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l'fOTESON THE MoVEMENT OF GASES' llIDUCED BY 1i'Ll\11ES .tUID
HEAT ,,'

b' ,y .

1. . Notation

, ...... . P.H~ Thomas'

..•..

,....,

x,

u ,

a, t- = area of windows or jets of fluid
= width.

~ = specific heat
M = mass
m = mass flO\-,Junit time

y, z = cartesian co-·ordinates (z vertical)
Q = temperature above ambient
T = absolute temperature
h = heat transfer Coefficient

H, L = height
K = conductivity
p = pressure

v, w = ,CpPlP9nents of velocity (w vertical) "
'f :::: acceleration
g = acceleration due to 'gravity
d = depth of layer' ...... , '
t = time
q = flux of heat
},4' = force ..
k =,.tl~.I'!l\al dif'f'u'sivity
v = kinematic viscosity

NN = Nusselt number
u

N(' = Grushof number
"'1' .. :

N
Pr

= Prandtl number

: ..~ .

suffices :::: a - air
f' - fuel

. ~r ~,.2, 3 - posit~o;n
J - jet.

i.

2. Introductiori

',' . . In ~m'a'nY .fire prohLeme it is necessary to obtain an estiniate of' " .' .
the gas flow and often it is not difficult to do this within the limits ':.'
imposed by simple f'Low theory. In most" of the problems consddered the .'
flow is ind u ced .o~t p~:sSure difference's arising from the 'differencc~,in '
weights of hot': and 'cold gases. . ...

" ..
• + ,'.

3. The m~s8 flay; ugB.··flat vertical plat~
.' ~ '~.. ' ':~. •..." ~ . . ~ J.. .',.". ..

, For:t¥.: -laMi.11.8J;' flay!: of .gaeea past a vertionl plate,
transfer coefficient* is ,obtained from (1)

~~'~'~o':'62.-[N1>Npv] Ytr

'.: ' .

the .mean heat ',:,: . ,
, .

, .. , .' ,

... ....
the height and the tc;::mpernturo of the plate beif12; the charti.cteristie
length and temperature.

~he constant is that given by Ede (1) - other authors give other
figures which may be somewhat different but the difference· is hardly
likely to be significant in the applications considered ,here.
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It is often of interest to know the mass flow tip the heated plate.
This oan be obtained in a sir,ular way to the heat transfer coefficient,
i.e. from the same differential eouatn.ons , The conventional procedure
to obtain the heat transfer coefficient for the plate at unifonn
temperatures is to aSSULle that a 'sirularity' solution 'exists. As a
consequence the increasirlg heat content of the fluid is manifested as
an increase 'in the mass flow with height - not irl'the temperature.
From the heat balance in the strip between Z and <'+ -iZ (see Fig. 1),
we have, equating the increase of heat content of the gases to the heat
transferred f'rom the hot plate:

.'

Since the foml of the
temperature distribution
in "y'" is the same for
all heights

t._

, '

(4)"• 1:1 , ••

.. , ... (3)

· . . . .. (2)

K.-

and it follows from equations
(1), (2) and (3) tha~

'. Iii
(Nrl~) "

Fig. 1. Flewr past vertical plate.

. '. .

· ..•. ~', .( 5)

The value of the constant of proportionality in equation (4)
must be obtained from the distribution of the velocity. For air, the
analysis given by Eckert (2) leads to' '"

, I~

~ _ \. 26 ~ (~~~)Lf
<:- '. -

"

(Eckert gives a coefficient of 0.51 for air instead of O.'5b fr.":":'·
equation (1). The coefficient of 1.26 may therefore be, as high 8:s1. 4f).

4. Chimneys and relate.a problems
. ; ~

If the velocity.head.inside the chimney can be neg'Lected, and
there is only one constriction (the threat in domestic chimneys),' the
whole of the pressure drop may be regarded as acting across it alone;
friction losses nay be inclu(J.ed if neceasary j. in the usuak imannen, .' ", !

This treatnent,. however, is likely to be inadeqt:1l.te for h1'gh teillperature
chimneys because the. pressure- drop caused by acct.Leratdng the expanding "
gases may not be negligible. Moreover, if combustion is occurring in, :"
the chir:mey, the changes in momentum are associated with a pressure
drop though :this 'maY. not .be very important. Some of these points are
illustrated bela,;,. , . .. "

: ..
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~.1. Unrestricted chimney

"
\

(

l

i,
. ~ "

}'ig. 2. iPlorl through unrestricted tube - with combustion.

'I'he pressure f,- inside the chimney at its top is taken as equal
to the; exbernafjireeem-e at the aame height provided that the flow is
as in Pig. 3.

, \ ' ,I
\ IE:~an8ion by 1 I

"AJ\ turbulent ,i ·\ diffusion' ,i J :
\, 4, ./~

Approximately 120 " r'\. : rj

, h.,equalSp;

" ,',j ......

, "....

,".: -.'

Hence

.~ ..~'. .

,,' ~ ..

. '.!: ::"

Fig. 3. Condi tiona at exit of' tube.

·..... ( 6)

There is no loss of energy at the inlet hence the pressure drop is
equal to, the gain in velocity head.

" , ow:P,o - ~-=- ·..... (7) ,
. , '~a-

The static ~quilibrium outside the chimney give s
'. ,

~, ~ -' 'fc - o\-\ (8)- ·.....
and the momentum equation inside the chimney is

, ,
}\1 LV'1 I ••••••

p;;;
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'i'he mass f Iows are given by •.' ,". 'to
~ - .,.. ... ~

• •.••• (10)

• ••••• (11 )

The state equation gives, assuming an ideul gas

(\

· •.••• (13)

• •" ••• ( 12)

0
0
~ H' ..

(I h.

/t, ""ToI.,2-

H

f. f~ dl-
t»

T2 this integral becomesFor a uniform temperature

Also for an ideal gas H

Po 1-1- Jrh -
D '

Prom the above equations (6) to (13) we obtain

'\
• ••••• (14)

~ [2(~~ t"/)'" ~ '/,l
H.1f / /b J

w1 appears implicit'ly in tl'l'\. on the y, hi S of this equation and
unless ~f/t'\o\A. '« \ , it must be calculated from the roots of a quadrat ic
equation. Usually, however, ~ f !IJI..\ ..... 'can be neglected. The velocity
calculated without allowing for the momentum change is

• •••.• (15)r fLo

~he correction factor in the square brackets of equation (14) is
at least ~T~o -I and this is nearly 8 for a chinmey at 10oo0e ,thus
r-educi.ng the estimate of velocity by nearly 3. It should be noted thut
ogu\I,'i.::Lon (14) suggests that there is a maximum possible value to w1.'
l.;'or WlfIM~ <'" 1 this occurs when l~/r. LO l~ i.e. for b at 2900K,
at 51,qo;rC. li'ig. (1.:.) ehows tho variation in 0 WI ~ , .... ~ with e for Q Ai fA
zero ·andij290OJ.;;:). -;,} z ~"'-

Restricted chi1PD8Yw_........_~__..-..-. _..._,~ __

Restricted chDnney.
I---

'I'he opposite extreme of the above problem is one in whioh the gases
can be regarded as stationary in the enclosure or chamr..ley.-l --A.

7'--C~~_~_ Al

i.-, and .i~2 denote the inlet n.n:1 exit creas TCnpectivelJr•

. ,
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We aasume that the available draught head is equal to the sum of
the pressure drops across the h;o orifices.

Thus for an ideal gas

\1

\
i

I~ ~f o-(i.
- (0:::1 I.

·I.P..
;j'

Prom corrti.mri.ty of mass f'Low we

L
+. /) iv.,
,./.L_

, ...,
.·.·~r

obtain, as before

..
. ...•.••.• (16)

• ••••• (1~)

These together Yf,Lth equation (12) give

r /1 2. '2.7:
T ) If (''i ') (~ -/.") ~

2, (. . ttl- J11 "\ ;J 10

• ••..• (18)

• ••••. (19)

,..

Again·it has been assu~ed that the enclosure temperat~e is.
uniform but if it is. not 1'1 t9/'t is readily replaced by the integral
J;'t9/,Jz. 1'he same .remarks refer to the significance of.~fllMt:4.

as bef'or-e , The maximwn value of w1 occurs at ava'lue of ~/~
dependent on A(I tr i.

'4.2.1. Injection of air~•

\Ie shall consider here tho injection of large quantities of gc...s ,
Equa tions (.16). -. (19.). apply but k1 (-/111 (4' » I •

In t re ae carcums'tences it is appropriate to rewrite equation (19)
as

/

~_J-_18__

A f. -r P""'1 ~ ) ? (4 \'1 /1 0_/1{Zft~1..······ (20,)'- 1/ 0\/( . /2 (- .f ~_! (I. 11. ;"'-1 I. . .'
. I'V7 f \ ~;-.J r • I .,

L- 'I.. . "

and this gives. the v a.Lue of J11f necessary to reduce' tt1 t( the inlet
flow - to zero. Hhen this happens the exit flow through A2 must
account for the complete pressure drop due to buoyancy (W1 zero in .
equatzion (16)). In this simplified treatment the' kinetic energy of the
flow Itlf has been neglected. i'. . : r"' .• ' .• ,." - .'

~... .-..... '"

....
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4.3. Restricted chimney (enclosures) and vert~cal plate

He neglect i11iAh..... and Vie consider the enclosure of Fig.S with
a Pa;:.t of one. vertical surface heated. a~ a temperature ab9,:e.,~bient

of CJu (see .~'~~" 9):.. Inst~ad of ft q.r~v7ng force of T2 l:l~~hin the
enclosure, ~t ~8·t}US vert~cal pla~e which acts as the dr~v~ne farce
in this example. . . '

"
)./

J

Fig. 6. Enclosure uith heated wall.

This can represent a room heated by ra,~iation rrom outside '(in ·this Qo.
increases vdth time). The difference,bet~een lrorizontal and vertical
windows is of secondary significance 'if' their linear damensdon is small
compared yli th the vertical dimensions of the enclosure. .

The folloy-ling is suggested as a means of obtaining a first
a.pproximation to the solution. The heated wall produces 0;' mass 'flO'll
of heated gas which, but for the opening A2 would' produce a laYer of
increasing depth ·of hot gas.

The opening' A ' 'provides an outlet for the' gases. If 11 ,.» ~ L
equilibrium is ref1q~d when the depth of the hof zone is such as to
produce a flow equal to that produced by the hot walls. The equilibriwn
state could then be found from equation (6) - assuming the heated wall
to be in free. space - and finding the depth of hot zone that is necessary ­
for this mass to;flow' through 1..2 , ' lPor this, it is necessary to know
the mean temperature of the heated gases•. 1!'or a vertical plate this is
proportional to the temperature of the wall ugll and using Eclcert I s
simplified treatment, this temperature is 0'45 Qo ' so that if' AfjA2

2/j O· t+ r Bu.cI.

where d is the depth of the layer and m is the flow from the
vertical plate, 1!rorn this and equation (5) one can find "d",

",' .

This cannot be correct i;f' IIdn is more than a small fraction of
tlB" for then some of the heated gas will be recirculated. Ii' IIdll

tends to be Large for the particular arrangement it is possible that
the layer may fill the enclosure and the following solution is for
this case.

It is ass~ed:that the problem can be considered· in terms of:l
mean temperature" _Q1 for the gaaes in the -enclosure (except those
near the plate). The maas f'Low through the enclosure is then from:"
equation (19).

,..

','
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:--_-:-=::::.- ""..'.. (21)

,J

and the heat flow is . ' .r
Jt1..'I' C ~o

/

The
be given

heat flow neglecting any other loss of heat must at equilibrium
by .

q -. ....>..)J ·!-1. ~ ftJ. - cJ I
/r -- .' ~ I L:,). • ~(. 0 'J

where libII is the breadth of the heated strip i.e. from these two
equations f'or "s"

... :

'/

Hence J £'I'om equations

."

"

I
At _.

(1), (21) and (22) w~ have

fr~ 0· AIJY (f){).-:~ 1
--- l f"IV~ ~'f)!
C . " (

,.

1-'.

where Hwis the characte~isticheight 'i~' , ,N tVl. Fr~m equatd.ons (21)
and' (23). tvt I&. 9, , can be obtained and the system s olved-. ' This'
treatm~nt can readily be rnodifi.ed to allovi for conduction and radi.ation
loss if necessary,

5. Gas velocities above flames

. Above the flame the flow is that for a' turbulent jet. Normally.
the problem of jets is discussed in terms of a definite heat flux
(or heat flux per unit length) or a definite momentUffi.fluX.(or'momentum
flux per unit length) but not both heat; and momentum, altt,lough' a.l)"lttempt
hf:l.s been trade to obtain a solution with tno arbitrary constants ~J .

'Batchelor also ·gives' severaL references to problems." of this ldnd 11-) •

. These theories may be used toexwnine the effect~ of a fire at
points beyond aay, 5 diameters above it. The jets may be" taken as
expanding linearly from an origin. l'he following equations o.re the:­
basic ones in :this analysis and are· discussed rnor'e fully in the above
references.

The momentum equation is equating the mass acceleration of a
, moving particle to the buoyanoy f'orce for the steady' state•

......

. The. constancy of heat flow across each section for a radial jet gives
"

:' . 1..

Y~"W&z. . •••••• ( as)
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and t:or a line source

cv- ,10.8,2.. .... ".

\•

IIIIn

- , for a point sourcew

8 cX

Now, it; is assumed implicity in equations (2..:n and ( 21r.) that
there is a similarity solution, temperature (and velocity) distributions
being the same at all values of Z. Equations ( 24) and (2.5) ClU1 be
satisfied by

equations (2+) and ( 2b) give

f'or a line source

11 II II

"
6. Effect of buoyancy on horizontal jets

Less well known is the method 01' calculating the effect of buoyancy
on a h9t)horizontal jet; a detailed derivation is given by Thring and
Horne t5 . ...

, The approximate analysis below is sufficient to demonstrate' the
mechanism of th~ problem, though density differences are neglected
except in the buoyancy force. ..

P ~ cf", d't (J(b -c . 27)

A

cfF==

Let 9 (x y) 'and u(x, y) be the temperature and velocity at
any point (x, ~j., ,!fhe 'force .actLng on the gas in the elementary section .\
of thickness (f)~ in Fig. 7 is

61-'

Fig. ]. t ,

,
-
R

The mass of gas in 'the section [)<. is

JM ~ /01f~ Jr-
-~ J,)

The mean radial acceleration is

J ~~6
)1\" IS

" . '" ." .
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where R is the radius of ourvature of the jet contre line.

Now dF -

,,

Substitlltbg
and (~:l) we

fex' each cf these throe terms from
have" appz-ox.imately,

J- == J'L.t~ = \\" t. 8~~
R, rA X -r: U~

equations (27), (29)

.• ; ... (30)

where K is a constant depending on the shape on the temperature and
velocity profiles. H8< :lC. the ooordj.ll',tcs of the ceirbz-e lin'e 0:2 'chc jet am
e~: 11d U the mean vc.Lucs of e'and 'U'acl'oss 'clla je'c. 'rhe:r l\!'C :f\li1e~iom
of 'x' - de~nding on what kind of jet it is. For a rade jet near the
orifice they are in effect constants. This gives

\

\

and equation (!O) integrates to give

, .
H

where x is the distance along the jet fr~n the source.

1 \.­
}<'or a point source the continuity of momentum Cives lA ')(..

constant and the continuity of heat flow lA.19 ~\.constant

i. e.

and equation (lO) then gives

H
\..

, }<'or 'a line source Ll)T- ~ lA (3;x.. are constant so that

and equation (30) gives
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