
by
D. J. Rasbash and G. W. V. Stark

Contents

Parge
Summery
Introduction1
Experinental 1
Principle of apparatus 1
Apparatus 1
Operation of apparatus 2
Velocity of traverse of tray 2
Drop counting and classification 2
Spray testea 2
Calculation of drop velocity and distribution 3
Results 4
Discussion4
Errons associated with apparatus 4
Validity of assumptions 5
解fect of defloction of entrained air stream 6
Effect of turbulence of the cntrained air stream 6
riffect of size or sample 6
Recuotion of bias of estinated arop velocity 8
Conclusions 8
Aoknowledgment 8
References 8
Appendix I 9
Mean position of drops on a sample tray
Steprise distribution of drops on a sample tray 10
Appendix II
The velocity of drops in a spray. The distributionof drops on a sample tray. Results of nine tests
12
Appendix TTI
1
Detemination of distribution of drops on a sample tray by geometrioal construction 12
Bicures

1. Prinoiple of apparatus for measuring drop velocity.2. Exploded perspective of drop sampling apparatus.
2. Section of drop sampling apparatus loaded.4. Relation between mean disolacoment and velooity of droos.5. Relation between stoprise distribution and vilooity of drops.
3. Cumlative distribution of drops in samples of spray, With
95\% limits. Assumed results of nine teats.
4. The velocity of drops in a spray.
5. Distributions obtained on sampling trey when spray falls
throurh eixed volume in different vars.
6. The mean position and distribution of drops on a sample tray
7. Direotion of approach of spray to sample tray and ofdistribution of drops on segments of sample tray.
Plate The distributions of drops captured on a sample tray.
Tables1. Distribution, mean displacement and velocity ofdrops in a spray.
8. Confidence limits for velooity of drops from asingle sample.7
Symbols$D=$ mean distance of oaptured drops of civen size from
leadine edge of tray
$d=$ length of tray
$h=$ height of cover above tray
$1=\operatorname{leng} t h$
$N=$ number of arops of given diameter in unit volume
$n=$ number of a semment, measured fron leading edge of tray
$\mathrm{Q}=$ cumpative proportion of drops in first n semments
$q=$ proportion of drops in n-th semment
$V=$ velocity of drops
$v=v g l o c i t y$ of samplo tray
$x=$ number of equal parallel strips in lencth of slide
$y=$ height of a drop above sample tray
$c=$ standard (root moan square) deviation
$\theta=$ angle

D. J. Rasbash and G. W. V. Stark

Introduction

In a study of the extinction of liquid fuel fires b, water sprays(1), in which the spray was projected downwards on to the fire, the caloulation of heat transfer to the drops comprising the spray required a knowledge 'of the velocity of approach of the drops to the fire. The method of measuring the velocities of drops described in the present note was therefore developed. The mechanical apparatus was simple, and the velocities of drops of a given mean diameter wore calculated from the ir mean position when captured on a slide.

Another method was reported (2) shortly after starting this progranme, in which the velocities of individual drops were obtained from a photograph of the drops in motion illuminated by two discreet high intensity flashes, of very short duration, separated by a short interval of time. This method, however, required costly and elaborate electronic apparatus, and also had the disadvantage that the photocraphs obtained contained images of drops that were out of focus, which led to difficulties in measuring their size. The measurement of the position of drops on slides obtained with the apparatus described herein were made from contact prints; in which the definition of the images of drops, in the range of sizes measured, was uniform.

Experimental

Principle of apparatus

The principle of the apparatus is illustrated in Figure 1. Drops, falling vertically, pass through an orifice UP (Figure 1a). A cover $A B$, and sample tray $\overline{D C}$, whose leading edges are in a vertical plane at right angles to the direction of motion, are projected horizontally at a constant velocity across the spray falling through the orifice; so as to come to rest immediately when reaching the vertical wall, uw. The drops captured between the cover and the sample tray (Figures 1ib and 1c) will fall on to the tray, their position being a function only of the velocity of the drops, V, the velocity of the cover and sample tray, v, and the dimensions of the tray and cover.

Apparatus

The construction of the drop sampling apparatus is shown in Figures 2 and 3. The apparatus consisted of an openmended rectangular body with the two sices extended, A, to which was attached a tubular sleeve, B, into which the operating rod and control spring C were fitted. The sample tray holder D fitted to the end of the operating rod and could be drawn back into the openwended body, A, in which position the springloaded trigger, E, engaged in a notch in the operating rod (Figure 3). The close-fitting cover, F, vas provided with an orifice 4 on square. The sample tray, G, was made from a piede of thin plate glass, 5 on square on which was stuck a 16 B.S.G. metal vall, 0.4 cm high. The tray was a close fit in the sample holder, and was mounted so that drops were caught at $h=3$ oa belom the sample tray cover, J. A square of $d=4 \mathrm{~cm}$ side was engraved on the bottom of the glass so that, when the trigger was released and the sample holder projected to its foremost position, the engraved square was vertically beneath the oritice in the covir. The sample tray cover J sloped so as to form a trough of maximum depth 0.6 cm , to retain drops striking it during the operation of the apparatus. The back of the sample tray holder was left open to reduce induced turbulence to a mininum. Those parts of the apparatus liable in operation to splash droplets of water on to the sample tray were lined with water absorbent moterial.

Gperation of apparatus. 4 ml of castor oil were, put into the sample tray, G, which was then placed in the sample tray holder, D, care being taken to keep the sample tray and apparatus level in this and all subsequent operations. The cover F was then fitted after setting the trigeer (Figure 3) and the apparatus inserted into the spray at the sampling point selected. The triger E was then operated, after which the apparatus was removed from the spray. The cover F was then removed and the sample tray withdraw, and a contact print taken of the sample on a lantem-slide plate.

Velocity of traverse of tray. The velocity of traverse, v, of the sample tray was measured by placing a smoke-blackened microscope slide on the flat portion of the operating handle, H, and using a tuning fork of known frequency, with a light scribing needle attached to produce a oalibration trace on the blackened slide when the trigger \mathbb{E} was operated. From this trace, the velocity of traverse vas calculated.

Some variations in the velocity of traverse so obtained were observed, but the correlation coefficient of results obtained over a period of two years indicated that the variations were rendom, and so all the values of traverse velocity obtained were pooled to detemine a mean value, $=152.4 \mathrm{~cm} / \mathrm{sec}$, which was used in all calculations of the velocity of drops.

The variation of velocity of traverse with distance traversed was sinall and was therefore neglected.

Drop counting and size classification. An enlarged image, magnification (x 15) of the contact print of the sample, an example of which is shown in Flate 1, was projected on to a vertical screen $60 \mathrm{om} \times 60 \mathrm{~cm}$, ruled into twelve equal horizontal strips. The inage of the leading edge and one of the sides of the 4 cm square etched on the sample tray were made to coincide with the upper boundary and one side of the soreen; the strips on the screen ran parallel to the image of the leading edge of the tray. The drops were then counted and classified in size groups at 1 mantervals, starting with the group $1 \cdot 5-2 \cdot 5 \mathrm{~mm}$ magnified diameter, i.e. true mean diameter 0.133 mm . A graticule, on which the limiting sizes of drop images were reproduced, was usod in the classification of the images. Sizes smaller than 1.5 mm diameter were not counted, as they were of the same order of size as imperfections found: on the lantern slides. The numbers of drops of a given size group in successive strips were used to calculate the mean displacement, D, from the leading edee of the slide.

Spray tested

The water sprays tested were used in the course of an investigation on the extinction of kerosine fires (1). They were projected downards from a pair of batteries of irapinging jet nozzles, symmetrically. arranged 175 cm above the rim of the combustion vessel. The spray sampling apparatus was erected on a rigid framework 30 cm above the rim of the combustion vessel, in such a position that samples of spray wore collected on the vertical axis of the vessel.

A series of 16 water sprays, from impinging jet nozzles ($3 / 64$ in bore) was sampled. The sprays were generated with pressures ranging from 5 to $85 \mathrm{Ib} / \mathrm{in}^{2}{ }^{2}$ and at rates of Plow at the combustion vessel ranging from 0.4 to $1.2 \mathrm{~g} . \mathrm{cm}^{-2} \mathrm{~min}^{-1}$.

For the purpose of the present note, the results obtained with one of these sprays will be given. "The spray selected had the following properties:-

Nine samples of this spray were collected, and the drops captured were classified for position and mean diameters; from these results the mean displacement for each mean dianeter, was calculated. (Table 1)

Calculation of drop velocity and distribution. It mas assumed, in the calculation of drop velocity and distribution that the drops in each size group had the same velocity and mere uniformly distributed and randomly dispersed in the spray, i.e., that there was an equal probability that drops of that size would oocupy any position in the spray; and also that the spray fell vertically through the apparatas. The development of equations relating the velocity of drops falling randomly at the same velocity to their mean position on a sample tray, and or the distribution of these drops over a series of equal parallel strips on the sample tray, is given in Appendix I. The equations relating velocity of drops to mean displacement are:-

For drop velocity $v \geqslant v i$

$$
\begin{equation*}
D=\frac{b v}{6 V}\left(3-\frac{b v}{d V}\right) \tag{3}
\end{equation*}
$$

For drop velocity $\quad V \leqslant v h$

$$
\begin{equation*}
D=\frac{d}{6}\left(3-\frac{y}{y} \frac{d}{n}\right) \tag{4}
\end{equation*}
$$

The proportion Q of drops in the nth strip of x strips of equal width paralle to the leading edge of the slide is given by

$$
\begin{equation*}
0=\frac{1}{\operatorname{rn}}\left[(x-n-1) \operatorname{cov}+h-\frac{1 y}{x}\right] \tag{6}
\end{equation*}
$$

(N.B. List of symbols given at beginning of text).

Substituting the values for the apparatus,
$\psi=152 \cdot 4 \mathrm{~cm}$
$d=4 \mathrm{~cm}$
$h=3 \mathrm{~cm}$
$x=12$
the equations beona, for drop velocities V V 114.3 on :-

$$
\begin{equation*}
D=\frac{228 \cdot 6}{\nabla}\left(1-\frac{38 \cdot 1}{V}\right) \mathrm{cm} \tag{3a}
\end{equation*}
$$

And for drop velocities $V \leqslant 114 \cdot 3 \mathrm{~cm} / \mathrm{s}$

$$
\begin{equation*}
D=2\left(1-\frac{V}{34^{\circ} 9}\right) \mathrm{cm} \tag{4a}
\end{equation*}
$$

the fraction in the nth segment being given by

$$
\begin{equation*}
Q=\frac{1}{108}\left[(13-2 n) \frac{V}{4}+9\right] \tag{6a}
\end{equation*}
$$

The curve constructed from oquations. (3a) and (4a) relating velocity of drops and mean displacement fror the leading edge of the sample tray is given in Pigure 4. The proportion of drops with velocity V falling in successive segments, measuring from the leading edge of the tray, calculated from equation (6a) for different ratios $\frac{Y}{\psi}$, is given in

TABD 1
THE DISTRTBUTIUN AN VELOCITY OF DROPS IN A SPRAY

Figure 5. Thus, from the mean position of drops of a given size on a sample tray, a velocity, the "equivalent vertical velocity," may be read off fron Figure 4, and from this velocity, the theoretical distribution of drops in the segments of the slide may be found from Figure 5.

Results

The results for the sum of the nine sidies are given in Table 1 . This table shows the distribution of the drops of the different sizes between the segments on the slides, the mean displacement of drops calolated from this distribution, the mean velocity of the drops read off from Figure 4 and the resultine theoretical distribution of drops obtained from Figure 5. The results for the individual slides are given in Appendix II.

The cumative distributions for drop sizes 0.133 to 0400 mm from the experimental results given in Table 1 are shom in Pigure 6 , toget er with 95 per cent confidence limits calculated by the method given bry Kolmogorofe (3). The cumlative distribution curves from the theoretical frequencies are also shown. It will be noted that the deviation of the experimental from the theoretical distribution is considerable only for the smallest drop size, 0.133 mit and fox drop sizos larger than 0.133 mm , the theoretical distribution is contained Within the 95 per cent confidence limit bend.
x^{2} tests between those experimental and theoretical distributions for those individual slides, (Appendix. II), in which a sufficient number of drops were caught, indicated that the distributions obtained with the smallest drop size were not the same as the theoretical distributions; however, except in a few cases, with the larger drop sizes the distributions were not significantly dissimilar.

In Figure 7 are plotrod three curves of drop velocity, Curve 1 is plotted from data from Table 1, and Curve 2 from the mean of nine separate velocity determinations, Appendix II; to obtain a better estimate of the velocity or drops in the spray, a correction may be applied for the deceleration of drops in the sampling apparatus, and Curve 3 shows this correction applied to Curve 1. The 95 per cent confidence limits for points on Curve 2 are also indicated in Eigure 7, and it is reasonable to expect they vould not be appreciably different for Curve 1, or Cuxve 3. The difference between Curves 1 and 2 is discussed later.

The line for the entrained air velocity, Curve A, and the curve for the sum of the terminal velocity of water drops fialling in still air and ontrained air velocity, Curve B, are also plottod in Figure 7.

Discussion
It is reasonable to expect that the mean velocity curve for drops produced by irminging jet batteries would lie between (a) the sum of the terminal velocity of the drops and the entrained air velocity, and (b) t'e velocity of the water jet from the nozzles (for the spray reporteds herein, $1750 \mathrm{~cm} / \mathrm{s}$), and that the velocity should reduce to the entrained air velocity at zero drop size. Curve 3, Figure 7, shows that this does occur. The large deviations in the velocities of a given drop size and the errors associated with this method of drop velocity measurement are discussed below.

Errors associated with the apparatus

It was estinated that the construction of the apparatus would introduce maximum errors of ± 2 per cent at $200 \mathrm{~cm} / \mathrm{s}$ and ± 3 per cent at $700 \mathrm{~cm} / \mathrm{s}$. Actual errors in the use of the apparatus are likely to have been less and also biased in one direction, since for cach group of tests on a given spray, one sample tray was used. These deviations are small and would contribute little to the observed deviations. The trough foxmed
in the sample tray cover would not interfere with drops whose volocity was greater than $20 \mathrm{~cm} / \mathrm{s}$ and the wall of the sample tray itself would not interfere with drops whose velocity was greater than $60 \mathrm{~cm} / \mathrm{s}$. These velocitios are less than the entrained air velocity aione, and it is therefore unlikely that either the trough in the sample tray cover, or the wall of the sample tray interpercd with any drops.

Valiaity of assumptions

The assumptions made in applying equations (3), (4) and (6) to an actual spray are :-
(a) that drops of a given mean diameter are uniformy distributed and randomly dispersed in the sampled volume, i., e, there is an equal probability that drops will occupy any position in the volume,
(b) that drops fall vertically dommards, and
(c) that drops of a given mean diameter have a unique velocity.

To examine the effects of major deviations from these absumptions on the distribution of arops, five specific cramples representing five tpes of doviation were investigated, as follows :-
(i) the drops fall only through the central one-third portion of the fixed volume,
(2) the arops fall only through the outer two-thirds portion of the fixed volume,
(3) the drops fall at an angle of 20° to the vertical in the direction of motion of the slice,
(4) the drops fall at an angle of 20° to the vertical in a direction opposite to the motion of the slide,
(5) one-third of the drops each fall at volocities respectively $0.5,1.0$ and 1.5 times the mean velocity of the drops.

Deviations (1) and (2) ropresent divergences, wider than would be expeoted, from a random distribution; (3) and (4) represent divergences from a vertical direction of fall, and (5) xoprescnts a divergence from a uniform velocity of fall, of drops of a given aiameter.

The distribution of drops on the slide that would be obtained with the above deviations were computed for the case where the velocity of the drops equals the velocity of the slides ($152 \mathrm{~cm} / \mathrm{s}$) and are shown in Figure 8. The distributions for deviations 1 to 4 above were obtained. by a geonetrical method given in Appendix IIT. For deviation 5 the expected distributions for the individual velocities were obtainod from Figure 5 and sumned. From each of these distributions a neen displacement of drops was calculatod and a velocity, called hereinaster tho equivalont vertical velocity, was obtained from Figure 4o These velocities were respectively 97, 175, $235,41,142 \mathrm{~cm} / \mathrm{s}$ for deviations 1, 2, 3, 4 and 5 above. It will be seen that, excopt for deviation 5, there were considerable differences between the estimated equivalent vertical velocity and the actual velocity of the drops ($152 \mathrm{~cm} / \mathrm{s}$). However, from Figure 5 "expected" distributions may be obtained from the equivalent vertical velocity and these are compared in Figure 8 with the actual distributions of the drops that mould be obtained.

Deviations 1, 2, and 4 give distributions that are substantially different. Thus it would be expected, that any major deviation of type 1, 2 or 4 above would show a significant differonce between the drop distribution on the slide predicted by Figure 5 and the actual distribution. The general lack of significant differences, between the predicted distributions and those obtained, for drop sizes of 0.200 cm and larger
may, therefore, be taken as evidence that major deviations of types 1, 2 and 4 from the assumptions did not occur. Moreover; since a deviation of type 3 would be as probable as a deviation of type 4 it may be expected that the former type of deviation did not exert any major disturbing influence either. It is noteworthy too that similar deviations of types 3 and 4 bring about opposite and approximately equal ercors in the value of the estimated velocity of the drops; the mean velocity as estimated from a number of slides would not therefore be seriously in error if these deviations were equally probable,

The smallest drop size showed highly significant deviations between actual and predicted distributions. The reason for this is probably that these fine drops were subject more readily to deviations in direction of motion by turbulence in the entrained air stream, by turbulence caused by the motion of the slide and cover, and particularly, by the deflection of the entrained air stream trapped in the sampling apparatus.

Effect of deflection of entrained air stream

The entrained air strean trapped with the spray in the sampler would be deflected from its downard path. This would cause a deviation from assumption (b) above. If it is assumed that the air stream, when deflected horizontally, maintained its velocity, $139 \mathrm{~cm} / \mathrm{s}$ the horizontal velocities imparted to the 0.133 mm and 0.200 mm drops would be $47 \mathrm{~cm} / \mathrm{s}$ and $18 \mathrm{~cm} / \mathrm{s}$ respectively; the displacements caused by those transverse velocities would be one or two segments, and less than half a segment respectively. For drops of larger diameter the deflection would be progressively less.

Such deflections, which are only appreciable for the finest drops, may occur towards either the leading or trailing cdge of the sample tray. It is noteworthy that, for the finest drops, approxinately equal numbers of drops in excess of the theoretical distribution have been captured in the first four and the last four positions on the slides (Table 1).

The effect of turbulence of the entrained air stream

The method of generation of spray by impinging jet batteries induces turbulence of the entraincd air in the spray cloud. Coresin and Uberoi (5) found that the root mean square deviation in velocity of the air stream on te axis of a jet discharging air into still air at distances that were large (20 x) compared with the diameter of the jet Was about 22 per cent of the mean axial velocity. The root mean square deviation decreased slowly with increasing distance from the jet, and increased with increasing density of the fluid discharged from the jet. Although it was not possible to assign an equivalent jet diameter to the array of impinging jots used to generate the water spray in the present oxperiments, and Corrsin and Uberoi did not give results for water sprays discharging in air, the above figures may be taken to represent the order of deviation of velocity in the entrained air stroam of the spray. The percentage root mean square deviations of velocity for drops of mean dianeters $0.200,0.266,0.333$ and 0.400 mean, were $20,19,18$, and 27 per cent respectively fere in reasonable accord with the above figure. Thus it may well be that the deviations in velocity found in the present oxperiments are at least in part due to turbulonce in the spray cloud.

The effect of size of samiple

The 95 per cent confidence limits for drops larger than 0.400 mm Figure 6 show that these results were not reliable as estimates of the velocity of the drops, the limits increasing from ± 35 per cent of the mean velocity for 0.467 mm , to ± 75 per cent for 0.600 mm mean diameter drops, The number of drops for drops sizes larger than 0.400 mn was small, the maximum number on any one slide being 8 .

It can be shown that the standard deviation of a distribution that is unifom and random, i.e. in which the probability of equal numbers occurring in $\frac{3}{2}$ segments either side of the mean is the same for each segment, is given by $\sigma^{3}=\frac{6^{2}}{i 8}$, when θ is the standard deviation (4) It has been assumed in the method for caloulating drop velocities that the distribution of drops in the spray cloud is uniform and random, and, although the distribution of drops of a given size is no longer random when they have been captured on a slide, this equation has been used to give an incication of the standard error of the mean velocity to be expected for a given number of captured drops. Table 2 which gives the 95 per cent confidence limits for different mean positions of the velocities determined for different numbers of drops caught on a single samie tray, shows the effect of the number df drops captured on the emor ir: velocity determination. The difference botween these limits for means of velocities for a given drop size from more than one sample will be reduced approximately as the inverse square root of the number of samples. By taking moments on equation 6, a more accurate expression for the variances of velocities up to $V=\frac{h}{d} \quad$ may be obtained:

$$
\sigma^{2}=\frac{d^{2}}{12}-\frac{d^{4} v^{2}}{36 h^{1} v^{2}}
$$

The applioation of this equation indicates that the variance is in fact above 30 per cent larger than that predicted by the simple expression, and hence the confidence limits in Table 2 are a conservative estimate.
mable 2
CONFIDEME LIMITS FOR VELOCITY OF DROPS, DETBRMINED FROM A SIMGIE SAPIE

Mean displacenent of drops on slide cm	Calculated drop velocity cm / s	95 per cent confidence limits for velocity				
		Number of drops captured				
		4	9	25	4.9	100
2.00	0	0-1350	0-155	0-80	0. 55	0-40
1.83	28	0-1350	0-175	--103	0-79	0-63
1.67	55	0-1350	$0-200$	0-124	10-103	24-88
1.50	84	0-1350	- -230	25-152	42-126	54--114
1.33	110	0-1350	7-265	59-177	76-155	86-141
1.17	143	0-1350	54-305	94-210	108-187	119-174
1.00	178	14-1350	94-362	130-252	$144-228$	154-213
0.83	230	71-1350	$138-440$	$174-313$	190-282	$199+262$
0.67	300	125-1350	190-576	230-405	248-363	260-340
0.50	414	190-1350	270-780	320-558	24,5-505	364-4,70
0.33	645	310-1350	430-1175	510-845	550-765	575-723
$0 \cdot 17$	1350	670-1350	890-1350	1060-1350	1125-1350	1180-1350

Note.
The apparatus imposes limits of 0 , and $1350 \mathrm{~cm} / \mathrm{s}$ on calculated velocities.

Thus, nineteen times out of twenty, for samples of nine drops of a given mean diameter on each of nine sample trays, and for the range of velocities tound in the present experiments, the mean velocity can be expected to lie within ± 20 per cent of the actual drop velocity, and, to reduce the limits to ± 10 per cent, at least thirty drops must be captured on each tray. The limits for samples of less than nine drops increase very rapidly.

Therefore the velocitios calculated for drops greater than 0.400 mm dianeter, whore in genoral few drops ware captured, are not considered to be reliable ostimatos. Moreover, since the composition of the spray is such that the number of drops in a given volume decreases very rapidly with increasing arop dianeter, the use of a sampling apparatus designed to capture sufficient drops larger than 0.400 mm to give a reasonable estimate of their velocity would result in the capture of vory large numbers of small drops. This may be expected to introduce exrors due to conlescence and impingement of drops.

Roduction of Dias of estimated arop velocity. Table 2 shows that for small numbors of drops the confidence limits of velocity of drops are biassed towards the uper limit, except for the minimumeasurable mean position, whore the bias is towards the lower limit. This bias is considerably reducod by increasing the number of drops in the sample. Thus, a reduction in bias may be obtained by suming the numbers of drops in each segment for the nine slides, and obtaining thereby larger numbers in the sample. This accounts for the difference between Curves 1 and 2, Figure 7.

Conclusions

The sampling apparatus describod in the present note may be used to determine the velocities of drops of different mean dianeters comprising a water spray. The accuracy of such velocity determinations increases with the numbor of drops captured on any one sample tray, (provided that they are not overcrowded), and with the number of samples taken. Where the number of drops of a given size are Iess than 9, at least thirty samples. should be taken to obtain a reasonable estimate of arop velocity. The precision of the estimation is limited by the natural turbulence of the spray cloud.

Acknowledgements

Thanks are due to Niss B. Gay and Vrs. J. Proer, who assisted in the counting and classification of drops in the spray samples, and to D. W. Millar for advice and suggestions on the Statistics.

References

1. J. J. Rasbash and Z. V. Rogowski. F.R. Note No. 58/1953.
2. J. Louic York and H.E. Stubbs. Paper No. 51-A-48. University of Lichigan. U.S.A.
3. A. Kolmogoroff. "Sulla determinations empirice di una legge ai distributione". Giornalle dell'Instituto Italiano Degli Attuari.

4 G. V. Yule and I. G. Kondall. "An introduction to the theory of statistics". p. 136. 14th Edition. GriPein, London.
5. Corrsin and Uberoi. N.A.C.A. Technical Note No. 1865.

Consider a spray of randouly aispersed drops, moving with a velocity V, at a large mean density of \mathbb{N} drops per unit volume, falling vertically through a fixed volume of unit width, length $A B=d$ and height $A D=D \mathrm{~h}$ (Figure 9a). It may be noted that, since unit width has been specified, points may represent lines, lines may reprosent planes, and areas may represent volumes, Let there be a tray of length $D^{1} C^{\prime}=d_{\text {, }}$ and unit width, rigidly attacked. to which is a oover A'B', whose leading edge A ' is at a height $A^{\prime} D^{\prime}=h$ vertically above. D!. . Let the cover and tray be projected horizontally at a uniform volocity across the volume $A B C D$. It is assumed that the cover and tray do not disturb the drops in the fixed volume $A B C D$ and come to rest immediately when their leading edges reach A and $D_{\text {. }}$ As the tray and cover traterse the volume $A B C D$ from $B C$ to $A D$, the spray entering $A B C D$ will be progressively cut off by the leading edge of the cover. Thus when the tray and cover reach the position $A^{\prime \prime} D^{\prime \prime}$ (Figure 0a), no further spray can enter that part of the volume to the height of the plane $A^{\prime \prime} D^{H \prime}$, and the spray already cut off will be trapped, and will fall out somewere on the tray $D^{\prime} C^{\prime}$.
A. drop at 0 in. in the plane $A^{\prime \prime} B^{\prime \prime}$, at a vertical height $O D^{\prime \prime}=y$ above the plane $D C$ will reach the plane $D C$ in time Y / V, in which time the tray, whose leading edge was at $D^{\prime \prime}$ will have moved forward a: distance $f=y \frac{y}{y}$, so that the drop will be oollected in the tray at $\mathrm{L}^{\prime \prime}$: a distance $\mathrm{D}^{\prime \prime} \mathrm{L}^{\prime \prime}=\mathcal{L}^{2}$ from its leading edge. This relation is general, the displacement of a drop from the leading edge of the tray being related linoarly to the height of the drop above the leeding edge by the ratio *Thas a drop at $A^{\prime \prime}$, the maximum height h above the plane $D C$, will reach the tray at a distance $D^{\prime \prime} P^{H}=h y$ from its leading odge. Moreover, if there are a number of drope, with mean vertical height \bar{y} above the tray when trapped between the cover and tray, they will fall on to the tray with a mean position $\bar{x}=5 \frac{y}{v}$ from the leading edge.

Therefore, after the cover and tray have reached the plane WF, such that $A B=D F=D^{\prime \prime} F^{\prime \prime}=h{ }^{\prime \prime}$, no further drops in the plane $A B$ oan reach the tray excopt when it has come to xest. Hoxe generally, no drops, trapped between cover and tray which in the plane iN at a heighty above the tray, can fall on to the tray while it is moving, wher $N=I=y, y$. The relation is general and linear, and siace when $y=0$, $I=0$, a plane DE of slope tane $=\frac{y}{v}$ may be drawn which divides the volume. $A B C D$ into two parts; firstly EBCD, in which trapped drops fall on to the tray while it is in motion, and secondly ABD, in which trapped drops fall on to the tray while it is at rest.

The mean position of the drops on the tray $D^{\prime} C^{\prime}$ may be found from the mean positions of the drops in the two volumes BBCD and $A E D$.

The volume PBCD mey be convenientily divided into parts, $B B C D$ and IFD, for the calculation of the mean position of the drops. It has been shown that trapped drops, at a mean hoight \bar{y} above the tray $D^{\prime} C^{\prime}$, that fall. out while the tray is in motion, have a mean position $\bar{l}=\bar{y} y$ from D^{\prime}. Thus drops in the volune $E B C T$ will have a mean position $\frac{1}{2}$ EF V $=\frac{1}{2} h V^{4} \quad=\frac{1}{2} D F$ from D and drops in the volume EFD will have a mean position $\frac{1}{3} \mathrm{EF}=\frac{1}{3} h \frac{\mathrm{~V}}{\mathrm{~V}}=\frac{1}{3} \mathrm{DF}$ from D .

The drops trapped in the volume $A B D$ fall on to the tray when it is at rest, and the mean position of the drops will be at $\frac{1}{3} D F=\frac{1}{3} h \frac{w}{4}$ from the leading edge D.

Thus, measuring fron the leading edge D.

$$
N B C E B=N h\left(d-h \frac{t}{V}\right) \quad \text { drops occupy a mean position }
$$

$$
\begin{equation*}
\frac{1}{2} D F=\frac{h}{2} v \tag{1}
\end{equation*}
$$

and
N.AE.EF $=N h\left(\frac{h y^{*}}{\gamma}\right) \quad$ drops occury a mean position

$$
\begin{equation*}
\frac{1}{3} D F=\frac{1 .}{3 V} \tag{2}
\end{equation*}
$$

Gombining these results, the mean position of all drops caught, N.HBBC = Nhd is given by

$$
\frac{\text { Nh }\left[\frac{h v}{2 v}\left(d-\frac{b v}{v}\right)+\frac{1}{3}\left(h \frac{v}{v}\right)^{2}\right]}{\text { Whd }}
$$

$$
=\frac{h v}{\zeta v}\left(3-\frac{h v}{d v}\right)
$$

This solution applies to values of V such that $A E=D F A B$ i.e. $h \frac{y}{v} \leqslant$. The limiting case is shown in Figure $9 b$ where $h y=d$ that is, where the line \mathbb{E} on Figure 8 a coincides with the line B, the mean position of the drops on the tray thus being $\frac{1}{3} h \underset{V}{v}=\frac{1}{3}$ d from the leading edge D.

For values of V such that $h \frac{V}{V} \geqslant d$, another solution is obtained. Consider Figure 9c, where ABCD have the same significance as before. There will be a line fin the vertical plane $B C$ such that $H C=h^{4}=\frac{v}{v} d$. Drops trapped in that part $H C D$ of the volume $A B C D$, will fall on to the tray while it is in motion, and drops trapped in the remaining part will fall on to the tray when it is at rest.

The drops in volume $H C D$ fall on to the tray while it is in motion, and have mean position $\frac{1}{3}$ drom D. The drops in the remaining part of volume $A B C D$ fall on to the tray while it is at rest. Dividing this volume $A B H D$ into the two parts $A B H G$ and $H G D$, these parts have mean positions of $\frac{1}{2} d$ and $\frac{1}{3} d$ from D respectively. The mean position for all the drops caught in the tray will therefore be, measurine from D

$$
\begin{align*}
& \frac{N d\left[\frac{1}{2} d\left(h-h^{1}\right)+\frac{1}{3} d h^{\prime}\right]}{N h d} \\
= & \frac{1}{h}\left[\frac{1}{2} d\left(h \cdot \frac{v}{v} d\right)+\frac{1}{3} d v\right. \\
= & \frac{d}{6}\left(3-\frac{v d}{v}\right) \tag{4}
\end{align*}
$$

The stepwise distribution of drops on a sample tray

Let the width of the sample tray be divided into x equal parallel segrents. Considering the segment bounded by the leading edge of the sample tray, i.e. the first segment the maximum height from which drops of velocity V will fall on to this segment is $K C=I D=\frac{d V}{Z} \quad$. Thus, drops in volume PKCD will fall on to the segment while the tray is in motion, and drops in the volune PQAD will fall on to the segment while the tray is at rest. It may be seen from Figure 9 d that the combined volume from which drops fall on to the first segment, may be considered more conveniently as being composed of volumes LKCD and PQAL, so that the total number of drops falling on to the first segment is given by

$$
N(L K C D+P Q A L)=N\left[\frac{d}{x} \frac{V}{x} x+\frac{d}{x}\left(h-\frac{d}{x} \frac{V}{v}\right)\right]
$$

-11-

These drops having been removed, the second segment will collect

$$
N \frac{d}{x}\left[(x-1) \frac{d}{x} \frac{V}{v}+\left(h-\frac{2 d}{x} \frac{y}{y}\right)\right] \quad \text { drops. }
$$

More generally, the number of drops caught in the nth segment of the tray is given by

$$
\begin{equation*}
N \frac{1}{x}\left[\left(x-\frac{n-1}{x}\right) \frac{d}{x}+\left(h-\frac{n}{x} \frac{v}{x}\right)\right] \tag{5}
\end{equation*}
$$

The proportion q of drops caught in the nth segment is given by

$$
\begin{align*}
q & =\frac{N \frac{d}{x}\left[(x-\overline{n-1}) \frac{d v}{x v}+h-\frac{n d v}{x}\right]}{N d h} \\
& =\frac{1}{x h}\left[(x-n-1) \frac{d v}{x v}+h-\frac{n d}{x} v\right. \tag{6}
\end{align*}
$$

It follows that the proportional cumulative sum Q of the drops caught on the first n segments is given by

$$
Q=\frac{n}{x h}\left[\left(x-\frac{n-1}{2}\right) \frac{d v}{x}+h-\frac{n+1}{2} \frac{d V}{x}\right]
$$

the value of n being restricted since the sum for all drops caught must be equal to unity, and n cannot be greater than x. It can be seen that equations (6) and (7) are linear equations in the ratio of velocities $\frac{\gamma}{\psi}$, and will thus be straight lines.

RESUSS UR 9 masts

$\begin{gathered} \text { Test } \\ \text { Mo. } \end{gathered}$	Hean drop diameter - min 0.133			0.200		0.267		0.333		0.400		0.467		0.533		0.600	
	Segnents	NUKEES OW DROPS															
	No. position	Expt.	heory		Cheory	Ecpt.	Theory	-	Preory	Expt.	Sheory	Expt.	Trieory	Expt.	2haory	Expt.	Theory
1	1 0.167 2 0.500 3 0.633 4 1.167 5 1.500 6 1.833 7 2.157 9 2.500 9 2.633 10 3.167 11 3.500 12 3.833	$\begin{gathered} 57 \\ 26 \\ 20 \\ 30 \\ 17 \\ 10 \\ 5 \\ 6 \\ 3 \\ 7 \\ 3 \end{gathered}$	10.4 36.0 31.5 27.1 22.7 4.2 13.7 2.4 0 0 0	48 32 37 16 3 4 0 0 0 0 1 0	42.2 36.8 21.3 25.5 5.3 0 0 0 0 0 0 0	23 17 14 15 1 1 0 0 0 0 0 0	21.3 10.5 15.7 12.9 2.6 0 0 0 0 0 0 0	$\begin{aligned} & 10 \\ & 15 \\ & 3 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 11.6 \\ 9.9 \\ 7.8 \\ 0.7 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 3 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.0 \\ & 1.6 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	2.6 3.4 0 0 0 0 0 0 0 0	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$,
	Total no. of drops msan aisplacement cin velocity cm/sec probability	$\begin{gathered} 192 \\ 0.960 \\ 192 \\ 19.28 \\ 0.001 \end{gathered}$	1192	$\begin{aligned} & 14.4 \\ & 0.630 \\ & 320 \\ & 4.18 \\ & 0.1 \end{aligned}$	1al	$\begin{gathered} 8.71 \\ 0.632 \\ 318 \\ 0.59 \\ 0.7 \end{gathered}$	75	$\begin{aligned} & 30 \\ & 0.467 \\ & 445 \\ & 4.29 \\ & 0.04 \end{aligned}$	30	$\begin{gathered} 6 \\ 0.389 \\ 545 \end{gathered}$	6	$\begin{aligned} & 4 \\ & 0.250 \\ & 860 \end{aligned}$	4	$\begin{aligned} & 1,167 \\ & 0,167 \\ & 350 \end{aligned}$	1		
2	1 0.167 2 0.500 3 0.833 4 1.167 5 1.500 6 1.833 7 2.167 9 2.500 9 2.833 10 3.167 11 3.500 12 3.833	88 115 119 95 65 54 13 2 4 1 2 1	117.7 104.8 92.0 78.8 66.2 53.1 40.0 6.4 0 0 0 0	$\begin{aligned} & 61 \\ & 71 \\ & 57 \\ & 35 \\ & 10 \\ & 3 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	68.1 59.7 50.6 41.8 18.8 0 0 0 0 0 0 0	42 35 18 17 0 0 0 0 0 0 0 0	38.6 33.3 28.0 12.1 0 0 0 0 0 0 0 0	12 12 6 2 1 0 0 0 0 0 0 0	11.7 10. 1 8.5 2.7 0 0 0 0 0 0 0		4.0 3.5 2.5 0 0 0 0 0 0 0 0 0	0 1 1 0 0 0 0 0 0 0 0 0	0.6 0.5 0.4 0.3 0.1 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	1 0 0 0 0 0 0 0 0 0
	Total No. of arops mean cisplacement ch welocity on/sec probability	$\begin{gathered} 559 \\ 0.960 \\ 192 \\ 3.27 \\ 0.001 \end{gathered}$	1559	$\begin{aligned} & 239 \\ & 0.674 \\ & 296 \\ & 5436 \\ & 0.45 \end{aligned}$	239	$\begin{aligned} & 112 \\ & 0.530 \\ & 890 \\ & 5.90 \\ & 0.05 \end{aligned}$	112	$\begin{aligned} & 032 \\ & 0.511 \\ & 105 \\ & 0.80 \\ & 0.4 \end{aligned}$	33	$\begin{gathered} 10 \\ 0.433 \\ 481 \end{gathered}$	10	$\begin{gathered} 2 \\ 0.657 \\ 295 \end{gathered}$		$\begin{gathered} 1 \\ 0,167 \\ 1350 \end{gathered}$	1	$\begin{aligned} & 1 \\ & 0,167 \\ & 350 \end{aligned}$	1
3	1 0.167 2 0.300 3 0.833 4 1.867 5 1.500 6 1.83 7 2.167 8 2.300 9 2.833 10 3.167 11 3.500 12 3.833	112 122 117 108 43 36 27 15 9 8 5	126.3 12.9 99.2 86.0 72.6 39.2 43.8 7.0 0 0 0 0	41 35 26 21 10 3 1 0 1 0 0 0	36.3 33.6 23.7 13.7 0 0 0 0 0 0	7 10 0 0 0 0 0 0 0 0	9.9 8.6 7.4 6.1 3.0 0 0 0 0 0. 0 0	4 4 3 2 0 0 0 0 0 0 0	4.2 3.6 3.0 2.2 0 0 0 0 0 0 0	1 4 4 0 0 0 0 0 0 0 0 0 0	2.7 2.3 2.0 1.6 0.2 0 0 0 0 0 0 0	0 2 1 0 0 0 0 0 0 0 0 0	$\begin{aligned} & 0.9 \\ & 0.8 \\ & 0.7 \\ & 0.5 \\ & 0.7 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1 0 0 0 0 0 0 0 0 0 0 0	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\%	
	Tounh No. of drops namn utsplacement cn Veloctioy on/seo provability	$\begin{gathered} 610 \\ 1.015 \\ 180 \\ 86.001 \end{gathered}$	610	$\begin{aligned} & 138 \\ & .695 \\ & 285 \\ & 0.93 \\ & 0.8 \end{aligned}$	130	35 6.680 292 0.12	35.	$\begin{array}{r} 13 \\ 357 \end{array}$	13 8	$\begin{gathered} 9.611 \\ 330 \end{gathered}$	9	$\begin{gathered} 3 \\ 0.641 \\ 330 \end{gathered}$	3	$\begin{gathered} 1 \\ 0,167 \\ 1350 \end{gathered}$	1		

[^0]Th123

Tast Ho.	Wean drop diemeter - man	-0.133		0.200		0.267		0.333		0.400		0.467		0.533		0.600	
	Segments	MUMBEX OX DROPS															
	No., $\frac{\text { position }}{\text { cos }}$	bupt.	Theory	Expt.	Theory	Expt.	beory	Expt.	Theory	Brpt.	2heory	Expt.	Theory	Expt.	Theory	Expt.	Theory
4	1 0.167 2 0.500 3 0.833 4 1.167 5 1.500 6 1.833 7 2.167 8 2.500 9 2.833 10 3.167 11 3.500 12 3.833	67 64 62 50 40 21 15 4 3 5 2 2	$\begin{gathered} 63.3 \\ 61.3 \\ 53.6 \\ 46.2 \\ 39.2 \\ 31+5 \\ 24.1 \\ 10.8 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 39 \\ 43 \\ 59 \\ 30 \\ 8 \\ 4 \\ 0 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 48.4 \\ & 42.6 \\ & 36.4 \\ & 30.7 \\ & 24.6 \\ & 3.3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 28 \\ & 24 \\ & 6 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 25.3 \\ 22.0 \\ 19.0 \\ 11.7 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 6 \\ & 7 \\ & 7 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.1 \\ & 5.1 \\ & 2.8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	2.7 2.3 2.0 0 0 0 0 0 0 0 0 0	$\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0.7 0.6 0.5 0.2 0 0 0 0 0 0 0 0				
\cdots	Total Mo. of arops mean displacement can velooity ca/sec probability	$\begin{gathered} 335 \\ 0.997 \\ 124 . \\ 0.1 \end{gathered}$	335	$\begin{aligned} & 186 \\ & 0.750 \\ & 259 \\ & 0.79 \\ & 0.008 \end{aligned}$		$\begin{aligned} & 78 \\ & 0.569 \\ & 360 \\ & 6.85 \\ & 0.04 \end{aligned}$	78	$\begin{gathered} 21 \\ 0.346 \\ 375 \end{gathered}$	21	$\begin{gathered} 7 \\ 0.453 \\ 4.65 \end{gathered}$	7	$\begin{aligned} & 2 \\ & 0.500 \\ & 4.15 \end{aligned}$	2				
5	1 0.167 2, 0.500 3 0.833 4 1.167 5 1.500 6 1.833 7 2.167 9 2.500 10 2.833 11 3.167 12 3.500 3.833	116 113 96 89 64 35 32 26 27 44 7	125.0 112.6 100.4 87.6 75.3 62.5 50.3 38.0 25.1 2.2 0	30 21 17 9 9 5 2 2 3 0 0	24,4 21.6 10.7 15.6 12.8 7.9 0 0 0 0 0 0	$\begin{aligned} & 25 \\ & 9 \\ & 9 \\ & 8 \\ & 4 \\ & 2 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 16.6 \\ 12.6 \\ 12.4 \\ 10.2 \\ 5.2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{array}{r} 12 \\ 5 \\ 7 \\ 3 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	9.2 8.0 6.0 5.0 0 0 0 0 0 0 0 0	9 2 2 0 0 0 0 0 0 0 0 0	6.9 5.8 0.3 0 0 0 0 0 0 0 0 0	$\begin{aligned} & 1 \\ & 3 \\ & 1 \\ & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.6 \\ & 1.4 \\ & 1.2 \\ & 1.0 \\ & 0.8 \\ & 0.2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0.7 0.6 0.5 0.2 0 0 0 0 0 0 0 0
\cdots	Totel 20. of crops mean displacement cm veloctty cra/sec probability	$\begin{array}{r} 679 \\ 150 \\ 15 \\ \hline 06 \end{array}$	679	$\begin{aligned} & 101 \\ & .820 \\ & 234 \\ & 5.19 \\ & 0.15 \end{aligned}$	101	$\begin{aligned} & 0.59 \\ & 0.600 \\ & 292 \\ & 0.34 \end{aligned}$		$\begin{gathered} 29 \\ 0.583 \\ 350 \\ 1.99 \\ 0.20 \end{gathered}$	29	$\begin{aligned} & 113 \\ & 0.321 \\ & 1665 \end{aligned}$		$\begin{gathered} 8 \\ 0.917 \\ 205 \end{gathered}$	$\hat{0}$	$\begin{gathered} 3 \\ 1350 \\ \hline 135 \end{gathered}$	3	$\int_{4.500}^{2}$	2
Q 6		66 71 45 29 11 9 5 5 3 6 4	$\begin{aligned} & 57.5 \\ & 51.0 \\ & 47.5 \\ & 37.8 \\ & 24.9 \\ & 12.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 18 \\ 14 \\ 8 \\ 6 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{gathered}$	13.1 11.6 10.1 8.5 6.9 4.8 0 0 0	11 5 4 0 0 0 0 0 0 0 1	7.1 6.1 5.2 3.6 0 0 0 0 0 0 0 0	$\begin{aligned} & 6 \\ & 4 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	5.4 4.6 2.0 0 0 0 0 0 0 0 0 0	4 2 0 0 0 0 0 0 0 0 0 0	3.6 2.2 0 0 0 0 0 0 0 0 0 0	-	\cdots			$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\stackrel{+}{*}$	Lotel 110, of dxops mean asplacemert ma veloctty codsec probability	$\begin{gathered} 259 \\ 0.904 \\ 200 \\ 50.88 \\ 0.001 \end{gathered}$	259	$\begin{aligned} & 55 \\ & 0.833 \\ & 230 \\ & 4.84 \\ & 0.3 \end{aligned}$	55	$\begin{aligned} & 22 \\ & 0.577 \\ & 355 \\ & 3.27 \\ & 0.07 \end{aligned}$	22	$\begin{gathered} 12 \\ 0.389 \\ 545 \end{gathered}$	12	$\begin{aligned} & 16 \\ & 0,278 \\ & 1770 \end{aligned}$	6.					$\begin{gathered} 1 \\ 0,167 \\ 1350 \end{gathered}$	1

 theoretical distributions.

ATPMDDX II (COMTD.)

Pest Ho.	Wean arop diameter - ma	0.133		0.200		0.267		0.333		0.400		0.467		0.533		0.00	
	Segments	WUSESROPDEOPS															
	No. ${ }^{\text {position }}$	Expt.	cheory	Expt.	Theory	Expt.	Wheory	2xpt.	heors	Bxyzo	meom	Expt.	rineory	Expt.	Theory	Expt.	theory
67		42 33 34 24 30 14 16 6 5 6 6 12	36.4 33.5 30.3 26.9 23.9 20.5 17.3 14.7 10.9 7.8 4.3 2.1	46 22 26 31 24 20 6 4 2 3 3 3	35.9 32.3 28.7 24.9 21.3 17.7 44.1 10.3 4.8 0 0 0	$\begin{gathered} 10 \\ 14 \\ 11 \\ 8 \\ 8 \\ 3 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 12.8 \\ & 11.3 \\ & 9.8 \\ & 8.4 \\ & 7.0 \\ & 5.5 \\ & 2.2 \\ & 0 \\ & 0 \\ & 0 . \\ & 0 \end{aligned}$	$\begin{aligned} & 13 \\ & 9 \\ & 7 \\ & 4 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 2 \\ & 6 \\ & 3 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	3.8 3.3 2.8 2.1 0 0 0 0 0 0 0 0	$\begin{aligned} & 0 \\ & 4 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.5 \\ & 1.3 \\ & 1.0 \\ & 0.5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
\because	Total Ho, ô drops mean cisplacoment cm velocity cin/sec probabilizty	$\begin{gathered} 228 \\ 1.317 \\ 115 \\ 19.74 \\ 0.01 \end{gathered}$	228	$\begin{aligned} & 190 \\ & 1.100 \\ & 160 \\ & 0.19 \end{aligned}$	190	$\begin{array}{r} 57 \\ 0.903 \\ 208 \\ 1.95 \\ 0.7 \end{array}$	57	$\begin{aligned} & 34 \\ & .359 \\ & 367 \\ & 0.34 \end{aligned}$	34.	$\begin{gathered} 12 \\ 0,504 \\ 350 \end{gathered}$	12	$\begin{gathered} 6 \\ 0,667 \\ 300 \end{gathered}$	6	$\begin{gathered} 3 \\ 0.228 \\ 770 \end{gathered}$	3	$\begin{gathered} 1 \\ 0.167 \\ 1550 \end{gathered}$	1
8	1 $0 \cdot 167$ 2 500 3 $0 \cdot 833$ 4 $1 \cdot 167$ 5 $1 \cdot 500$ 6 1.833 7 $2 \cdot 16$ 8 $2 \cdot 50$ 9 2.83 10 $3 \cdot 167$ 11 3.500 12 $3 \cdot 833$	87 41 39 29 36 16 16 12 17 11 6 0	55.6 50.5 45.2 39.8 34.4 29.1 23.7 18.3 12.9 6.5 0 0	35 47 39 27 18 8 5 1 2 5 1 0	40.7 36.3 34.7 27.2 22.6 18.0 13.5 0 0 0 0	$\begin{aligned} & 37 \\ & 37 \\ & 33 \\ & 37 \\ & 10 \\ & 3 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 40.8 \\ & 36.0 \\ & 30.9 \\ & 25.6 \\ & 20.8 \\ & 5.7 \\ & 0 \\ & 0 \\ & 0 . \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 15 \\ 15 \\ 15 \\ 6 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	15.7 3.7 11.6 9.5 1.5 0 0 0 0 0 0 0	3 6 1 0 0 0 0 0 0 0 0 0	4.0 3.5 2.5 0 0 0 0 0 0 0 0 0	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 1.9 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \\ & 0.2 \\ & 0.1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
	Total Ro. ô arops mean displacenent an valocity cm/sec probability	$\begin{gathered} 316 \\ 1.191 \\ 140 \\ 39.76 \\ 0.001 \end{gathered}$	316	$\begin{aligned} & 190 \\ & 10.952 \\ & 195 \\ & 12.58 \\ & 10.03 \end{aligned}$	190	$\begin{gathered} 160 \\ 0.767 \\ 10.92 \\ 0.02 \end{gathered}$	160	$\begin{aligned} & 52 \\ & 0.596 \\ & 342 \\ & 2.59 \\ & 0.3 \end{aligned}$	52	$\begin{gathered} 10 \\ 0.433 \\ 1.85 \end{gathered}$	10	$\begin{aligned} & 5 \\ & 0.767 \\ & 252 \end{aligned}$	5	$\begin{gathered} 1 \\ 0.500 \\ 4.15 \end{gathered}$	1		
9	1 $0 \cdot 167$ 2 0.500 3 $0 \cdot 833$ 4 $1 \cdot 167$ 5 $1 \cdot 500$ 6 $1 \cdot 833$ 7 $2 \cdot 167$ 8 $2 \cdot 500$ 9 $2 \cdot 833$ 10 $3 \cdot 167$ 11 3.500 12 $3 \cdot 833$	91 100 92 80 31 20 12 4 2 2 3	100.8 89.3 7.9 66.4 55.0 43.6 7.0 0 0 0	36 24 24 15 10 4 4 1 1 0 0 0	30.2 26.7 22.9 19.2 15.5 4.5 0 0 0 0 0	12 10 10 7 8 0 0 0 0 0 0 0	12.2 10.3 9.2 7.7 6.2 0.9 0 0 0 0 0 0	$0000000 \rightarrow-W 00$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 5.1 \\ & 4.2 \\ & 0.9 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	3.5 3.0 2.5 0 0 0 0 0 0 0 0 0	2 1 0 0 0 0 0 0 0 0 0 0	1.8 1.2 0 0 0 0 0 0 0 0 0 0				
	Fotal 3o, of drops mean displacenent on velecity cm/sec probability	$\begin{aligned} & 4400 \\ & 0.880 \\ & 285 \\ & 18.61 \\ & \hline+001 \end{aligned}$	12,0	$\begin{gathered} 119 \\ 0.771 \\ 252 \\ 2.36 \\ 0.5 \end{gathered}$	119	$\begin{aligned} & 47 \\ & 0.75 \\ & 262 \\ & 0.22 \\ & 0.96 \end{aligned}$	47	$\begin{gathered} 23 \\ 0.630 \\ 319 \\ 3.09 \\ 0.08 \end{gathered}$	23	$\begin{array}{r} 9 \\ 0.4,63 \\ 0.50 \end{array}$	9	$\begin{gathered} 3 \\ 0.284 \\ 750 \end{gathered}$	3				

 and theoretion aistrioutins.

Appendix III

Detemanation of the distribution of drops on the sample tray by geometrical construction

For any given set of conditions the expeoted distribution of drops on the sample tray may be determined by a sinple ceometrical construction. In Figure 10a suoh a construation is given for the oase when the drops are falling at an angle of 20° to the vertical in a direction opposite to the motion of the tray and with a velooity equal to the velooit of the tray. The fixed volume is represented by $\overline{A B C D}$ and the sample tray and oover by $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. The drops entering the fixed wolume must be contained by the parallel planes $X A X_{1}$, and $Y B Y_{1}$, suoh that the angle DAX, is 20°. AIl drops initially present above a certain plane Ap $M N$ will be cut of ti procressively by the cover as this moves aoross the volume. The position of this plane is such that the ratio $B N$ to $B A_{1}$ equals the ratio of the velocity of the drops to that of the cover (unity in this case). Similarly all drops below a plane DPP, parallel to A1 MN will fall out before the tray passes. Therefore the drops in the volume of spray represented by NMPO will be caught between the tray and the cover. A line $E F$ parallel to $A B$ may also be construoted such that the drops in the volume NeF will not fall out until after the tray has come to rest. The point E is f ixed by making the ratio $B O$ to $D X_{1}$ equal to the ratio of the velocity, of the drops to that of the tray (unity in this case). The distribution of the drops in segments 1 to 12 of the tray will then be represented by the areas shom. Segments 1 to 3 will aatoh drops only while the tray is moving but the other segments will catoh drops also after the tray has come to rest. The drops in the small shaded portion will not be caught in any of the 12 segments and will "overshoot" the slide.

Similar constructions have been given for the drops movine at an ancle of 20° in the direction of motion of the slide (Figure 10b) and for drops moving vertically (Figure 100). By inserting lines $R Q$ and ST on F igure 100 the distribution of drops on the slicle may be obtained for sprays falling through only the central 1 portion of the volune, and for only the outside $2 / 3$ portion of the volume.

PLATE. 1 DISTRIBUTION OF DROPS CAPTURED ON A SAMPLE TRAY

(b)
sample tray half way across orifice

(c)

SAMPLE TRAY AT INSTANT. OF COMING
TO REST AGAINST WALL
NOTE
VELOCITY OF FALLING DROPS V TAKEN AS THE SAME AS VELOCITY OF TRAVERSE OF SAMPLE TAAY U

FIG.1. PRINCIPLE OF APPARATUS FOR MEASURING DROP VELOCITY

FIG.4. RELATION BETWEEN MEAN DISPLACEMENT AND VELOCITY OF DROPS

FIG.5. RELATION BETWEEN STEPWISE DISTRIBUTION AND VELOCITY OF DROPS

X Theoretical distribution
Centre thick line is experimental distribution
Outer thin lines are 95% confidence limits of experimental distribution

FIG.6. CUMULATIVE DISTRIBUTION OF CROPS IN SAMPLES OF SPRAY (WITH 95% LIMITS) SUMMED RESULTS OF 9 TESTS

Curve $A=$ Entrained air velocity
Curve $B=$ Terninal velocity of drops + entrained air velocity
Curve $I=$ Mean curve, sum of 9 samples, of velocity
of drops in spray
Curve II = Curve, mean of 9 determinations, of velocity _ x — of drops in spray
Curve III FCurve 1 , corrected for deceleration 0 .
in sampling apparatus
95 per cent confidence limits curve II $\longmapsto x-1$

FIG.7. THE VELOCITY OF DROPS IN A SPRAY

FIG.9. THE MEAN POSITION AND DISTRIBUTION OF DROPS ON A SAMPLE TAAY

(A.) SPRAY FALLING 20° FROM VERTICAL \mathbb{N} dIRECTION OPPOSITE TO MOTION OF SLIDE.

FIG. IO. GEOMETRIC CONSTRUCTIONS OF DIRECTION OF APPROACH OF SPRAY TO SAMPLE TRAY, AND OF DISTRIBUTION OF DROPS ON SEGMENTS OF SAMPLE TRAY. VELOCITY OF DROPS EQUAL TO VELOCITY OF TRAVERSE OF TRAY.

[^0]: and theoretical distributions

