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Introduction

The analysis described below was undertsaken as part of =

programme of worlt into the self heating of wood corried out at the

. Joint Fire Research Organizetion, The generation of heat is assumed
to follow the Arrhenius low Tor a wonomolecular reaction, fhils theory
provides a basis for studying experimental data cid the extent to which
other factors such as the pressence of a secondary reaction and . o
exhaustion of combustible mater'a% are importiant, The analysis described
below closely follows Chambrés A7) method, - - .

Chambres notation is Followed i, e,
!
‘is absolute ambient temperature
is absoclute temperature
distance coordinate .
rg@ius of sphere, cylinder, or hall width of slab
e ,
energy of activatién of rsaction
universal gas constent
is thermal conductivity
- heat of reaction
a constant

nmuwnnau

Hoywmﬁzxwg

- In addition we have H the cooling coefficient at the surface,

g . Mathematically the steady state problem can be represented by

L — B/RT o
VL'T'- -~y e /- coeees (1)

' 2
where :/ is the Laplacian operator.

Yor small temperature differences we can write

To
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mnOting . 6 =_I_£B? (T - To) » lc--‘c.:o.. (2)

we have Eﬁ_ﬁ? ;:ﬁi CLAH = - C!’4L- veeses (3)
. dz® z dz |
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for a slab
for a cylinder
for a.sphere -
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The boundary conditions are

At Z = O (%'z o.-_by'symmetry . cere.. (5B)

At 2 0= 1

HYg +de —g .

C oy

‘e denote Ilr by the' dimensionless parameter =
. B {\ -
It is required to ;:Lnd the temperature dls'trlbutlon in the body and
in particular the maximum value of rj ' for which such a golution

is possible, For 'J-' in excess. of this critical value C?S no
steady state solution cx1sts and the nater:.al m.ll eventually ignite
or explode, .

Slab

This problem has been investigated in more detail than for the
cylinder and the sphere but for the sake of completion the solution
is given here, Frank - RKamensky ( ) and legris (3) have obtained the
solution for o — O .,

The equation with 'k' =zero may be integrated "(nml't.iply by d}i—@
and integrate) and the solution obiained as <

e

& = log A ~ 2:log,cosh Z {C_f_ﬁ Y e, ()
= s

where A is a constant of 1ntegrutlon, the logarithm of which gives
the temperature at the centre, This satisfies the Mirst boundc_ry
condition (5) and satisfies (6) if

log,d = log, 202 - 2 logcosh D - 2D tanh D ... (8)
o e . . ‘;\ . :

where D = Jd_:ﬁ

D may be found by the condition that rd ' is to be a maximum, thus
dif ferentlatlng equation (8)

\w\f\ "JG‘_JA -
s D5 > b 4 ceeenn (9)

T (T T ) W‘w>

Por any value of D less than the root of 1 - D +tanh D=
<{_ can be calculated from (9), . ,

For these values of D, d, can be found from equation (8). '4' can
then be calculated and so the temperature dlstrlbutlon in particular
the-centre-and surface temperatures, . i, <& respectlvelj obteined
as functions of A . The results ere given graphically in Wigures (1),

(2), (3) ena (a).



Gylinder
For k = 1, Pfollowing Charbre ,the solution is ’
e = I.logi...-.-. /.....,....... se s s (10)

Bzt 1)2"

where B 1is a constant of integration.

The boundary condition (€) is satisfied if

o o, LAIER = (11)
VN e LR*_DL B S

v, L\‘}f,‘ C,r . '\ (‘B*‘l)l OL.(B“") cerene (12)

The critical value of '(f ' is obtained by.putiing

| et

A %

from which is obtained

- e

(R - (13)

A~ =T

'i‘hus in terms of a critical -value of '. B given by'(iﬁ) -E\.::-_vr-g A:.'_"r‘ﬁm
(12) ena (13)
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from (10) and (14)
...@u. : ZL\Y‘\: Q " @L) + - [)‘ (15)

& -

w6, = =G0 e (16)

These parameters are showm os functions of o{ in Figures (1), (2},

(3) and (&),



Following Chambre we define -

= 8, -0

—
S
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where (9 is the unknown conyre temperature

and -z ij€i

Hence (3) w1th

d

———
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k 2 ‘becomes
s \

Tguation (6) becomes

_{'

-1
2"
-

where

and the suffix 's'

Equation (5) becomes

A
¢ o

-

refers to the surface,

.. (19)
Oey
R
. ’ cevee. (20)
ceeans (21)
af 2=0 . (22)

Substituting for é}, from equation (21)_we write equation (20) as

-

J--—q/+ by 3

Tb find the critical condition we differentiate with respect to

and put

%ff

2.
b4

equal to zero,

Hence

T C*:E&} 't QEE— =

A

s$ Arp
ETfS..;;..

(23)

s

Clt*t

vieees (24)
dv s AL Ay
Ffom:eQﬁétidﬁ (19) we then obtain
L =,
- 7@ ¥ ‘
- o 11 e 0(25)
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Al

tow W an =(7, are tabulated as functions of 5 for the
condition (22) Fér any 3, we can now compute  © and this velue
of 3%, will satisfy the boundary condition 1(326) with the condition
that '4' has a maximu value and W is the value computed by
equation (31).

. {
From these values of é (of;{; and % the values of
(9~ &, and . can be obtained irom equations (17), (21) and (24) '
for any ¢ . The results are shown in Figures (1), (2), (3) and (8).

Limiting solution for smell values of S

It is interesting to consider the form of the solution for
,;(—7, O . 3y anelogy with the slab and the ¢ylinder we expect
Siy— D5 to tend to zero so equation (3) becomes

O
diz z. dz
. . L . . d& — )
Hepeated integration gives with C"!J",é zero at Z zero.

| e %o g2
& =6, — f_g«7 ‘ ceven. (27)

end condition (6) becomes

’ -~ & -8
_de Yyl Je T
A /go -3 ) T vevas. (28)

\

Treating J as a function of ng we obtain the condition for maximum
d as

O, = |

veeess (29)

Jrom which

J. = B

= L (30) |

This may be directly compared with the results for the slab and
the cylinder where the coefficients of d/(i‘ are 1 and 2 respectively,
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