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A HOTE ON THERMAL STRESSES IN BEAMS AND SLABS

by
P, H. Thomas.

1

The conventional equations determining thermal stress in beams
heated from the top or bottom surfece rre quoted and the stresses are
evaluated for the condition of heating obtained by suddenly raising
the temperature of one surface to a sitesdy value, t is shown that even
in a reinforced concrete beam failure mey result from ths attaimment of
high stresses rather than from failure due to the reaching of a
temperature at which the materials lose their strength.

Introduction

The failure of a loaded structure when heated may be due to one
or more of several causes., OF these one is the reduction in the
strength of the constituent materials when heated above a certein
temperature, while another is the setting up of stresses as a result
of the tendency of materials.to expand when heated, “his note outlines
the basis for estimating such stresses, the analysis of which is
conventional when beams or slabs are heated in one dimension, It is
hoped to discuss other problems, such as the two-dimensional heating
of part of a surface or of a corner which zre relevant to "spalling®
in a later report.

\

Analysis of thermal stress in long beams

The aznalysis of thermal stresses in a thin plate uniformly heited
along its length and breadth is given by Timoshenko and Goodier
The problem has been discussed by other writers notably Lord Raylelgh (2)
who evaluated the stresses induced by sudd?n ¥ changing the temperature
on both top and bottom surfaces, DBoulton has also discussed the
heating of walls and slabs by the application of a constant flwec to one
surface and equations for the radial heating of solid and holl?w
cylinders are given by Timoshenko and CGoodisr t and by Case 4). It
may be shown (see Appendix I) that, to a first approximation the
longltudlnal and transverse teunsile stresses at a height 'y' in a slab

£ depth ¥ may be represented by )
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where L 1is the elasticity of the materlal
(J is Poisson's Ratio
. 1s the coefficient of linesr expansion
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and V is the temperature at a height 'y,
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This stress satisfies the condition that the resultant longitudinal and
transverse thrusts and bending moments are zero, If the beam is
narrow so that there are only longitudinal forces to be congidered,

the stress is given by an eguation Slmllur to the above except for

the absence of the term '1 - &',



“stress at two values of

| -2-

These equations apply to an unrestrained and unloaded besm, but
the effect of constraints and loading can be dealt with by applicuation
of the principle of superp051tlonl If the effect of longitudinal thrust
on the deflection of the beam is negleched it may be showm that the load-
eflection equation for a constralned and loaded beam is the same as that
for a similarly constrained beom {iAth an initial curvature given by
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It is sufficient therelore {0 CVQ1Uute the temperature-time distribution

and the integrals Vy end V2 t0 determine the transient stress
distribution,

If the rise in te mperatuxe of the unheated face is small the
temperatures msy be regarded as those in a2 semi-infinite solid so that
for a beam heated on its uppér face by ralslng it to a temperature Vg
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where 't'  is the time

'' is the thermal diffusivity’

The integrals V1 and V2 can now be obtained as -
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If thesé values of V, end V, are substituted in equation (1) we
can plot LU~ as & functidn of *’~//fz for various velues of

< <= */{) . This is, shown in|Figure (1). The distribution of

R/ > other than zero is also shown in
Figure (2). For exmmpln‘v "t is kelen as 30 minutes, the diffusivity
of concrete as 0.-0022 am?/sec ond |1 as 20 cm, RIS/¢t: is 10-2
approximately, The maximum +ve value of "-57{3 after hour  is thus
seen in Figuré (1) to have reached |0.21 ot € £2 0.7, z /10 of the
beem thickness below the heated -surface)., For concrete ;

N

10=2 per °C approximately
B

b x 106 1b,sq.in, approximately..

Inn

so that in an unstrained concrete beam expospd tQ a surface temperature
of, sey, 5009C tensile stresses of O 21 x 4 x 106 x 1072 x 500 or
1,200 1b,sq.in, will have boen develoPed within & hour,

This stress is several times the ultlmaco strength of concrete
in tension and unless the compres51§e loading and constraining stresses
are of this order to compensate for the induced thermal stress, there
will be a failure of the beam, This analysis only applies to a

homogeneous beam but the relevant e%pre531ons for a relnforced beam may
be obtained on similar lines as follows.




Composite beam
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The beam will be considered as shown in Figure 3,
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The area of reinforcemént is egquivalent to a thickness "s" for
the whole width of beam, The temperature of the reinforcement will be
considered uniform over its area and will be denoted by V.. (Suffix "c"
refers to concrete and suffix "« " to the reinforcement)}., ~As before
we write the tensile strain in the concrete as linear in'y, (See
equation (10) Appendix (1) ), \

i,e,

JF& = E’<_(GL-*'Q"~_‘_/{.“D{¢\'/<> e (8)

where " a' and ‘b’ are functions of temperature only. The equilibrium
“equations for the ‘horizontal load and the bending moment in the
beam are given respectively by
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The stress in the reinforcesment

that in the concrete at the level of

Thus we have

=l
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must provide a net strain equal to
the reinforcement (1 - h).
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In solv1ng equations 8-11 two approximations have been made for

convenisnce., The first of fhese
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This is equivalent toc neglecting
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the temperature strain as compared

with the gross strain in the steel and is discussed below,

If the temperature drop in the b
\/ \\/

This is seen from equations (6)

sam occurs near the heated surface

veessa(13)

and (7) £ be justified for &1

The solutions of equations (8-11) for the two constants a and <; elive
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where

If a rectangular beam with all it
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2 rezn;orcement et one level is

designed so that the maximum comprv351ve stress in the concrete due
to its working load is F¢  end the maximum tensile stress in the

_reinforcement due to its working

(see reference, (4) p. 166-7) tha:

logd is ~
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it can be shown

4 is given by

.(17)

ceer..(18)



~5m
If the beam is designed so that /f ‘is the ratio of the maximum

permissible stresses i,e, there lS en optlinum design of beam, 4 is
approximately O- 1

If ¢ is 20 cm and f—\ is 5 cm then from ecuations (14) and (15) we

have
A
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From equation (6) and the above values for a2 and b the inequality
(12) is satisfied as long as .
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Since the coefficient of expansion for steel (O{ ) and concrete ( DZ'()

are about the same
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we may write (19) for »-% = 4 as '
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where > is
\/ Rt

This 1nequa11ty is satisfied for >t <L O» 06, i.e. for
0.4 x 1072 (say). For times equivalent to these values it will be noted
that . For concrete with ' = 20 om this corresponde to

_4imes less then about 10 minutes, The tensile siresses in the concréte

at the unhelated suriace will then be given by

tbﬁ. - 20l Ve [‘;_ 372

The compressive stresses at the unheated surface due "o a heated -
face of 500° will therefore be :

~
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i,e, in 10 minutes the induced compressive stress at the unheated face
wiil reach 2,600 1b, 5q.in. This istclearly of a magnitude that might
cause Tailure in en already loaded beam, The tensiie stress in the
steel reinforcement is given by

{':‘ e E[ (O°75 b + a)
. B
=28 *-;( \f {E; coens(24)

After 10 minutes . h, = 2 x 10% 1b.sq. in,

i

i,e. 9 tons/sq.in, approximatély.

This again would cause failure in a|loaded beam, In practice & beam
in a fire is heeted by having its itamperature -aised gradually so

that the stresses will not be so grgat as estimated here, They would,
however be expected to be of a hlgn order and sufficiently lerge to
make the criterion of failure as the attainment of a fixed temperature
by the steel an over-simplification, | ‘It would be worth while computing
V3 V4 & Vo exactly for the standard time temperature curve for fire

resistance so that the stresses may be evaluated more exactliy and for '
longer times if necessary.
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APPENDIX I

. The differentisl equation (1) for a two dimensional thermal stress
t in whi e ¢ < i
system in which there are no siresses F _f1x.z '1H' is

]
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and }(,is the stress function,
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In particular the tensile stresses in the > and \J direction are

o, = A X (2)
> Ctzul‘-
1,
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and the shear stress u} \-A\l —

Equation (1) may be writtén as the pair of equations
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<y =0

From (4) we have

JP\C +- '\\\,\*\— — N = K-// (5)

We shall not attempt to solve (4) and (5) éxactly for a finite beam
but an approximate solution may be derived for a long, unrestrained
weightless beam at a distance from its ends,

=0/ N |
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Figure 4



APPENDIX T

{Continued)

From considerations of symmetry Iwe have zero shear on the three faces
of ‘element A of the beem (Figure (4 } ) and we have no variations in

stress or sbrain with >¢

‘Hence, since P )ll'% and V are functions of y only
® .

!
I b
A )<i

we have from ( 6)

and hence from (5) and (7) L_}/

¢ o '
where 'a' and b are constants,
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Since strain in both 2¢ and ' directions is a function of y only

it follows that layers of different

¥ may be considered concentric,

If R is the radius of curvatu.re:e of the bottom of the beam and
K. >> € we can to a first approximu:tion use cartesian co-ordinates
with the additional equation of equilibrium of the element in Fig. (4.).
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Clearly, from equation (9) ?\J‘ is small compared with -L}\( if E <<1,
: ) 0 : |
From equations (6), (8) and (3) we have for -‘0-\— <»< 1

B = N 4‘0%

— &=\ L. (10)

- we also have from the equilibrium of the beams
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APPENDIX I (Continued)

From equations (10), (11) and (12) we then obtain
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For a system of plane strain as in a wide slab E 1is replaced by
!ZAAJ_' in the above equations,

It is now possible to evaluate the maximum tensile value of {’

This occurs at the value of " " nearer to the hsated suriace where
P¢ is zero, (The points X 7in Fig, (2). ). Ve can identify =/
with the coefficient of ", " in the expression for tb and thereby

find from equetion (9) by & graphical integration of Fig, (2) the
- meximum tensile value of P T Thus we have

13 max, = 0.08 \:‘ r;< L\./ Lpf‘or ﬁ\: = 45 x 10°3
' - — 2 s i
and max, = 011 = o \/S for %J’:. = 9.x 1073,

The ratio of these stresses to the maximum tensile values of 'F’x are
. O 429{\/ and 0°51 o(V;. ¥or the values of o and \/5 usecC above it
is clear that the horizontal tensile stresses are cons:.dera.bly greater
than those normal to the surface,
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FIG. I. LONGITUDINAL STRE‘.SSES IN A LONG NARROW UNRESTRAINED BEAM

HEATED BY SUDDENLY RAISING ONE SURFACE TO A STEADY TEMPERATURE.
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FIG. 2 DISTRIBUTION OF LONGITUDINAL STRESSES

THROUGHOUT DEPTH OF A NARROW BEAM. -
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