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SUMMARY

Formulae for the mass flux and velocity beneath corridor ceilings of buoyant

fire gases are derived theoretically. The theory is based on assumptions

applying to simple corridors, of the type often occurring in practice, and

on the application of the Steady Flow Energy Equation to the flowing layer.

Practical applications of these formulae in calculating flows in corridors,

tunnels and malls are discussed.

© Crown copyright 1977

Department of the Environment Fire Research Station of the
Building Research Establishment



SYMBOLS

C Specific heat of air at constant pressure
p

Cv Coefficient of discharge

d
l

Layer depth below ceiling

d Depth of corridor exit
s

g Acceleration due to gravity

h Corridor height

k Velocit~pressure Coefficient

M Mass flux in the layer

p Gas/air pressure

Q Heat flux in the layer

T Absolute temperature· of air and/or fire gases

c.. T Temperature of fire gases above ambient temperature

v Velocity of layer gases

v Mean velocity of the layer

w Width of corridor exit

W Width of corridor

x Height above the corridor floor

y Height above the corridor floor (used in integration)

jJ A constant of proportionality

'J< "Profile correction factor"

1\ Denotes a location in the corridor

/' Air/gas density

SUBSCRIPTS

a Ambient value of a variable

c Value cf a variable at the ceiling

n Value of a variable at obstacle n

v Value of a variable at the vena contract a

I\. Value of a variable at position 1\



THE FLOW OF BUOYANT FIRE GASES BENEATH CORRIDOR CEILINGS: A THEORY

by

H P MORGAN

1 • INTRODUCTION

The flow of fire gases beneath a horizontal ceiling is of interest in a .number

of situations. Leaving aside the particularly intractable problem of three­

dimensional radial outflow ~rom a fire-plume impinging on a ceiling, the simpler

two-dimensional problem of flow beneath a corridor ceiling is important for tunnels

and shopping malls, as well as for corridors. Knowledge of such flows is particularly

important in the design of smoke-extraction systems for shopping malls and for

tunnels. In the remainder of this note the term "corridor" should be taken to

include both tunnels and malls.

In a corridor, a flowing stream of buoyant gases is usually characterised by a

free lower surface with ambient temperature air occupying the lower part of the

corridor.

The advance of the leading edge of such a stream has been described by Hinkley.•1

The behaviour of an established horizontal flow, regarded as a steady-state process,

was briefly discussed in the same note. An approach based on tllli Froude number of

the flow, led to an expression for the mean velocity of the gas layer in the

corridor:

where 0.8 is an empirical constant.

A regression analysis of the data presented in Ref 1 gave a value for this

empirical constant of 0.9 ± 0.1.
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The related problem of the flow out of a compartment, under a roof-screen, was

examined in Appendix 1 of Ref 2. The approach used applied Bernouilli's

equation to the gas flow" with the assumption of zero initial velocity for the gases

in the compartment. Equat-ion 77 of Ref 2 followed, but this too, involves an

empirical constant. 'A little manipulation of this equation gives an expression

for the mean velocity of outflow of the gas:

where 0.69 cOhtains the empirical constant and a discharge coefficient.

The difference-between eqUations (1) and (2) is not really surprising, since the

assumption of zero-initial velocity is rarely applicable to corridor flows.

The method of applying Bernouilli's Equation, as used in ref 2, is similar to

the approach of many Fluid Mechanics text books3 to fluid flows - for example

rivers or pipe flows.

Despite this, there appears to be no direct application of these principles to

the particular case of steady-state flows of buoyant gases beneath corridor

ceilings.

The velocity-pressure coefficient3,4,k, can be used to allow for the presence of

obstacles to flow in a pipe. With certain simplifying assumptions described below,

the theory that follows attempts to apply Bernouilli's equation to a corridor,

using the concept of the velocity-pressure coefficient. Equations are derived for

some of the more important flow parameters of b~oyant streams in simple corridors,

a case of considerable practical importance.

2. THEDRY

2.1 Assumptions Incorporated into the Theory

a) The buoyant layer exhibits tranquil flow3 (ie. its Froude Number (1.0).

b) Flow processes in the layer are turbulent (ie. the Reynolds Number is large).

c) There is no m1x1ng across the interface between the air below and the

r.orizontally-flowing gas layer above (ie. the Richardson Number>0.8).

Experiments5,6suggest that this is a reasonable approximation for fully­

developed flows in a corridor.
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d) Flow is uniform across the width of the corridor.

e) Energy losses from the layer due to internal turbulence, wall friction and heat

conduction are small compared to the energy flux along the corridor. The major

source of heat loss from the ceiling layer is heat radiation downwards from the

layer. For a short corridor (eg. the great majority of malls), radiative heat

losses will be a small proportion of the original heat flux in the layer. Such

losses can be incorporated into a more detailed theory applicable to 'long tunnels,

but would lead to unwieldy final equations. This paper will consider the case of

short corridors only, for which case all the above mentioned energy losses can be

assumed to be absent.

f) There are no horizontal pressure gradients in the air below the layer ie. the

air is everywhere at ambient pressure (or the air velocity «<the layer velocity).

g) The base of the layer (the interface) is at a constant height throughout the flow.

In most corridors of practical interest, the major obstacle to flow occurs at the

exit, and this assumption is then observed to be, at least approximately, true

(for exampl~ in shopping malls). It is probably not valid for very long tunnels

or corridors, but would still serve as a useful first approximation.

In practice, assumption e) above will not be strictly true, even for short to

medium length corridors. The kinetic energy loss per unit length due to friction

etc. must be balanced by a change in potential energy due to buoyancy as the gases

travel along the corridor. Since heat is again assumed to be conserved the layer

depth will change. Any flow obstacle leading to a loss of energy will also cause

a change in layer depth. Therefore this assumption should more properly be that

such changes in layer depth are small with respect to the total layer depth.

h) Fire gases rising into the hot corridor layer from the fire, are already heavily

diluted with entrained air. Hence smoky gases in the layer can be regarded as

having the same density as their major constituen~;air, would have at the same

temperature.

i) The vertical profiles of buoyancy at all positions along the corridor have the

same shape. Also the vertical velocity profiles have a common shape.

j) The hot gases can be regarded as incompressible.
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2.2 The Effective velocity-pressure coefficient at a point in a Corridor

The definition and use of the velocity-pressure coefficient is discussed

in detail elsewhere3,4. To summarise the salient points, an obstacle in

the way of a fully-developed turbulent flow (usually in a pipe or duct)

causes an energy loss, proportional to the incident kinetic energy. There

is a pressure drop across the obstacle, such that for a steady flow

where k is the velocity-pressure coefficient.

Equation 3 can be incorporated into the steady-flow energy equation for

an individual flow-line.

Let us consider the case of a buoyant flow in a corridor, where the flow

passes a number of obstacles before escaping to the exterior atmosphere

(See Fig 1). Bernouilli's equation can be written for a flowline at

height x, comparing the total energy at position 1\ and at a point

outside the corridor, when the flow is dispersed. It is here assumed that

the flowline returns to height x after passing each obstacle.

but

and

x

Pi'-I.) = fd"") - [.JJA t;) j '!t
x

f~(~)= f.f •.o)- J./.(iJiJ
( 5)

From assumptions fjand g), and since the plane x = 0 is below the layer
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So equation (4) becomes

For obstacle 'n, we can write

Equation (6) becomes

J.~/'A(lj ~ ~ ([)y3~ -,). ~ J'A~ (x)

')(

or 1y" :{);;)J~ ~ 1/ 1)11'1") 'A~(")
where

is the effective velocity-pressure coefficient between position 1\
and the external air. The dependence of k' on the corrid.or exit is

considered in more detail in Appendix 1.

2.3 Mass Flux and Velocity in the hot layer

Equation (7) can be used to calculate the horizontal mass flux in the

layer. First, equation (7) is rearranged using assumption h).

The maaa flu..'Y.: through an elererrt dx at height x is

(8)

Combining equations (8) and (9), and integrating, the total horizontal

mass flux 'is given by

5
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d.
3

To take this further, the form of (~ (x) must be specified.

A typical experimental profile is shown in fig 2. Following ref 2,

this can be approximated by a rectangular profile (Fig 3).

other idealised profiles are possible (if less likely) and one, a

"triangular" profile, is discussed in Appendix 2.

For a rectangular profile,

T(x) ; Tc
for ({ -d/) <x < t:

T(x) ; T for X < (~-c1.l)
a

d e , (~(>:); a for X < (e -d)

v. %
(

J 3 T:. LJ" ) do~... \.vi J1
1<' -r:

The horizontal heat flux ,... = M ~ LJ-r
'-'(A A "r C

so equation (11) can also be written

M~ (;).)~ ;/J (8'Q ~ ["Po. \.vI]d.)'IJ al
A.3 C k' 1: 1P I!l

Since the uncertainty in dl is often large, and Q can be measured more

accurately than .6~ , equation (12) should be more useful in applying

experimental results. Either could be used for design purposes.

A mean velocity for the layer can be defined, such that

VA - ( 13)
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using equations (11),(12) and (13)

Vi\.

This can be compared with equations (1) and (2). Note the dependence

on k', representing the influence on the flow of obstacles downstream.

3. PRACTICAL APPLICATIOl\'S

It is thought that this work might be of particular use in calculating flows

in corridors,. tunnels or malls where the exit is more restricted than the mall

itself (as is usually the case). This oan also apply to ceiling vents, when

these vents are sltfficiently large to remove all the smoky gases appearing

beneath them. In this case, w is the total vent perimeter. If the smoke is

flowing radially towards a circular vent, ie. the flow is normal to the

perimeter at all points (at least in the immediate vioinity of the vent),

then k' would in this case be given by equation (A9).

For the design of smoke control systems, one would usually obtain values for

d
1

) Q) D -r;; and MJ\. from other sources (eg ref 8). One would then use' equations

(11) or (12) to calculate k', and hence the necessary dimensions of the smoke

extraction "exits" following Appendix 1. Alternatively one could start with

the existing geometry of a corridor and calculate one of the other variables.

For design work, it is important to remember that this theory applies to steady

flows only.

Fairly gentle obstacles to flow (eg. bends in the corridor) could be included

in the analysis by using the appropriate values of k. Various values of k
n n

are known4 for pipe flows, and should be applicable to corridors. Also internal

energy losses could be incorporated into k' as a "k per unit length." The

statements in this paragraph are all subject to assumption g).

4. CONCWSION

Equations describing the mass flux and velocity of a layer of fire g~ses

flowing beneath the ceiling of a oorridor have been .derived. The equations

inolude the effects of the geometry of the exit, and of gentle obstacles to

flow in the corridor. The resulting formulae are based on assumptions that

are thought to be reasonable for simple corrid9rs, such as are often found

in practioe.
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APPENDIX 1

THE EF'FECTIVE VELOCITY-PRESSURE COEFFICIENT FOR A CORRIDOR HAVING A

RESTRICTED EXIT

The corridor is represent ed in fig 4, showing the shape of the exit, and in

fig 5, showing the flow through the exit. If w>>d , the vena contracta fonneds
just outside the exit should have width w and an effective depth Cd.v s

If we. compare the vena contracta with position /'i. ,assumptions g) and i)

imply the same relative heights for flow lines, and hence

(A1)

similarly,

(A2)

Remembering that the exit is obstacle N, we can apply Bernouilli's equation,

with equation (3), to a flow line

t
o,) ){A

e:(~+ /A(x.i\.) V;CXd - "'~I kft ~'n v.,..'J.()(t< +- f. )JA (x)J d>t:
. ~ ;l ( Xv

== -p../xv) +~v ex,) v}()(",)
a

At the vena contracta, however,
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Assuming the rectangular profile of fig 3, equations (A3) and (M) give

Using

(A6)

Comparing (A6) with (7), we see that, at position .L\

J~
C d

v s

~: In most practical applications, all kn for n I N will approach zero,

so

([ ':c.~: f- I) (AB)

For the special case where the exit has no roof screen, the vena contracta

coincides with the exit, and dl = Cv ds• Hence for this case

v= ((~t- J)
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APPENDIX 2

MASS FLUX AND VELOCITY" IN A LAYER. HAVING A TRIANGULAR PROFILE OF BUOYANCY

A (hypothetical) triangular layer profile is shown

seen that it has the same buoyancy at the ceiling

as the "rectangular layer.

For x> ( e-:JJ
t
) the triangular profile is described by the equation

(A10)

Using this in equatLon (10), one can int egrate (with some diffi cuIty), giving

(A11 )

whereJ< is a "profile correction factor" to equation (11), and is

J.

4. ie'/;" )J{ = (' ~ - 2-r..-r; +S(L\Tt (~-r;)J (A12)S(6,)"" 'Itt
c 0.-

For Ta = 290
oK,

K takes the values of

1.51 for ~'fc = 10
0 K

1.58 for 6.7; = 100 0K

2.16 for .11; = 1000
0 K

Clearly therefore, the more the actual buoyancy profile departs from a rectangle,

the greater will be the errors resulting from the use of equations in the main

body of this note. Such errors may not be too important for design purposes,

and J.< is unlikely to exceed 1.2 for most real profiles.
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Figure 1 Horizontal flow along a corridor of width W
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