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HEAT CCNDUCTION THROUG-H DRY WALLS

by

C. F. Fi~chl

Introduction

In ~'hjs pete the tCE~erature rise of' the cooler surface of a wall,
snb,jccted tt) f'iroj conditions on one side and to Newtorrian cooLdng to
the at:r,o.:mhe~_ or, the other is considered. The solution is obtained

I anul,Ytic:allY, -~"i~;h the aid of a few approximat ions , The solution' would
also a.!-~ply 'to pr-ob Ierns in which the temperature scale had been much
r.educed, su~~ as in determining the response of the interior temperature
of a house resulfing from the fall in external temperature conditions
with night-fall.

I The solution is applicable to other diff~oion problems such as, for
exarrpLe , tho diffusion of moisture t hr-cugh a -w3.E.·

: The flow of charge along series re s Latance , parallel capacity
networks is analogous to the now of heat tihr-ough walls and thus the
solution" is again applicable. In this case parallel resistance is
analogous to Newtonian cooli.ng in the thermal problem.

In the development of the solution the problem of a lagged YJall is
first considered. The effect of cooling "is then taken into account
and a solution derived for the case of Halls in uhich·the temperature
imposed at the heated surface is not constant wi.t.h time ..

The.t~rature at the far side of a wall heated by a constant
te!Jlperature.

If one surface of a homogeneous wall is Ingged and the other-surface
is raised to and maintained at 8, constant t.emper-ature e1 thffn)the
ten~erature of the laggcd surface after time t is eiven by ~1

2erfc rc

where r is the tihe rma.L resistance of the wall and c is the thermal
capacity of the wall.

This expr-es s i on is not very tractable but fer the purposes of this ­
note can be sirnplified by only considering temperatures Lcs e 'l:;J.-.o.D. O> 6981
at the unexposed surface. ~his restriction is justified in ;;;d7ing fire
resistance problems since structures wou'Ld be cons ider-ed to 1103.';e failed
long before the unexposed surface a't ta i.ncd such ter,lpel~ab~re13.

Thus for e <

e 2 e1 erfc J rc '
- '. - 4t (1 )

Figure 1" is a graph of expression (1) and, as illustrated, can be
repr-esented by a straight line with a gradient equal to the gradient at
the point of inflection. The expression for. this line (see Appendix I)
is

(t - rc ) __
13

(2)

If the unexpoaed f'ace of the VIall is urrLagged the time temperature
curve may again be represented by a straight line @akin3 an intercept
rc13 with the time axis but having a reduced [:raclient due to the effect of
cooling. (See Appendix II).
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(3) •
.r-c (de •~~ given 'by J.L = 'ti1 dt) max.

#

(3),

(2)

The expressim for this line is

e = ~ (t -~)
rc '.1

where J.L is 1(;1s3 than 1.85 and

(~~) Hax. ,

depends on ~1 and r 1 is the thennal resistance r-epre sent ing cooling.

A graph of J.L against £1 is given i~ 'Figure 2.
, r ,

F:J. :; j,),l',),~tro.te~ the soluti'on of a pr-obLo:n by the use of e~:ression
CU"?"~'<eL~ \lit:l a solution obtained by a more laborious method ~").

'{There a waLL is lagged ~t can be seen from Fig. 1 that expression (2)
can be considered valid at l(;1ast until ~~ =C·25. For unlagged walls where
r 1 is large the validity can be considererL the same. For larger
values of {-t the validity Ls illustrated in rig. 3.' For convenience
of calculatL~£ validity has been defin~d as thp time at which the rate
of temperature rise falls 15i~ be Lov tho \;1E.xi;;;Ufi, rate. (Appendix 3).,

In terms of temperature rise the expression is, in,general, valid
until 'the temperature rise is about 40ibof theeguilibrium temperature
rise. "

(3) Prediction, of Fire Resistanc(;1

Th(;1 f'urnace time-temperature curve to be f'o'LLowcd in a fire
resistance test'is specified in B.S. 476. Where the ambient temperature
is 20°C the specification can be met bc' the, follo"inC expression:

() 0' = 283 t 1$ (4) , ,.,

where t is the exposure time in seconds
and eo is the furnace temperature rise inoC

Combining expression (4) and expression (3) by the application of
DuhameI' s 1'heorem gives the temperature 'rise on the' far side of a wall
subj(;1ct0d tu a fire resistance test as

e = 2l,.7 !!:.
l'C

The fire r-e sf.s tonce of the wall is t aken as the time at' which the
average tcmpe::-catv:cc of t.he unexposed surface of' -tbe 7i3.11 rises 1,)7 1.390C.
Inverting czpross t on (5) it is therefore ghcen by

t =.r"S
13 + ( •561 zs ib.

J.L
sec

Although the average t et.per-ature rise ""'c'- be' less than 139°C a
wall is considered to have failed if the temperature rise at any point
on the unexposed surface is greater than 1800C. This may occur for
example if the mortar in a,brick wall has a ereater thermal cliffusivity
than the brick. The fire resistance is then given by

sec

the greatest diffusivity.

rc
13

=t + (. 727 .E£fs
J.L

where rand c refer to the mnterial with

Ccinclus ions-----
If a step function temperature rise, 6 1 is applied to one surface

of a d.ry homogeneous wall with thermal resistance .r- and thermal capacity c
then the tempcrature rise at the, unexposed surface is given by

. '."
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,-,
e =

where I.l depends on the cooling at the surface.
'.. "I. "

The fire resistance of a dry homogeneous' wall, can be predicted
. from ·the .f'orrauLa

. sec

where f"Uure is by ,cise in the average ter.lJ?erature of the unexposed face.

....,..the
Wher'():)~:: per-cion of the wall has a greater thei!na.l

refii:: t.:'lG~l fne fire r-os i stence is given by
diCfusivity than

t = I~ + (0. 727 E£)t
13 I.l

s~c

where rand c now refer, of course, io t.he illat3ria~ of greatest .thermal
diffusivity.
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Appenc1ix I

The Repref!.e.~tation of Expression (1) by a Straight Line.

Expression (1) reads'

6 = 281 erfc J ~~ (1)

and may be represented by a straight line through the ~oint of
The point of intersection ,Jill therefore be given by d e = 0

, dt2

inflection.

-rc
4t

,For d'\3 = 0

dt2

and 6 = 2t' erfc

The gradient of the curve at this point ;'Jill be

.2§ = ~9
dt rc I

Therefore the equation of the required tangent will be

(2) ,
•

and the intercept on the t axis will be ~~



Appendix II

The Effect of Cooling
-, .

. If heat is lost from the surface of a homogeneous 'lull
rate I then after time t the temperature is lowered by ~2)

(I _ 2; rift [ierfcO + ~ ·2 irlrfc n (fc
t
-] ·

c - iI rc ~F1 ..J -

For t < o·39 rc which corresponds for a lagged wal~

a.t a. constant

to 6 < o·50 8 1

e - 21 r • lIt
c -/~fi. lire (6)

\

If the rate of cooling varies and I (t') is the rate at time t '
then f-.com (6), ·by DuhaneLt s Theorem of heat conduction, at time t

t·
(t',) 1: ]6 c = f a[2 I ..Jt - t ' dt f

o o:t ;:f"7r. -rrc ,-r :

or e = 2 r If t I (t _"t 2 ) (7)c d,,;
1!7C I [ rc f o

By Newton's lro7 of cooling the rate of heat loss from a SUI~ace is
proportional to its temperature

I =~1 ~here r 1 is the surface resistance of the wall.
r

If it ~s assumed that for a considerable time the rate of
temperature .rise is constant then

dee = dt (t - to)

where ~ is constant

and t > to

(8)

'lherefore I de
= dt (t - to)

r 1

Therefore substituting for I in (7)

J rft - to cfJ. t
o dt

to - 1:2 d. 'to

r 1

de c
dt

= de 2
dt 1!1C t - to

rc

de =
dt

If : 1 is the rate of temperature rise fOr a lagged wall and : is the

rate in the presence of cooling then

Substituting for ~C.from

ae 1
d.t

I



APPENDIX II (cont t d)

t·

F
-~t - to
rc

1 + 2 r
I!~ r1

dt3
elt

Substitutine for (!11 (Appendix I)
dt

-rc
2 ~1 R e 4l

1[-;' t --i U

The maxamum value Of: can be found f'r-oni (10)

Le'!; y :."' .~~ then
rc

§~ ::
o.y y I!Y (1 + 2

. 1!7f.

-1
e y

T;herefore :: de
dY

1

2 rY- 4OtO- ~I7t .!1
-y - rc r

~ I y - 4Th)'~ (11)
4 rc

When d2e de"d,yz =0, ely is a maximum

Wl~n r 1 is large compared with r the intercept on the t axis of the
tangent with the maximum slope can be considered the same as for a
lagged wall.

rc
to = 13 (Appendix I)

'lhcrefore when ~ is the maximum, from (11)

=
(12)

From c quatdon (12) the vaLue of t for which ~~ is n maximum can be
found f or different values of '::1

r

The temperature rise can then be found by equation (8)

6 :: ~~1 (t _ rc)
rc -i-. )

where ~ :: (de) rc
dt max: 61

and (~ )max. is obtained by substitut.ins.: for t, to Clnd ~1 in (10)
Fig. 2. illustrates the variation of IJ. with £1

'r



Appendix III

The Validity of Expression (3) for Lonp; Exposure Times.

temper-a ture rise is proportional to (Appendix II(11»'I'he change in r ~.te of

o.2e
dYZ

whor-e y:::: 4t
. 1'0

'J';~c first term appl ie s to a lagged wall when 1'1 =co and the second.
term ~~)plies to the effect of cooling.

]101' long times when the effect of o~oling is predominant

,.

..

y - ~

_ d2e
- 7'"Z

dy

-ao
- dy

then 0(: ) = dd~~ (t - t m) where at t m .@ =(~ )
'dt dt max.

therefore the decrease in de' is proportional to
dt .r :

(y _ Ym) wher-e y = 4.tm
m rc

de
(l2e ay
d?-' - 1

2 ~ y-r;- r (y-r; +.!: /f 11. J
. 13 L ~ r • 13 I'

If i§ falls below e36 )max by O(~t )
dt dt· d

<') (de)
dy

0(00 )
.dy

Therefore
y - ym

Lot

It is desired to calculate the time at which the temperature rise
can no longer be considered as linear. If it is assumed that this

. happens when the rate of temperature rise falls be Low the steady rate by
appr'oxamabely 15%

i.e. dB ~ 0.85 (aJ.)
dt dt max.

then e =O· 2 = Jm - y

2Jy-f
3
' [ !y-lhl

+ ¥1/!;;] (13)

1
Values of ym for values of E have been calculated from

I'

l' = Mthe .:: Ym2 - Ym-±-

r rYm-4' (2-3ym) 13
~ 13 (Appendix II (-12»

and the correspondinp; ValUBS of Y can be found from equation (13).

The variation of deviation time With.E1 is shown in Fig. 5.
r



...-------t-----r------,.---r----r-----,------,'I:!
o

I

\ I
~ I

I
I

i
1 -'1

lJ') _i-- +-'-'-'" .~--------_._-- _._-- - · <.(0 ~-
I .:~

I
1

II ~
1 I W

1

I \.9
I o
I «I
I

UJ _..1

~
U

I
z u,

i
~

c( 01\ t-
-I · Vl

0 - tu(/l

\ UJ u
C! ~

\ I u,

~
cr:

lI) :).... V)

i\,
)(I

\ 0
.....J W

\ .....; oM <

--r~:--;--'''''''
• ~ o

0 «
u, ..J
0

>- ~
I ..... -c
I -I UI <{ w
I 0. V)

« -
I

u a:
I N

<,
l.u-----)------ - -.-t-----------.-...---- • UJ

0 ~
a:

" i - ::")
l- I--

<(

a:
lJJ

i a..
I I ~I wI

I- I t-
I
I -r-----'. ----t- · .

I

0 o-u..

,.....
o

.
o

lJ')

•o
~

o
M.
o

N.
o o

o



....

5432

0

6~
. ~ 1"4 ~rick

~2 -;...;..

....-
~

4

o

I .

O'

I .

o

jfl THERMAL RESiSTANCE OF WALL / THERMAL RESiSTANCE REPRESENTING COOLING

-- FIG.2. VAR IATION
r

OF )1 . WITH r'
.i
V'I-



-:
~, -

FIG.3. TEMPERATURE RISE AT THE UNEXPOSED SUR.FACE OF a" CONCRETE WALL
.;r = 2-27 THERMAL CONDUCTIVITY = 2' 66x 16'3 e.G.S.
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FIG.4. THE DEVIATION FROM STEADY TEMPERATURE RisE
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