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Summary

An expression is derived for the temperature rise of the
unexposed surface of a wall subjected to fire conditions on onc side, the
unexposed face of the fire wall losing heat by Newtonian cooling to the
etmosphere, The limitations aprlylng to the cxpression are discussed
and it is shown that the expression is valid provided the temperature
rise of tbe cooler surface is less than about half its equilibrium

value, lixpressions are derived for the fire resistance time of a wall
subJected to a B,S, 476 furnace test,
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H¥AT CONDUCTION THROUGH DRY WALLS

by
C. F, Fischl

Introduction

In *his pot» the terperature rise of the cooler surface of a wall,
subjected to fire conditions on one side and to Newtonian cooling to

- the atmoapher: on the other is considered, The solution is obtained

analyficall,, with the aid of a few approximations, The solution would
also apply %o problems in which the temperature scale had been much
reduced, sush as in determining the respense of the interior témperature
of a house resulting from the fall in external tenperaturu cenditions
with night-fall,

"The solution is applicable to other diffusion problems such as, for
exarple, the diffusion of moisture thrcugh a wall, :

* The flow of charge along series resistance, parallel capacity
networks is analogous to thez flow of heat through walls and thus the
solution is agein applicable, In this case parallel resistence is
analogous to Newtonian cooling in the thermal problem,

In the development of the solution the problem of a lagged wall is
first considered, The effect of cooling is then taken into account
and a solution derived for the case of walls in which.the temperature
imposed at the heated surface is not constant with time,

1, The tempcrature at the far side of a wall heated by a constant
temperature,

If one surface of a homogencous wall is lagged and the other. surface
is raised to and meintained at & constant cbmperature{31 then, the

tenperature of the lagged surface after time t is given by 1) ’
0 =6 5 (~1) 2erfc e .
= 4t(2n+1)

where r is the thermal resistance of the wall and ¢ is the thermal
capacity of the wall,

This expression is not very tractable but fer the purvosss of this
note can be simplified by only considering temperaturcs less than O 6931
at the unexposed surface. This restriction is justified in sclving fire
resistance problems sinece structures wiould be considerad to have failed
long before the uncxposed surface attained such temperatures.

Thus for g < 0:69 6,

s ~ '2 8, erfc f re
.8 = 1 - Z{ (1)

Figure 1 is a graph of cxpression (1) and, as illustrated, can be
represented by a straight line with a gradient equal to the gradient at
?he point of inflection., The expression for.this line (see Appendix I)
is - _ S

0 = 1°8F9y
ETh “-;'g)-- (@)

If the unexposed-face of the wall is unlagged the time temperature
curve may again be represented by a straight line making an intercept

rc
with the time axis but having a reduced gradient due to the effect of
cooling, (See Appendix II),
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The expression for this line is

= }i@“ . e
6 (t -3 (3) e
where u is lesa than 1+85 and is glven 'y Bo= TEy ( )
(_") 1 - max,

r ' .
dopcnas 0n-;1 and r' is the thermal resistance representing cooling,
A grzph of against-¥1 is given in.Figure 2,

fFix, 3 dllustratec the solution of a probicﬁ by the use of efgfession
( ) corpaved witlh a solution obtained by a more laborious method

(2) ¥elidity or *he exnresqion for long cxposure times,

Vhere a wa1¢ is lagged it cen be seen from Flg. 1 that expression (2)
can be considered valid at least until E, = C*25, TFor unlagged walls where
rl g large the validity can be consideréd the same. For larger
values of 5% the validity is illustrated in Tig., 3., For convenience
of calculatlng validity has been defined as the time at which the rate
of temperature rise falls 15% below the mexdmum rate. (Appendix 3),

In terms of temperature rise the expression 1s, in general, valid
until 'the tewperature rise is about 4O% of theEqullibrlum temperature
rise,

(3) FPrediction of Fire Resistance

The furnace time-temperature curve to be,fdllbwed in a fire
resistance test is specificd in B.S. 476. Where the ambient temperature
is 209C the specification can be met Ly tho following expression:

© o =28 1t . (&) |

where t is the exposure time in seconds
and O, is the furnace temperature rise in %

Combining expression (4) and expression (3) by the application of
Duhamel's Theorem gives the temperature rise on the far side of a wall
subjected to a fire resistance test as

a :2!1.? LL. f-t_,l"c )8/7 : (5)

e 73
The fire resistonce of the wall is faken as the time at which the
average temperatuvree of the urexposed surface of the wall rises by 139°9C,
Inverting evpression (5) it is therefore given by

=32 4 (561X )s oo

Although the averape ten@erature rise muy be less than 139°C a
wall is considered to have failed if the temperature rise at any point
on the uncxposed surface is greater than 180°C, This may occur for
example if the wmortar in a brick wall has a greater thermal diffusivity
then the brick., The fire resistance is then given by

t = %’, + (=727 .-EE)EE sec

where r and ¢ refer to the material with the preatest diffusivity,
Conclusions
If a step function temperature rise, ©4 is applied to one surface

of a dry homogenecus wall with thermal re51stance r and thermal capacity c
then the tempcrature rise at the wmexposed surface is given by
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_ MO t . Ire ‘
0= T -5
where |, depends on the cooling at the surface.

The fire resistance of a dry homogeneous wall can be predlctod

. from the fornula

t o= "'*-"-'4" (O' 561 .Z‘.E)E'S- © . gec
i3 m
where fzilure is by vise in the average ftemperature of the unexposed face,

Where ono pc*blcn of the wall has a greater thermal diffusivity than
the rest then tne fire resistance is given by . T

t =.EE + {0 727 )— - gec

where r and ¢ now refer, of course, to the matoerial of greatest thermal
diffusivity.
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Appendix I

The Reprqunfation of Expression (1) by a Straight Line.

Expression (1) rcads’

8 = 2@, erfc ’ 3;:% (1)

and may be represented by a straight line through the point of inflection.
The point of intersection will therefore be given by d<f _

= 0
dt?

8 A
.@9 :-.g--.-lo .:F.-c-'e —-t
& IRYT LTk
a® B 1 (-3
w2 % qx T

c

For i2.e =0 % =X

and O = 2/u erfc .:.f1‘5
The gradient of the curve at this point will be
B . oqp
& o

Therefore the equation of the required tangent will be

- 1859 :
° re 1 (t"%) (2)

!
and the intercept on the t axis will be I

13
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Appendix II

The Effect of Cooling

"If heat is lost from the surface of a homogeneous va}l a'b e. constant
rate I then after time t the temperature is lowered by

> 2T r Wt [1erfc0+v ‘2 e xc].
0 e =1 i t

For 4 < 0+39 rc which corresponds for a lagged wall
to & <0.50 0, ' ‘
21 r , %

"W ff—c {6)

If the rate of cooling varies and I (t') is the rate at time '
then from (6), by Duhapel's Theorem of hcat conduction, at time t

ot |
Ge ~ a2 1(¢')r Jt <~ ¢t
° " I ks Nf;g”rme‘—_ 1 aw

or 8o= 2 X Tvp(y a2y go 7
s 2E Ty (7)

By Newton's law of cooling the rate of heat loss from a surface is
propor"'lonal to its temperature

I = 91 vwhere rl1 is the surface resistance of the wall,
T . .
If it is assumed that for a considerable time the rate of
tenperature rise is constant then

dG

0= (t-t) (8

[ . .
where % is constant

and t > to

- I R
Therefore I = T% ( - o)

Therefore substituting for I in (7)

5 2 r o :
C = —— = 't - to - - 2
Ix e Dz o 24T
0c =8 2 r %t - |
at it o A —= (9)

If %%l is the rate of temperature rise for a lagged wall and (?t is the

rate in the presence of cooling then

ao d@‘l _ a0
at T at at

C

B¢
Substituting for —3*from (9)

dgl
a0 _ It

1+2 r t - to
f’)‘[ ' re




APFENDIX IT (cont'd)

Substltutlng fOI‘ (Appenalx I)

-rc
2 B4 [TRe &
a9 - It IR
at 142 I, f — to
- Jw T re |

The masinum value of % can be found fron {10)

Let y = 4% then

re

205
8 . "‘("‘
v A 1+2 ¢, ™
ay y oy 1tz ?1J v = Lto)
rC
T:herefore _c_l_Q% = 48 12 —31 - I‘ e ‘
3y ay Ty NS ) (o sy soRCE)
re r rc
When 420 _ ab .
a7 = 0, d  is a maximum
Vhen r'

is large compared with r the intercept on the t axis of the

tangent with the maximum slope can be considered the same as for a
lagged wall,

_ re
i.e, %o = F3 (Appendix I)

Therefore when -g—;eb is the maximum, from (11)

r[’]‘c I‘1 - 2 —nee—
= = y - -
r ¥ %

F e 13 (12)

From equation (12) the value of t for which g—g is 2 maximum can be
found for different values of 51
r

The temperature rise can then be found by equation (8)

9] =|J~_fi_1 ('t "E.C.)
I.'c' 13

where | = ( ) .
max, 1
and (gﬁ ) max, 18 obtained by substituting for t,

to and 21 in (10)
Fig, 2, illustrates the variztion of i with X4 S
'r



Appendix III

The Validity of Expression (3) for Long Exposure Times,

The change in rcte of temperature rise is proportional to (Appendix II(M))
o0 .30 1 -3 |

ay? " dy (§2 'Zy) T > J—y:_%\ [GJSLY:%_?IWJ

where vy = Lt

- re

The first term applies to a lagged wall when r? = and the second
term applics to the effect of cooling.

For long times when the effect of cooling is predominant

A2e ~ -

dy ! L:}L Iﬁ + r‘f‘)\:]

1r 80 ¢ 8 by 5(2
= falls below (=), by 6(E )

2
then 6(3 ) = L2 (+ - tn) vhere at n, (d@ i

dt

therefore the decrease in %% is proportional to

En(%y@ ) = g;ﬁ (y - ym) vhere yy = - -

a(8
ay

Therefore

It is desired to calculate the time at which the tenlperattli'e rise
can no longer be considered as linear, If it is assumed that this
. happens when the rate of temperature rise falls below the steady rate by
approximately 15%
. 38 ~ B
i,es =2 = 085 (&=
at 5

at )max.

then € = Qe2
. : (13)

2 £+_'+'f1’~f7t
J Bl LT

Values of ym for values of ¥ r! have been calculated from
T

1 =
U'—:u—\
J'Ym.:l_j (2~3ym) (Appendix II (12))

and the corresponding values of y can be found from cquation (43),

The variation of deviation time with .EJ is shown in Fig, 3.

'



TV 1399V AC FDVHHNS d3O9OVTT 1V 3SI1Y IdNLvY3dWIl 1’914

IONVYLISISIY Si] X 1Ivm 40 ALIDVdAYD ./ INIL

a «x. 111250

9:-0 S5-O -0 m._O c-0O -0

— e —-

-3

INFISANY 3A0QY 3IUNIYYI4WIL 3IYHid / 3Sd-3dYNLvY3IdNIL



7

SR LA IS

1Sbi /)

\ 44" Brick

1-2 \\
0-8 —
0-4
© | 2 3 4 — 5

%' THERMAL RESISTANCE OF WALL / THERMAL RESISTANCE REPRESENTING COOLING

FIG.2, VARIATION OF )5 WITH T,



Ie1d4

ZSblfl

L2
-

. l 5
" |
o o]
P 0
<[
o 0
ul
Q.
> 040
w
}.—
: , /
o«
(18
~
L,
v
X
wl
o
o
5 0-05
b 0
g
w! Q
5 O
|
o
o)
o
o o
| 2 3 4 5
TIME - hr '

o) CALCULATED USING AN APPROXIMATE INTEGRAL (2)
——— CALCULATED USING EQUATION (3)

FIG.3. TEMPERATURE RISE AT THE UNEXPOSED SURFACE OF 8" CONCRETE WALL
L =2-27 THERMAL CONDUCTIVITY = 2:66X10  C.G.S.



DAY

S b

TIME O_F DEVIATION/CAPACIT_Y OF WALL X ITS RESISTANCE

Ot

O

0-05

0-20 \

10

| 2 ' 3 4 5

THERMAL RESISTANCE OF WALL/ THERMAL RESISTANCE REPRESENTING COOLING

FIG.4. THE DEVIATION FROM STEADY TEMPERATURE RISE





