954.
- 4. FINNEY D J, Probit Analysis. Cambridge University Press 1947
- 5. Stewart and Stolman. 'Toxicology' Vol. 1, 1960.
- 6. HOFMAN and OETTEL 'Relative Toxicity of Thermal Decomposition Products of Expanded Polystyrene' from the 'Institute of Industrial Hygiene and Pharmacology'. Badisches Anilin - und - Soda - Fabrick A.G.
- 7. KISHITANI. 'Study on Injurious Properties of Combustion Products' Journal of the Faculty of Engineering, University of Tokyo (B) Vol XXXI No.1 (1971).
- 8. DUFOUR. 'Survey of Available Information on the Toxicity of Thermal Decomposition Products. Underwriters Laboratories Inc. U.S.A.
- 9. BAMBURG. 'The Destructive Distillation of Wood'. New York 1926.

P.C.B.

^{*}This conclusion applies to fire retardant grade plywood only when treated with mono-ammonium phosphate.

APPENDIX I

Reprinted by permission of the British Standards Institute.

This appendix outlines the test and calibration procedures in B.S. 476 : Part 6 : 1968.

TEST PROCEDURE

7.1. Before commencement of a test the operator shall ascertain that the apparatus is clean and dry, that the joints are adequately sealed and that it is located in a draught-free atmosphere.

The specimen shall be placed in the holder having a recess suitable for the thickness of the specimen, and the holder shall then be mounted to form one vertical face of the combustion chamber, making sure that the joint between the holder and the sides of the chamber is gas-tight. The apparatus shall be set level and the chimney and cowl truly vertical.

7.2. The gas supply to the jets shall be turned on, the jets ignited and the test timed from this point. After 2 minutes 45 seconds the electrical supply shall be switched on to give an input of 1800 watts $(430 \text{ cal/s}) \stackrel{+}{=} 2\%$ and reduced to 1500 watts $(358 \text{ cal/s}) \stackrel{\pm}{=} 2\%$ at 5 minutes. The electric input shall be maintained constant at this rate for the remainder of the test. The duration of the test shall be 20 minutes.

7.3. After a test, the apparatus shall be allowed to cool to ambient temperature before another specimen is tested. The chimney and the cowl shall be cleaned of all soot and scale and the hot junctions of the thermocouples cleaned before each test.

7.4. Observations during test. The temperature difference between the ambient conditions in the laboratory and the thermocouples inside the cowl shall be recorded continuously by a suitable instrument having an accuracy of not less than \pm 0.5%.

CALIBRATION OF APPARATUS

The apparatus shall be calibrated by carrying out the test with an asbestos board 228 mm x 228 mm x 12.5 mm having the properties specified for the apparatus and conditioned as in 5. A calibration curve shall be obtained immediately before the commencement of the test on a group of three specimens but when the apparatus is in continuous daily use up to nine specimens may be tested between calibrations.

6

The ideal calibration curve for the apparatus is shown in Fig.3 together with the permissible tolerance. The values of the curve at four time intervals shall be within the tolerances given in the following table.

Time for start of test	Calibration curve	Tolerance
min	deg C	deg C
3	33	± 5
5,	115	<u>+</u> 10
10	200	<u>±</u> 12
20	245	± 1 5

APPENDIX 2

Complete exptl protocol for run dated 31 7 72, pieces of flame-retardant plywood (Wt 895 grams) burnt in the Fire Propagation Test apparatus. Air vent NIL. Town gas supply 1.6 l/m. Electric power 2 k watts.

To = Furnace on

Time min	C0%	со ₂ %	02%	Furnace ^O C	Chamber ^o C	Smoke mgms/1
0		_	20.93	44	20.2	
5	-	-	20.80	234	21.2	
10	0.045	0.05	20.50	305	21.7	
15	0.110	0.18	20.30	340	22.2	
20	0.180	0.30	20.10	339	22,2	
25	0.230	0.38	20.00	333	22.7	
30	0.290	0.46	19.90	332	22.7	1.14
35	0.380	0.54	19.75	318	22.9	
40	0.440	0.63	19.60	314	22.9	•
45	0.488	0.70	19.40	310	22.9	2.17
50	0.520	0.80	19.20	305	23.4	
55 60	0,560	0.90	19.00	303	23.2	4.30
60	0.572	0.98	18.90	304	23.2	1.30
Power and gas turned off. 20 guinea pigs and 20 rats O ₂ level adjusted. placed in chamber.				its		
To = be	ginning	of anima	al exposu	re		
0	0.552	1.00	21.45	N/A	22.9	1.20
5	0.552	1.00	21.40	11	22.7	
10	0.548	1.00	21.40	11	22.4	1.20
15	0.528	0.96	21.30	tt	22.7	
20	0.528	0.94	21.30	11	22.7	1.30
25	0.524	0.92	21.30	**	22.7	1.01
30	0.520	0.90	21.25	11	22.7	
	Weight of unburnt residue 371 grams					
Mortality		On wit	hdrawal	24 hrs	7 days	
Rats		12/	/15	12/15	12/15	
Guinea		0/	/15	0/15	0/15	
Pigs						

APPENDIX 3

'

INDIVIDUAL EXPOSURE RESULTS

Results using pure CO only

<u>Series 1</u>

.

Run 1.	Rat body wts	190 ± 14 grams
	Average conc CO or	0.616%) 7.18 mgm/l) for 30 min
		215,400 Ct units
	Mortality	20/20
Run 2.	Rat body wts	180 ± 23.5 grams
	Average conc CO or	0.488%) 5.69 mgm/l) for 35 min
		198,980 Ct units
	Mortality	14/19
Run 3.	Rat body wts	177.5 ± 22 grams
	Average conc CO or	0.43%) 5.10 mgm/1) for 35 min
		178,500
	Mortality	5/20
Run 4.	Rat body wts	173 ± 24 grams
	Average conc CO or	0.415% 4.83 mgm/l
		169,050
	Mortality	7/20
Run 5.	Rat body wts	167.5 ± 15.5 grams
	Average conc CO or	0.375%) for 37 min 4.37 mgm/1)
		161,640 Ct units
	Mortality	5/20

.

,

Run 6.	Rat body wts	220 ± 26.5 grams		
	Average conc CO or	0.287% 3.34) for 37 min		
		169,050 Ct units		
	Mortality	7/20		
Run 7.	Rat body wts	182.5 ± 14.5 grams		
	Average conc CO or	0.175%) for 39 min 2.04 mgm/1)		
		79,510 Ct units		
	Mortality	⁰ /20		

.

•

Results using pure CO only

<u>Series 2</u>

.

•

Run 1.	Rat weights	197.5 ± 8 grams
	Average conc CO or	0.70%) for 30 min
		244,650 Ct units
	Mortality	14/15
Run 2.	Rat weights	197 <mark>±</mark> 7 grams
	Average conc CO or	0.62%) for 30 min
		216,690
	Mortality	9/15
Run 3.	Rat weights	202.5 ± 9 grams
	Average conc CO or	0.56%) for 30 min
		195,720 Ct units
	Mortality	11/15

Run 4.	Rat weights		201.5 ± 12.5 grams		
	Average conc CO or		0.46%) 5.36 mgm/1)	for 30 min	
			160,770 Ct units		
	Mortality		9/15		
Run 5.	Rat weights		194.5 ± 8 grams		
	Average conc CO or		0.36%) 4.19 mgm/l)	for 30 min	
			125,820 Ct units		
	Mortality		4/15	•	

Results using a mixture of CO and CO2

Run 1.	Rat weights	206 ± 6.5 grams
	Average conc CO or	0.68%) 7.92 mgm/1) for 30 min
	Average conc CO ₂ or	1.2%) 22.0 mgm/1) for 30 min
	Ct w.r. to C " " " C	0 237,600 Ct units 0 ₂ 660,000 Ct units
	Mortality 14/1	5
Run 2.	Rat weights	185 ± 14 grams
	Average conc CO or	0.56%) 6.49 mgm/1) for 30 min
	Average conc CO ₂ or	0.89%) 16.1 mgm/1) for 30 min
	Ct w.r. to C " " " C) 194,700 Ct units 02 483,000

.

.

•

.

Results from standard plywood

Run 1.	Guinea pig wts	339 <u>+</u> 18.5 grams		
	Rat wts	213 ± 10.5 "		
	Average CO conc or	0.502) 5.85 mgm/1) for 30 mins		
	Average smoke conc	0.76 mgm/l		
	Original wt of plywood " " residue	838 grams 43 "		
	CO Ct	175,450		
	Mortality Guinea pigs Rats	0/15 13/15		
	% carboxyhaemoglobin in e	ach of sacrificed animals		

		100%	all de "	ad on wit	hdrawai "	
		100%	11	57 77	**	
		100%		**	11	
		100%		17	11	
		100%				
	G.Ps 52%		all survivors			
		59%	11	11		
		49%	11	11		
		54%	11	11		
		59% 49% 54% 52%	11	11		
	1					
Run 2.	n 2. Guinea pig wts Rats wts Average CO conc		$310.5 \stackrel{+}{=} 21 \text{ grams}$			
			· ·			
			224 <u>†</u>	11 grams		
			1550	```		
	Average		455% 5.30 m		for 30 min	
		or	5.30 m	igm/1)	_	
	Average	smoke conc	0.536 m	om /1		
	in or age			·6···/ +		
	Original	l wt of plywood	836 gr	ams		
		" " residue	32 gr			
			U U			
	CO Ct		159,00	0 Ct unit	S	
			,			
	Mortali	÷	9/15			
		Guinea Pigs	0/15			

Carboxyhaemoglobin results

.

	% со нь				
	Rats	100% 92% 100% 100% 21%	dead on " " survivo		
	G.Ps	57% 47% 44% 37% 41%	survivo " " " "	r	
Run 3.	Guinea	pig wts	314.5 ±	15 grams	
	Rat wts		218.5 ± 10.5 grams		
	Average	CO conc or	0.344% 4.01 [.] mg	m/1) for 30 min	
	Origina	l wt of plywood wt of residue			
	CO Ct		120,230	Ct units	
	Mortali	ty Rats Guinea Pigs	3/15 0/15		
	Carboxyhaemoglobin results				
	% СО НЪ				
	Rats	45% 52% 69% 48% 57%	all sur " " "	vivors " " "	
	G.Ps	39% 37% 40% 43%	17 17 19 17 17	11 17 17 17	

Results from flame retardant treated plywood

Run 1.	Cuinea pig wts	274 ± 25.5 grams
	Rat wts	197 ± 15 grams
	Average CO conc	0.536%) 6.24 mgm/l) for 30 min
	Average smoke conc	1.17 mgm/l
	Wt of wood " " residue	895 grams 371 grams
	CO Ct	187,200 Ct units
	Mortality Rats Guinea Pigs	12/15 0/15
-	Carboxyhaemoglobin resu	lts
	% СО НЪ	
	Rats 97% 88% 88% 100% 88%	all dead """ """ """
	G.Ps 38% 46% 48% 40% 54%	all survivors """ """ """
Run 2.	Guinea pig wts	290.5 ± 17.5 grams
	Rat wts	197 ± 18 grams
	Average CO conc or	0.42%) 4.96 mgm/l) for 30 min
	Average smoke conc	0.817 mgm/1
	Wt of wood " " residue	912 grams 391 grams
	CO Ct	148,800 Ct units
	Mortality Rats Guinea Pigs	8/15 0/15

Carboxyhaemoglobin results % CO Hb 93% all dead Rats 93% 11 11 11 90% 11 45% survivors 44% 11 28% G.Ps all survivors 39% 11 11 11 11 37% 11 11 43% ** 11 34% 213.5 ± 12.5 grams Run 3. Cuinea pig wts 365 ± 32.5 grams Rat wts 0.369% 4.29 mgm/1 Average CO conc for 30 min \mathbf{or} 1.0 mgm/1 Average smoke conc Wt of wood 925 grams " " residue 377 grams CO Ct 128,700 Ct units 7/15 0/15 Mortality Rats Guinea Pigs Carboxyhaemoglobin results % CO Hb Rats 86% all dead 93% "," 90% It 48% survived 53% 11 G.Ps 57% survived 44% 11 ŧ 35% 11 329

34%

11

Run 4.	Guinea Pig wts	373.5 ± 33.5 grams		
	Rat wts	194 <u>+</u> 10.5 grams		
	Average smoke conc or	0.27%) 3.15 mgm/l) for 30 min		
	Average smoke conc	0.76 mgm/1		
	Wt of wood " " residue	912 grams 320 grams		
	CO Ct	94,500 Ct units		
	Mortality Rats Guinea Pigs	1/15 0/15		

.

 ${\tt Carboxyhaemoglobin\ results}$

% СО НЪ

Rats	48% 57%. 47% 41% 44%	all " " "	survivors " " " "
G.Ps	34% 66% 37% 35% 40%	all " " "	survivors " " " "

CARBON MONOXIDE SERIES 1

PROBIT ANALYSIS MAXIMUM LIKELIHOOD

IDE	1 D	DOSE	NET RESPONSE	CHECK	OBSERVED	RESPONDED
1	1	215400.000000	100,000000	0,00000	20.	20.
1	2	198980,000000	73,684211	0.00000	19	14.
1	3	178500.000000	25,000000	0,000000	20,	5.
1	4	169050,000000	35,000000	0.000000	20.	7,
1	5	161640,000000	25,000000	0,000000	20.	5.
1	6	123710.000000	10,000000	0,000000	20.	2.
1	7	79510,000000	0.000000	0.000000	20.	0.

ANALYSIS OF LINEAR REGRESSION

SOURCE OF VARIATION	DF	SUM OF SQUARES	MEAN SQUARE		
TOTAL	6	41.344266		6,610000	F05
REGRESSION	1	27,422105	27,422105	9.848365	FCAL
DEV REGRESSION	5	13,922161	2,784432	11,070000	CHI SQUARE

ITERATIONS	SLOPE	SUM OF NW	MEAN DOSE	MEAN RESPONSE
7	12.368855	58,689520	5,251858	4.988498
IDE	105	6	SSXX	SSXY
1	2.571000	0.671182	0.179243	2.217029

IDE	STANDARD	ERROR	STD	ERROR	SLOPE

1 1	668662	۲.	941372
	000002	э.	741JFZ

	UPPER LIMIT	LD	LOWER LIMIT
LD-10	161183.677340	140985.079840	46970.487672
LD-30	180210,689119	162327.250875	99019.027304
LD-50	215613.505974	178973.299662	149863.863453
LD-70	329128,668655	197326,338062	177779.161995
LD-90	694990.927444	227197,388710	198436.019581

•

CARBON MONOXIDE SERIES 2

PROBIT ANALYSIS MAXIMUM LIKELIHOOD

IDE	10	DOSE	NET RESPONSE	CHECK	OBSERVED	RESPONDED
2	1	244650,000000	93.333333	0,000000	15.	14.
· 2	2	216690.000000	60.00000	0,000000	15,	9.
2	3	195720.000000	73,333333	0,000000	15.	11.
2	4	160770.000000	60.000000	0.00000	15,	9.
2	5	125820,000000	26,666667	0.000000	15.	4.

ANALYSIS OF LINEAR REGRESSION

.

- AITALTJ	ITT AL FLUCHE PLA				
SOURCE	OF VARIATION D	F SUM OF SQUARES	MEAN SQUARE		
TOTAL	4	15,973773		10,130000	F05
REGRES	SION 1	12.012811	12.012811	9.098404	FCAL
	GRESSION 3	3,960962	1,320321	7,810000	CHI SQUARE
ITERAT	IONS SLOPE	SUM OF NW	MEAN DOSE	MEAN RESPONSE	
. 4	5,435657	40.991819	5,254972	5,309938	
IDE	т05	G	SSXX	SSXY	
2	1,960000	0,319792	0,406575	2,210001	
IDE	STANDARD ERROR	STD ERROR SLOPE			
2	1,000000	1,568302			
	UPPER LIMIT	LD	LOWER LIMIT		
LD-10	119492.027468	91659,266386	37299,647033		
LD-30	149295.538944	126321.930908	76662.746921		
10-50	179586.329853	157743,992094	122466,811424		
LD-70	244755,258511	196982,161884	172671,289484		
10-90	480087,264641	271474,647671	226057,819138		

CARBON MONOXIDE/DIOXIDE TOXICITY

PROBIT ANALYSIS MAXIMUM LIKELIHOOD

IDE	ID	DOSE	- NET RESPONSE	CHECK	OBSERVED	RESPONDED
3	1	237600.000000	93,333333	0.000000	15.	14.
3	2	194700.000000	60.000000	0.00000	15.	9.
3	3	153900,000000	40.000000	0.000000	15,	6.
3	4	136200.000000	13,333333	0,000000	15.	2,

1

ANALYSIS OF LINEAR REGRESSION

SOURCE	OF VARIATION	DF SUM OF SQUARES	S MEAN SQUARE		
TOTAL		3 20.175731		18,510000	F05
REGRESS	ION	1 18,917935	18,917935	30.081080	FCAL
DEV REG	RESSION	2 1,257796	0,628898	5.990000	CHI SQUARE
ITERATI	ONS SLOPF	SUM OF NW	MEAN DOSE	MEAN RESPONSE	
4	9.398885	29,317351	5,238199	5.002244	
1 D E	т05	G	SSXX	SSXY	
3	1.960000	0,203067	0.214151	2.012785	
IDE	STANDARD ERR(OR STD ERROR SLOPE			
3	1.000000	2.160924			
	UPPER LIMI	IT LD	LOWER LIMIT		
LD-10	142977,839788	8 126358.361536	95132,205143		
LD-30	166500,737852	2 152113,139772	130125,376245		
LD-50	191004,047703	3 172965,935823	156587,447708		
LD-70	229761,984962	2 196677, 387692	179697,773998		
LD-90	314221,84677	5 236764,821869	209298,618023		

- 1

STANDARD PLYWOOD TOXICITY

•

PROBIT IDE	ANA ID						D	0 S	E	i	ΝE	T	R E	S P (0 N S	Ε				C	HECK		OBS	ER	/ E D	R	RES	PON	IDED)
4		1	17	154	50).	00	00	00				86	,60	666	67			0	.0	0000	0			15,	,			13.	
4	1	2	15	59(00).	00	00	00				60	.00	000	00			0	.0	0000	0			15.	,			9.	
4		3	12	202	?3().	00	00	00				20	,0(000	00			0	• 0	0000	0			15,	,			3.	
ANALYS	15 0	FL	ENE	EAF	s F	₹E	GR	ES	S I C	N																				
SOURCE	0 F	VAR	I A I	110) N		DF		SUM	0	F	SQ	UA	R E S	S		MEA	N SG	A U G	RE										
IATOT							2			1.	3.	21	99	84									161	.40	0000) ()		F 0 5		
REGRES	SION						1			1	2.	63	30	80			1	2,63	330	80			21	.52	2495	57		FCA	L.	
DEV RE	GRES	S 1 0 I	N				1			I	0.	58	69	04			(0,58	369	04			3	.84	4000) ()		CHI	SQ	UAR
TERAT	1 O N S	ę	SLO	P				s	UM	0 F	N	W				м	EAN	DOS	δE			ME	AN	RES	SPON	N S E				
3		11,	. 0 9	587	703	5			2	2,	96	96	26				5,	1771	63				5,1	711	189					
IDE			1	r 0 5	5								G					s s x							SXY					
4		1.	,96	50(000)				0.	30	40	91				0,	1033	500				1.1	423	365					
IDE	S T	AND/	AR) E	RF	0 0	R	S	TD	ER	RÖ	R	SL	0 P I	E															
4		1,	,00	00(000)				3,	11	13	55																	
		UPI	ÞEF	s (. 1 N	11	т				L	D				L	OWE	R LI	IMI	т										
D-10	12	6337	7,5	58!	594	•7		1	111	20	.0	56	60	6		75	031	, 334	448	5										
D-30	14	239(),8	342	261	7		1	300	95	. 8	41	44	2	1	04	730	,798	353	8										
D-50	15	882	3.4	79	36	51		1	451	05	. 2	35	11	5				, 852												
.0-70	18	7971	7.3	569	01	1		1	618	46	, 2	89	81	2	1	48	598	,074	\$71	7										
D-90	25	8542	2.5	521	98	38		1	894	84	. 5	80	06	0	1	69	968	, 326	562	2										

•

.

.

٠

20

•

FLAME PROOF PLYWOOD TOXICITY

PROBIT ANALYSIS MAXIMUM LIKELIHOOD

IDË	ID	DOSE	NET RESPONSE	CHECK	OBSERVED	RESPONDED
5	1	187200.000000	80.000000	0,000000	15.	12,
5	2	148800,000000	53,333333	0,000000	15,	8.
5	3	128700.000000	46.666667	0,000000	15,	7,
5	4	94500.000000	6,666667	0,000000	15,	1.

ANALYSIS OF LINEAR REGRESSION

o on criterin -					
OF VARIATION	DF	SUM OF SQUARES	MEAN SQUARE		
	3	16.016681		18,510000	F05
ION	1	-	15,298652	÷	FCAL
RESSION	2	0,718028	0,359014	5,990000	CHI SQUARE
ONS SLOPE	ç	SUM OF NW	MEAN DOSE	MEAN RESPONSE	
7.415497	,	30,793297	5.144268	4.953051	
т05		G	SSXX	SSXY	
1.960000)	0,251107	0,278210	2,063065	
STANDARD ERF	ROR	STD ERROR SLOPE			
1.000000)	1,895892			
UPPER LIM	41 T	LD	LOWER LIMIT		
111226.10360)7	95010,548830	62760,039792		
134335.16446	55 1	20193.868778	97363,771297		
161407,86351	4 1	41448,741011	125175,473217		
210167.06705		•	148503,298332		
	ION RESSION ONS SLOPE 7.415497 T05 1.960000 STANDARD ERF 1.000000 UPPER LIN 111226.10360 134335.16446 161407.86351	3 10N 1 RESSION 2 ONS SLOPE 5 7.415497 T05 1.960000 STANDARD ERROR 5 1.000000 UPPER LIMIT 111226.103607 134335.164465 1 161407.863514	3 16.016681 10N 1 15.298652 RESSION 2 0.718028 ONS SLOPE SUM OF NW 7.415497 30.793297 T05 G 1.960000 0.251107 STANDARD ERROR STD ERROR SLOPE 1.000000 1.895892 UPPER LIMIT LD 111226.103607 95010.548830 134335.164465 120193.868778	3 16.016681 10N 1 15.298652 15.298652 RESSION 2 0.718028 0.359014 ONS SLOPE SUM OF NW MEAN DOSE 7.415497 30.793297 5.144268 1.960000 0.251107 0.278210 STANDARD ERROR STD ERROR SLOPE 1.895892 UPPER LIMIT LD LOWER LIMIT 11226.103607 95010.548830 62760.039792 134335.164465 120193.868778 97363.771297 161407.863514 141448.741011 125175.473217	3 16.016681 18.510000 10N 1 15.298652 15.298652 42.612945 RESSION 2 0.718028 0.359014 5.990000 ONS SLOPE SUM OF NW MEAN DOSE MEAN RESPONSE 7.415497 30.793297 5.144268 4.953051 1.960000 0.251107 0.278210 2.063065 STANDARD ERROR STD ERROR SLOPE 1.895892 2.063065 UPPER LIMIT LD LOWER LIMIT 2.063065 134335.164465 120193.868778 97363.771297 161407.863514

•

.

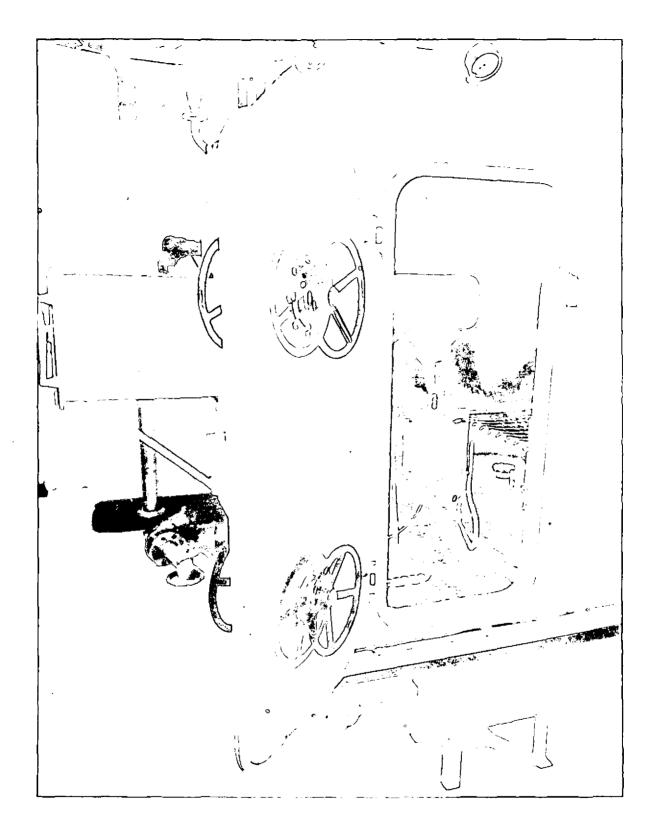


PLATE 1. FIRE PROPAGATION TEST APPARATUS IN POSITION

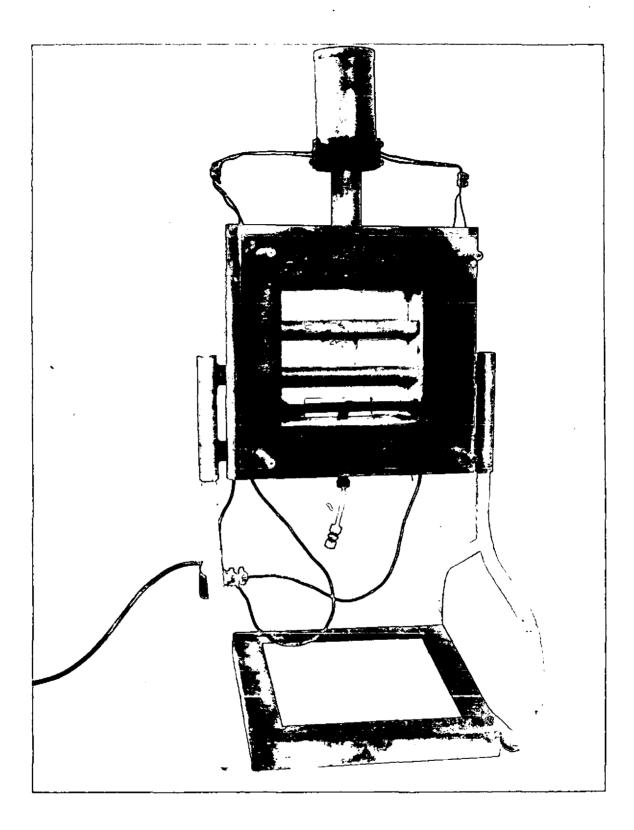


PLATE 2. FIRE PROPAGATION TEST APPARATUS FROM B.S. 476 Pt 6