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2, Introduction

i In?mhﬁ&'fire problems it is necessary to obtain an estimate of
the gas flow end aften it is not difficult to do this within the llmlts'y

imposed by simple flow theory, In most of the problems consldered the

flow is induved by pressure differences arising from the dﬁference :m

weights of hot and cold gases.

3. The mase flow up a flat vertlcal plate '

" For: the lamlnar flow'of gases past a vertiocal plate the mean heat
transfer coef*:Lc::.t:-.m:‘E is obtained from -

N, = 0 62[/\/6,,,./\/& % <

the height and the temperature of the plate being the characteristic
- length and temperature, ,

XThe constant is that given by Ede (1) - other anthors give other
figures which may be somewhat different but the difference-is hardly
likely to be significant in the applications considered here,

G
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It is often of interest to know the mass flow up the heated plate.
This oan be obtained in a similar way to the heat transfer coefficient,
i.e. from the same differential eguations, The conventional procedure
to obtain the heat transfer coefflcn.ent for the plate at uniform
temperatures is to assune that a ‘sirdlarity solution exists, As a
consequence the increasing heat content of the flu:Ld is manifested as
an increase in the mass flow with height - not in'the temperature,
From the heat balance in the strip bebtween 2 and o+ J4Z (see Fig, 1)
we have, equating the increase of heat content of the gases to the heat
transferred from the hot plate: '

| q MCQ\Jz-ﬂ\@ ot ,.”.(@

IW(,\SS gi'\ﬁ.j"ﬁ;{! &l?-

Since the form of the
temperature distribution
in Y"y"  is the same for
all heights

O (90 cerees (3)

and it follows from equations
(1), (2) and (3) that

__?}

Q! [oy t vertic te,

The value of the constant of proportionality in equation (&)
must be obtained from the distribution of the vbloclty. For air, the
analysis given by Eckert (2) leads to :

126 LE‘ Q\\’ij/% | (5)

(Eckert gives a coefficient of 0.51 for air instead of 0. Gl £1e) -
equation (1) The:coefficient of 1426 may therefore be, as h:Lgh as 1 49)

L, Chimneys and’ relaf:ed _pm'blems

If the veloclty head..inside the ch:n.mney can be neglected and .
there is only one constriction (the throat in domestic ch:unneys) the
whole of the pressure drop may be regarded as act::.ng across it alone;
friction losses may be included if necessary,. in the usual ‘manner. , :
This trestment, however, is likely to be inadequgte for high tempéra.ture -
chirmeys because the. pressure- drop caused by accilerating the expanding ...
gases may not be negligible. Moreover, if combustion is occurring in . . .
the chimmey, the changes in momentwn are associated with a pressure
drop though this may not be very :mportant Some .of these points are
illustrated below, : o IR




4.1, Unrestricted chimney

Fig, 2, Flow through uirestricted tube - with cohbusﬁion.

The pressure Fz_ inside the chimney at its top is taken as equal
to the external pressure at the same height provided that the llow is
as in Mg, 3,

N\ . ) | /
\ Expansion by /
J turbulent .
} aiffusion i/ .
\

N

: %iegualng

Approximately 12° \

_{ -
Fig, 3, Conditions at exit of tube,

N
‘.--

Hence

Therevis ne leoss of energy at the inlet hence the pressure drop is
equal to, the gain in velocity head. -

| . |
\;D -k = (0% e (D)

The static equilibrium outside the chimmey gives

Ls = —LH @

and the momentum equation inside the chimmey is

")-b _‘,(Mcan_)wa‘_ B (9)
e

W




The mass flows are given by

p& bo;(g | veenea(10)

L’“c\‘{}f‘h‘f. — PL(/\))-A oco-oo<11)
The state equation gives, assuming an ideal gas

/O;, :ﬂ:.—r';/Tz T

Also for an ideal gas

PH" Jf"*‘& = ()f dr e (13)

Tor a unlf‘orm temperature T, this 1ntegral becomes Wo .9} H

-
T

¥From the ebove equations (6) to (13) we obtain

Qﬁ HQ evens (1)
| “ : :
Zz/Tﬁ :L'%;‘ — /

N

/

W, appears implicitly in Mg on the . h. s of this equation and
unless Mg /m, << |, it must be calc,ulated from the roots of a quadratic
equation, Usually, lr'owevyr W £ /M. ‘can be neglected, The velocity
calculated without allowing for the momentum change is

L";I = 2:7_’:/8"- )

The correction factor in the square brackets of equation (111.) is
at least ZTl/T —| and this is nearly 8 for a chimney at 1000°C thus

reducing the estimate of velocity by nearly 3. It should be noted tnd:

eguavion (14) suggests that there is a maxn.mum possible value to wq.

vor Mf/ma K1, this occurs when L/T w |+ i.e, for T, at 2900K
o ‘L.

at 510 K., Pig, (),5 shows the variation in w,/ with 6 for My,

zero 'and [290%K ) ma.

4.2, Restricted chimnsy

The opposite extreme of the above problem is one in which the gases
can be regarded as stationary in the cnclosure or chimney,

.|

————— LY
Rl A

Fig, 5, Restricted chimmey,

A and ip denote the inlet and exit zreas respectively,



_5_
We assume that the available draught head is equal to the sum of
the pressure drops across the two orifices,

Thus for an ideal gas

!—/(9 /w - ,&ﬁ-v | "_.....(16)

¥From continuity of mass f‘low_we obtain, as before

Ma = .4’, W, f’o ” | coress(17)
My + Mg = A\. Lol/l .
| cornea(18)

These together with equation (12) give

- Qj H O,
T T,

= [ 7 2 .
TR () %

......(19)

Again -it has 'been assumed that the enclosure temperature is.
uniform but if it is. not /T'z is readily replaced by the mtegra.l
fé?/_rdz . The same remarlcs refer to the significance of Mf /maq

as before The maximum value of wq occurs at a'value of I /7:,
dependent on Ay / ts ‘ :

L,2.1, Iggection of air etc,

We shall cons:Lder here the 1nJ°ct10n of large quantitles of ges,
Equations (16).- (19) apply but h'ff-/ >>/ :

In trese c1rcums‘tances it is appropriate to rewrite equation (19)
as )

24 + 6 |
Wi, = A '\ _ [M, A _ M{I,@\Iﬁ ceeeso(20)
1t //2\/' //%) 1;11_{)?“‘

and this gives-the value of M/;'+ necessary to reduce Mg - the inlet
flow - to zero, VWhen this happens the exit flow through A2 must
account for the complete pressure drop due to buoyancy (w1 zero in -
equation (16)). In this simplified treatment the' kinetic energy Of the
flow h“f has been neglected, / . - e A7 :
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L.3. Restricted chimney (enclosures) and vertical plate

Ve neglect’%e22”a~ and we consider the enclosure of Fig, 5 with
a part of one vertical surface heated at a temperaturé above.ambient
%5 (see Fig. 6). .Instead of a driving farce of T, within the
enclosure, it is “this vertical plate whlch acts as the driving farce
in this example :

3

— AT
| Hoal M

IR N

Fig, 6, Enclosure with heated wall.

This can represent a room heated by radiation from outside (in this 6.
increases with time€). The difference.between horizontal and vertical
windows is of secondary significance 'if thelr linear dimension is amall
compared with the verticel dimensions of the enclosure,

The following is suggested as a means of obtaining a first
approximation to.the solution, The heated wall produces a mass flow
of heated gas which, but for the opening A2 would produce a layer of
increasing depth-of hot gas,

The 0pen:|.ng A prondes an cutlet for the gaaes. Ir A >>f)
equilibrium is reac%ed when the depth of the hot zone is such as to
produce a flow eqpal to that produced by the hot walla, The eguilibrium
state could then be found from equation (6) - assuming the heated wall
to be in free space - and finding the depth of hot zone that is necessary -
for this mass to‘flow’ through Ay, For this, it is necessary to know
the mean temperature of the heated gases, -For a vertical plate this is
proportional to the temperature of the wall "O" and uszng Eckert'
simplified treatment, this temperature is 0+45 6,, so that if &£7A2

Zj O-wi~ B4,
vy

where d is the depth of the layer and m is the flow from the
vertical plate. From this and equation (5) one can find "d",

Phis cannot be correct if "d" 4is more than a small fraction of
"H" for then some of the heated gas will be recirculated, If "d"
tends to be large for the particular arrangement it is possible that
the layer may £ill the enclosure and the following solutlon is for
this case,

It is assumed,that the problém can be considered in terms of a
mean temperature @, for the gases in the enclosure (except those
near the plate), The mass flow through the enclosure is then from
equation (19).



' H(ﬁ . {21)
/4 (Tr@)z/+( )
and the heat flow is /
i ty}u'( 60

The heat flow neglecting any other loss of heat must at equlllbrlum

ek oot

where "b" is the breadth o
equatlons for "q"

Wl s AN AO-T)....

Hence, from equations (1), (2I) and (22) we have

Fh

the heated strip i,e, from these two

w'= 0y m(/vp.,/v)"& 4} @

where Llujls the chartcterlstlc helght in- *JGY(. From equatlons (21)
and (23) p'nw @) , cen be obtained and the system solved, - This
treatment can readily be modified to allow for conductlon and radiation
loss if necessary., :

5. Gas veloc *ies above flames

Above the flame the flow is that for a’ turbulent Jet. Normaily,
the problem of jets is discussed in terms of a definite heat flux
(or heat flux per unit length) or a definite momentim.flux {or momentum
flux per unit length) but not both heat and momentum; although a?" ttempt
has been mde to cbtain a solution with two arbitrary constants 3?.
‘Batchelor also -givés several references to problems, of this kind IQ.

'These theories may be used to examine the effects of a fire at
points teyond say, 5 diameters above it, The Jets may be- taken as
expanding linearly from an origin, f©The following equations are the -
basic ones in this analysis and are discussed more fully in the above
references, :

The momevtum equation is equating the mass acceleration of a
* moving particle to the buoyancy fopce for the steady state,

(vgret) Ay o
J j ‘}ﬁ 7,

‘The. constancy of heat flow across each section for a radial jet gives

¥ ‘*WBZL o e ()
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and for a line source .
ﬂ/ =LO6 'Z‘_ . coe e (26'7)

Now, itiis assumed implicity in equations ( 2¥) and ( 2%4) that
there is a smllarl’cy solution, temperature (and velocity) distributions

being the same at all values of 7. Equatlons (24) and (2£) can be
satisfied by

W o V K W= {-j-{) ‘for a point source
o« (L

23 1 n n

equations ( 24) and ( 2¢) give

W

U od ol W« 7 for a line source

o L1, o
O (‘i C e

6, Effect of buoyancy on horizontal jets

Less well known is the method of calculating the effect of buoyancy
on a h ‘g)horizontal jet; a detailed derivation is given by Thring and
Horne . '

The approximate analysis below is sufficient to demonstrate the
mechanism of the problem, though density diff'erences are neglected
except in the buoyancy force. :

any point (x, y
of thickness

The force -acting on the gas in the elementary section
3 in ¥Fig. 7 is

Let © (Zj y) and u(x, ¥) be the temperature and velocity at

SF = c(}f O I dx e (27)

The n;ass of .gas in ‘the section J-)g is
da -
CJ}1 = /2-1; :T: J}. | ceneen (23)

The mean radial acceleration is
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where R is the radius of ocurvature of the Jjet centre line,
Now ) JF = J{\"l ,ié.

Substituting for each ¢f these three terms from equations (27), (28)
and (2%) we have, spproximately,

v )
= — veress (300
R A" ?T; W

where XK is a constant depending on the shape on the temperature and
velocity profiles. H & x the coordinries of the centre line of the jet and

m"nd U J,hc mean volues of 8 and Wacross the Jet. ~ They rre funciions
of 'x' - depending on what kind of Jet it is. For a wide Jet near the
orifice they are in effect constants, This gives

. and equation (3()) integrates to give

6=
H = —'ﬁ)_—'[—'—u} veeens (341)

where x dis the distance along the Jjet from the source.

T v
For a point source the continuity of momentum pives W L

constant and the continuity of heat flow | (0 x’*constant

|
i.e, uw\ ol. (9&-» o -;_("

and equation (RO) then gives

oo

|-

 For a line source | 2t & W 92\'. are constant so that

1y
heo « Ol &L T

and equation (30) gives

5
| /.

/*/ .
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