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This note is a brief introduction to the discussion of
free convection given in the standard text books. The
differences between spheres, disis and lonp cylinders at

simall Grashof numbers, and the limjtations on the use in
transient condifions of data valid for ouaal—statlonaxj
conditions are discusscd.
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COEFFICIENTS O HEAT TRAN SFER §Y NATURAL CONVECTION

-’

by
P. H. Thomms

Iatroduction

, Experimental and theoretical data arz often correlated by dimension-
less variables. For example, in heat conduction the time variable '#!
my be expressed non-dimensionally as kt/ttwhere k is the thermal
diffusivity and L is a characteristic length.

Tese non-dimensional variables, which are simply numbers without
units, can be derived in fwo ways., The first is based on a study of the
differential equations and the boundary conditions and the second on the
theory of dimensions,  These two methods, particularly the former,.show
how the various teorms in the equation would be coxbined tozether in any
solution to the equations. In conduction problems the equations ocan
often be solved if only approximately; in convection problems, rarely,
and then only for laminar flow,

Dinensionless groups are the basis of all scaling or model theory
'-ng} their rélevance o convection is very fully discussed in "Heat Transfer”
1) by Jakob.

Apnlication of theory fo frece convection

In free convection the driving force for the flow is the buoyanoy
term g ( ﬂ_, - ﬁ ) where “g" is the grevitational constant, /0 the

local density of the convective fluid, and {{) is the density of the
fluid 'far away' from the heated or cooled surface. For a perfect gas
this term equals cj 9{',/76

whe re is the difference betwesn the absolute temperitures T cad W,

of the geses locully ond 'for ovoy' {rom the surface,

. _ _glZe

The dimensionless forn of this ferm is ¥JJv5y where L is a character-
istic linear dimension, and ¥V is the kinemtic viscosity i.e. the ratio
of dynamic viscosity m to the density ( . This number is known as

the Grashof Number, snd it is the fundamental independent variable of
free convection. There is a second such variasble, the Prandtl Number

/% , but this is almost inverient and for air is 0,71 over a wide
range of temperature. The dependent variable is the heat transfer
coefficient itself, H, cnd the dimensionless form of this is the Nusselt
Number H L where K i1s the thermal conductivity of the fluid., Data
K
for steady-state free convection are then correlated by expressing the
Nusselt No, N,ns o fuaction of the Groshof and Proadtl Wos. Ng« ant Na, .

2 : '
j,e, HL =¢ [ Rg> l}_) cenna (1)
K VT K
The function (j depends only on the shape of the convective system. For
shapes such as short cylinders a sin:zle g could be obtained which would
be a function of the Grashof and Prandtl Nos. and a third number, the
ratio of the dismeter to the longth of the eylinder. For vertical
surfaces L is the height, and for spheres and cylinders |_ i Bhe
diameter, Worled examples are given by Pishenden and Saunders 62 .

In general it has been found practical to use power functions
for {Jover a considerable ranse in ‘)Luef* d in free convection this
has some theoretical justification ﬁ ’ (2 . FPor lanminar flow over
vertical. surfaces the relation is of the form



HL L6 ‘f verenea{2)
K oA <~Akja b

alop (1) (p-530)
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A correlation piven by J

NN = 0.55 (\NL\‘,_ NP,,YL" _ ceeien(3)

Y

This, however, does not hold for very high or for very low values
of the Grashof No. and in both directions estimates obtained by
extrapolating the formula give values of convective transfer which are
too low. \ :

. It should be noticed thet the indéx % introduces o scale factor of
I go that the meean heat tronsfer per unit area from small plates is
larger than from big plcd:es. As the Grashof Fo. increases bheyond 108
the index % increases to % so that the term L dloappears from the .

equation. This increase in the 1ndex ¢ccrresponds to a change from a

primarily laminar flow to a prin y turbulent one, Data of Sonvectlve
heat tr sger are given by Jakob . Fishenden and Saunders Eckert (3)

MeAdams

For forced convection the "buoyancy' term may be neglected, and if
this is done the Crashof No. is replaced as an independent variable by
the Reymolds No. appropriate to the velocity in the bulk streem of the
fluid. '

A correlation given by Jalkob (1)(p.473) for forced laminar convection
parallel to a plane is

i, ‘4
N, = 0-66 [\,P, Nee e (%)
.Nv . .
The characteristic dimension is the distance along the plane.

Relation between free and forced convection

It is of interest to relate free convection (equatlon (3)) to forced
convection (equLulon (4)) by replecing the velocity of the main streom
which -appears in the Reynolds Number by the velocity due to the buoygncy of
of heated gecses, .

In a st rean of heated gas of temperature & above aibicnt and of
uniform cross section the difference is pressure L‘ ot the level

of the bottom.of the stream cen be equalled to the differcnce between
the weights of the heated gas and unheated gas

l‘o At) = L,j"“’(o) .--(5)

o | ceeenei(6)

In a generﬁl discussion this con be taken as representative of the,
veloeity of the gases near o heated plate.
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If we substitute Y as given by equation (6) into equation (4) we obtain

P . Y /
L%/ 2L eVyYy '3
N\\“~= 0066 (w\-}-) ( ___‘3—_[—;._> NP{ o;-..so(?)

Yy WK |
= 078 Npg,~ Ngy o o ceeenaa(8)

The index of Nerdocs not agree with thet given by equation (3) but for
eir cquation (8) gives values of Ny, only about 20 per cent in excess
of that piven by the equation for free laminar convection, ahd in view
of the approxdmotion made this is reasonebly close.

In systems intermediste between free and forced convection both
Teyndds and Grashof Nos. must be considered as independent variables.
Although the Reynolds Fo. cannot enter into the equation for the heat
transfer coefficient of freec convection it is the same at corregponding
points in space in similer systems of free convection and would be a
function of the Crashof No, or the Nusselt No. for dissimilar systems.

The Nusselt No, for small Grashof Nos.

When the Grashof No. is small compared with unity the problem may
be regarded primarily as one of conduction., It is therefore possible
t0 calculete limiting values for the Musselt Nos, for different bodies,
Tor a sphere, simple theory shows this limiting velue to be 2, It will
be seen that Jakob ("Heat Transfer" Vol, I. Jakob, 1951, pe525 and 529),
gives a correlation of data vhich implies thot the Nusselt No, for sphere,
plates and cylinders can be correlated for small Grashof Nos. cs they can
for large ones. In fact the only daota quoted for low Grashof Nos, refers
to cylinders and these underestimate the Nusselt No. for spheres which
st exceed 2,

Iess well lmown is the limiting Nusselt Neo. for a disk. The
problem of conduction from a disk at uniform potential to a surrounding
infinite medium is a classical problem in electrical theory, and the
result in thermal units leads to a value of the Nusselt lio. in terms of
the mean heat flow from the disk of Bfw or 2.,56. The corresponding

problem in terms of the mean temperature for a uniform flow yields a
Nusselt No. of yWAfor 2.25.

The limiting Nusselt No, for an infinite cylinder in an infinite
mediuvm, unlike that for finite heat sources, does not approach a finite
limiting value but tends to zero, In practice, however, the cylinder
is finite and in a finite medium, in which circumstances the limiting
Nusselt No,.dcpends on the rotio of the diameter to the length of the
cylinder and on the retio of the oylinder diameter to the distance from
the cylinder to the surroundin:, surfaces at constant temperature. Much
of the value of experimental data obtained at low Grashof Nos, may be
lost if these relevant items are not quoted (see the co?tfibution of
Ie Pevre in the "Ceneral Discussion of Heat Transfer") \5),

Data on the dependence of the Nusselt No, on the Grashof No. for
sphercs and disks, are not given in the textbooks for sm?% values of the
Grashof No. but for forced convection Rang and Marshall showed that
experimentzl data could be corrclated in the range ) <7 h*ﬁ&_ < ](}5

by simply adding the heat transfer by conduction without convection to
thot for forced convection. Thus :

3

1/; oy
NNH:—' 2 + 0.6 NP,‘ NRQ' veveena(9)
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In view of the reletionship between free and forced convection Ronz and
Morshall suggested a similar treatment for {ree convection, idding 2
to the ijusselt Wo. given by equation (3) gives

: .\\\lmi 2+ 055 N N(: (1\}(5108) U €10

Some experimental work on the cox(:v ctive loss of neat {roa wetal
spheres has been done by Lyckhovslii who expressed his results a

Nuf 2,26 N, 0.0 (1 <Nf:4< 35\

N 0.167

= b N“r* 35 < Ne, < 2500)
W . ’

I'his corresponds closely to values about 10 per cert less than those

given by equation (10) throughout the range 1 < N, < 2500,

One would also expect the liusselt Yo, for o dislt to by given by
equation (10) with the constant 2.5 instead of 2, Iience wvhe error in
using equation (3) for spheres and disks in air may be estiinted as
about 40 per cent end 70 per cent at a Grashof o, of 10" and 1
respectively.

'he convection formulne generally quoted are based on steady state
conditions and can only be used for transient conditions, such as the
heating of a surface to ignition, i the time for any significant change
in swfyce temperature is long compored with the time constant ' . !
of the convective system, By time-constant in this discussion we shnll

can a time, of a certain order of magnitude, in vwhich the surface heat

transfer has become of the same order of magnitude as in the steady state.

Dimensional analysis shows that for a given Grashof Mo, the ¢ime constant
is proporticnal to 12, ‘e shall for convenience consider here only
systems in which the linear dimensions in the plane of hect {low ore of
the sagme order of' magnitude, so that no ambiguiiy arises us to ths
particular dimension concerned,

Tor small Grasheof numbers, the time constant must tend %o thet for

simple diffusion i.e, Wi. /2 is of order unity ond with
k = 0,187 cmz/sec for air and L, 3 cms, {;L is of order 1 winute,

If the motion of the gases plays a significant nexrt in the hest transfer
t-'( is different and a lower limit For its order of magnitude is given
by the time {, for an element of gus to pass by the solid,

If \r i1s a.suitable mean gas velocity we hove

. L
L= <

An estimate of “v. hus been obtained above in equation (1). Hence we have

Zﬂ €.~) .......(11)

ceve...(12)

— — 1
J2 \ g6 ) "

veeneeel13)
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Equations (12) and {13) show thai for a given Graghol number t;
is proportional to L4, or ipversely proportional to €73, and for &, 3 cms.
> 18 of the order of 107" second, It mey be concluded that the time
constent of the system will be intvermediate between tenths of a second
and minutes and will tend towards the upper end of this range Tfor small

Grashof numbers. VWhen transient changes of surface temperature or of
flux to a surfcce occur, the heat logs will differ from that in the
steady state, Consider the curve in figure Ta which represents
the temperature distribution near a heated surface, Since the heat
transfer is proportional ito the temperature gradient we cen writve

N o 4
N CL
I? the temperature of the surface increases at o rate faster than the
thermal gradients can follow "d“ is decreased see Figure 1b, and
similarly with a rapid f21l1 in temnerature “d¥ is increased
A A

e
Ve

A

TEMPERRTURE

Mg?_.ct ‘“::36:\\\;; e1k—~f -

Distance from heated surface

(a) (o) (c)
' Figure (1)

Hence a rapid heating produces a higher iTusselt.i’o, and repid cooling

a lower one than obtains in the steady state \ ),

‘“he case of rapid heating is of interest in experiments in ignition,
Consider a solid of height L initially cold, before being subjected to
an instantaneous rise in surfeoce temperature o V. For short tiues, the
behaviour will be similar to that of a semi-infinite solid and we have
the surface temperature given bs

. oo X
63 = V erfc /éiﬁii? creeaealil)

ience the heat flux “q" is given by
- kAR - UK
R ARV
and r\x — L;L :AL cereeso(15)
Voo e |

For short times this result will hold for eny solid. The result only
holds good while (kt)% is much iess than any of the dimensions of the
solid.

It follous that for o ropid increase in swrfuce lempercture
the instonteneous lusselt Mo, becomes very lerge cnd then £alls
before atiaining its steady value ior the convective systen, © is
interesting Lo consider this in the light of Mgure (2),

\ O~
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Line A& represents equation (15) nnd the horizontal lln

correspond to different steady state vaiues of Ny Cor different
Grashof los, Lines i, il and iii will therefore be the relation between
Ni. and t for different Grashof os.,

It is interesting to note that the points >(i etec., are related to
the Grashof No, {f'or a given Prandtl No, by

‘t X {\\C\ e crene. (18)

This suggests that the time constant decreases with inareasing Grashor -
No. The fact that equation (18) is similar to equation {12) in the index

f the Grashof o, is a consequence of the index of the Grashol llo, in

equetion (3) being %.
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