

DEPAFTMENT OF SCIENTIFIC AND INDUSTRTAL RESEARCOI AND PIRE OFFICES' COMMITHAE JOINI FIRE -RESEARCII ORCANIZATION

This report has not been published and should be comsiderect as confidential advance information. No reference should be made to it in any publication without the written consent of the Director, Pire Research Station, Boreham Wood, Herts. (Telephane:' ELStree 1341 and 1797.)

THE DISTRTBUTIONS OF RADIATION FROM A RADTATING SPHERE AND DISC AT THE FOCUS OF AN EWUIPIIC MIRROR

by
P. H. Thomas and G. C. Karas

Summary
The distribution of radiation at the focus of an elliptical mirror from a sphere or disc at the other focus is calculated and the result compared with the measured distribution for a particular carban are system. The values of the maximum intensity are in good agreement but the distribution is narromer than that calculated, presumably as a result of obscuration.

THE DISTRIBUTIONS OF RADIATION FROM A RADIATING SPRERE AND DISC aT THE FOCUS OF AN ELUTPIIC MIRROR

by
P. H. Thomas and G. C. Karas

1. Introduction

The analysis proceeds in thiree steps. Firstly (see Fig. 1), a point ' P ' on the surface of the mirror is considered. The radiation from the sphere at the focus Fistriking an elementary area at P produces an elliptically shaped image area in the second focal plane at F2. The geometry of this having been discussed, the second step is the extension of the elementary area to an annulus through P. The last and final step is the integration over all the area of the mirror. The diameter of the sphere is considered to be small compared with the distance from the mirmor. The analysis is repeated for a disc source.
2. Theory

2 (i) The ellipse at the second focus from a point on the mirror

We consider the plane through the major axis of the ellipse and a point P (see Fig. 1).

Geometry of radiation distribution in one plane
Folloring the notation of Fig. 1, we have fiom the geometry of the ellipse

$$
\begin{equation*}
r_{1}=\frac{a\left(1-\varepsilon^{2}\right)}{1+\varepsilon \cos \theta} \tag{1}
\end{equation*}
$$

where ε is the eccentricity of the ellipse and a is the semi major axis

$$
\begin{equation*}
\mathbf{r}_{2}=2 \varepsilon-\frac{a\left(1-\varepsilon^{2}\right)}{1+\varepsilon \cos \theta} \tag{2}
\end{equation*}
$$

and $F_{1} F_{2}=2 a \varepsilon$

We assume $R \ll a(1-\varepsilon)$
so that

$$
\alpha=\frac{2 R}{r_{1}}
$$

which from equation (1) gives

$$
\begin{equation*}
\alpha=\frac{2 R}{a}\left(\frac{1+\varepsilon \cos \theta}{1-\varepsilon^{2}}\right) \tag{4}
\end{equation*}
$$

From the geometry of $\Delta \quad F_{1} F_{2} P$
$\cos \Psi=\frac{r_{2}^{2}+\left(F_{1} F_{2}\right)^{2}-r_{1}^{2}}{2 r_{2}\left(F_{1} F_{2}\right)}$
which from equations (1), (2), and (3) gives
cos

$$
=\frac{2 \varepsilon+\left(1+\varepsilon^{2}\right) \cos \theta}{\left(1+\varepsilon^{2}\right)+2 \varepsilon \cos \theta}
$$

image ellipse in the vertical plane at F_{2} has a semi-minor axis of B
where $B=\frac{r_{2} a}{2}$.
which from equation (2) gives

$$
\begin{equation*}
B=R \frac{\left(1+2 \varepsilon \cos \theta+\varepsilon^{2}\right)}{1-\varepsilon^{2}} \tag{6}
\end{equation*}
$$

and from equations (5) and (6), a semi-major axis of

$$
\begin{equation*}
A=\frac{B}{\cos \Psi}=\frac{B\left(1+2 \varepsilon \cos \theta+\varepsilon^{2}\right)^{2}}{\left.\left(1+\varepsilon^{2}\right) \cos \theta+2 \varepsilon\right)\left(1-\varepsilon^{2}\right)} \tag{7}
\end{equation*}
$$

2 (ii) The distribution at the second focus from an elementary annular element

The image ellipse having semi-major and minor axes A and B is umiformly irradiated. If the annular ring is a radiator the image of the sphere in the ring is circular and is formed by rotating the ellipse about its centre.

Fige 2
Image in vertical plane at aecond focus of a sphere i.) refliected by elementary area at P

Rotating the ellipse through a complete curcle gives uniforn intensity in the circular area r < B. For unit intensity within this circle the intensity in $A>P>B$ is

$$
\begin{equation*}
i^{\prime}=\frac{2}{\Pi} \beta \tag{8}
\end{equation*}
$$

where $\sin \beta$ is obtained from the equation of the ellipse and the co-ordinates of X (-oee Fig, 2)

$$
\begin{align*}
& \frac{r^{2} \cos 2}{A^{2}} \theta+\frac{r^{2} \sin ^{2} \beta}{B^{2}}=1 \\
& \sin \beta=\left(\frac{A^{2}}{r^{2}}-1\right)^{\frac{1}{2}} \cot \Psi \tag{9}
\end{align*}
$$

For $r>A$ the intensity is of course zero. From equation (5) we can obtain cot Ψ as

$$
\begin{equation*}
\cot \Psi=\frac{2 \varepsilon+\left(1+\varepsilon^{2}\right) \cos \theta}{\left(1-\varepsilon^{2}\right) \sin \theta} \tag{IO}
\end{equation*}
$$

2 (iii) The integrated intensity for the whole mirror surface
In Fig. 1 the element of energy incident at P is

$$
\begin{equation*}
\delta^{2} E=I R^{2} \sin \theta \cdot d \theta d \phi \tag{II}
\end{equation*}
$$

where θ and ϕ are angular spherical coordinates
and I is the radiant intensity at the surface of the sphere.
At ${ }^{3} 2,8^{2} \mathrm{E}$ is distributed over the area II $A B$, giving an intensity from (6), (7) and (11).

$$
\delta^{2} i=\frac{\delta^{2} E}{\Pi A B}=\frac{I \sin \theta \pi \theta d \phi\left(1-\varepsilon^{2}\right)^{2}\left[\left(1+\varepsilon^{2}\right) \cos \theta+2 \varepsilon\right]}{\left(1+\varepsilon^{2}+2 \varepsilon \cos \theta\right)}
$$

Hence the intensity on integrating for the annulus, ice. $0<\phi<2 I I$ is from equations (8) and (12)

$$
\begin{align*}
& \int_{i} \delta^{2} i=\delta i=\frac{2 I\left(1-\varepsilon^{2}\right)^{2}\left(\left(1+\varepsilon^{2}\right) \cos \theta+2 \varepsilon\right) \sin \theta}{\left(1+\varepsilon^{2}+2 \varepsilon \cos \theta\right)^{3}} \times \ldots \ldots \ldots \ldots \ldots \tag{13}\\
& \dot{x} \frac{2}{H}\left[\sin -1 \quad \cot \Psi\left\{\left(\frac{A}{f}\right)^{2}-1\right)^{\frac{1}{2}}\right] d \theta
\end{align*}
$$

where for $r>A$ the $\sin ^{-1}$ term is replaced by zero
and where $r<B$ by $\frac{I I}{2}$. Now, because of the discontinuity at $\mathbf{P}=A$ or B we need to find the relation between r and θ so that

$$
\begin{align*}
& \mathbf{r}=\mathrm{B} \text { at } \theta_{1} \\
& \mathbf{r}=A \text { at } \theta_{2} \tag{1/4}
\end{align*}
$$

i.e. rearranging equation (6), $\cos \theta_{1}=\frac{\left(1-\varepsilon^{2}\right) \frac{r}{1}-\left(1+\varepsilon^{2}\right)}{2 \varepsilon}$ and $\cos \theta_{\text {ais }}$ given by equation (7) with A equal to r, ie.

$$
\begin{equation*}
\frac{r}{R}=\frac{\left(1+2 \varepsilon \cos \theta_{2}+\varepsilon^{2}\right)^{2}}{\left(1-\varepsilon^{2}\right)\left(2 \varepsilon+\left(1+\varepsilon^{2}\right) \cos \theta_{2}\right)} \tag{in}
\end{equation*}
$$

Writing the term in the brackets [. \therefore] in equation (13) as $f(\dot{r}, \theta)$ the values of f for the integration over $0<\theta<\theta_{\text {max }}$ are as given by equations (14) and (15) and are show in Fig. 30° Writing: equation (13) as $\delta 1=1(r ; \theta)(\theta) d \theta$
$\because=$
we have
$\theta_{\max }$
$f(r, \theta) F(\theta) d \theta$
where θ max is obtained from the diameter of the mirror. If $\theta_{1}<\theta_{\max }$

If θ_{2} is less than $\theta_{m a x}$ then the second integral proceeds only so far as θ_{2} where β is zero
and for $\theta_{1}>\dot{\theta}_{\text {max }}$
ie. from (14) $\frac{r}{R}<\frac{1+\frac{\varepsilon^{2}+2 \varepsilon}{\left(1 \cos \varepsilon^{2}\right)} \cos \theta \text { max }}{}$

$$
\text { and } \begin{align*}
1 . & =\int_{0}^{\theta_{\max }} \frac{2 I\left(1-\varepsilon^{2}\right)^{2}\left(\left(1+\varepsilon^{2}\right) \cos \theta+2 \varepsilon\right) \sin \theta d \theta}{\left(1+\varepsilon^{2}+2 \varepsilon \cos \theta\right)^{3}} \\
& =\frac{I\left(1-\varepsilon^{2}\right) \sin ^{2} \theta \max }{\left(1+\varepsilon^{2}+2 \varepsilon \cos \theta_{\max }\right)} \tag{17}
\end{align*}
$$

There can be no intensity at all outside. $A_{\max }$

$$
\begin{equation*}
\text { i.e. } 1=0 \quad \text { when } \frac{r}{R}>\frac{1+\varepsilon}{1-\varepsilon} \tag{18}
\end{equation*}
$$

Equations (13) - (16) determine the non-uniform part of the distribution and equation (17) the uniform part.

3. A disc source

The above analysis has been for a sphere but it is possible to repeat it for a disc source, the essential difference being that-distencestas the vertical plane through F_{2} perpendicular to F_{1} and F_{2} are reduced by cos θ. This is because the projection of the disc perpendicular to P, is $\cos \theta$ of that for the sphere. With the same notation as for the spherical source we have for a disc normal. to the axis of the ellipse, the image ellipse equivalent to Fig. 2 given by Fig. 4

Figo_4
Image in vertical flame at second form due to a disc reflected by elementary area \vec{P}
$2 B$ is now the major axis since-for the other axis $2 A_{D}$ equal to $\frac{2 B \cos \theta}{\cos \Psi}$ is always less than 2 B .

Since both the area of the image ellipse and the element of energy are both raduced by $\cos \theta, \delta^{2} i$ is unaltered. . The integrated intensity is thus given by equation (17) provided ${ }^{r}$ 盾 is less than the minimum value
 The disc image 18 therefore of the same intensity as that for the sphere but the uniform ane is in the circle r / R less than the minimum value of $A \cos \theta$ ide. 1.95 instead of $\mathrm{r} / \mathrm{R}<3_{0} 8$ 。

We have

$$
A_{D}=A \cos \theta
$$

The demarkations of the integration zones are

$$
r=B \text { as before at } \theta \text { equal to } \theta_{1}
$$

and $r=A_{D}$ at θ equal to θ_{3}
so that we have equation (14) as before and
instead of equation (15). The relation between r / R and $\cos \theta_{3}$ is shown in Fig. 3. We require the angle γ (see Fig.-5) which as before we determine by solving the equation to the elilipse to obtain the point Y.
i.e.

$$
\begin{equation*}
\frac{p^{2}}{A D^{2}} \sin ^{12} r+\frac{r^{2} \cos ^{2} r}{B^{2}}=1 \cdots \tag{19}
\end{equation*}
$$

Hence $\sin ^{2} Y=\sqrt{\left(B^{2}-1\right\} /\left(\frac{\cos ^{2}}{\cos ^{2} \theta}-1\right\}}$
Hence the function " f^{p} for the disc is

$$
f_{D}=\frac{2}{I I I} \cdot \gamma
$$

With ogiven by equetion (19). The integration follows that for the sphere except that θ_{3} replaces θ_{1} and ${ }^{\theta}{ }_{1}$ replaces θ_{2} as limits of integration and γ replaces β in equation (16)。

4. Application to a cerbon arc source

For the carbon are source in question (1) the focal lengths are 11 in. and 55 in. so that ε is $2 / 3$ and Fig. 3 has been dram for this value of ε. Fig. 3 shows that the region where f is between zero and unity is a relatively small one and can be reasonably neglected. The diameter of the mirror is 24 in. so that the value of Qax for the cartion are source is' $60^{\circ} 27^{\circ}$.

For this ${ }^{\text { intermediate }}{ }^{1}$ area, bounded in Fig. 3 by the lines ${ }^{\beta}=0$ and
 $\frac{1+\varepsilon^{2}+2 \varepsilon \cos \theta \text { max }}{1-\varepsilon^{2}}$
i. e_{0} for e equal to $2 / 3$ and $\cos \theta$ max equal to $O_{0} 4^{\circ}$
the internediate area is $500 \quad 3 \frac{\mathrm{r}}{\mathrm{R}}>3.8$
and $\cos \theta_{1}=\frac{r / R^{-} 2_{0} 6}{204}$
We can then write from equation (16) Wers thets isgzio

For $\frac{r}{R}<3.8$ we have from-equation (2) wite the uppex limit as $60^{\circ} 27^{\circ}$

$$
i=0.052 I
$$

This and the result of computing equation（20）are shown in Fig， 4 for a particular carbor are squrce (1) correspundigy a black body of 4000% ， i_{o} e．I is $325 \mathrm{cal}^{2} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$ so that i is $16.7 \mathrm{cal} . \mathrm{qm}^{-2} \mathrm{sec}^{-1}$ which is about 26 per cent greater than the measured maximum intensity of carbon arr source．The disirribution for a diss soure has similariy been computed bit no siapliflisation can be made for the larger intermediate area．
5．Discussion
The distribution of radiation has been calculated for a sphere and a disc source at the focus of the J．F．R．O．mirror and the results are giver in Figo 5．They give a reasonable value for the maximum intensity． The cartons in the apparatus are $11 / 16$ in．diameter so R is $11 / 32$ in． The image of $\%$ spherical source should therefore be of uiform intensity
 within $\frac{3}{6}$ in．maius．In fact，the actual distribution varies continuously and there is magion of uniform intensity．In Fig． 6 the actual distri－ hution is horizontal and vertical direction is compared with that calculated for a disc．In the apparatus there is considerable obscuration by the are holder and the anods rod ad this distorts the image，and reduces the maximm intensity，From the analysis above，it appears that the effect of jospuration is primarily to diminish the size of the source，the effect on the maximum intensity not being unduly large．

6．Reference
1．）Hinkley，$P_{0} I_{\text {．}}$＂A source of high intensity radiation employing an are lamp and an ellipsoidal mirror．＂ F。R．Note 270／1956。

FIG. 3. DIAGRAM FOR DETERMINING
INTEGRATION LIMITS
(SPHERE \& DISC) FOR $E=2 / 3$
F.R. 339 . 1/2396

FIG. 5. CALCULATED DISTRIBUTION OF RADIATION AT IMAGES OF DISC AND SPHERICAL SOURCES

FIG.6. DISTRIBUTION OF RADIATION AT SECOND FOCUS CALCULATEC and measured - normalised to be equal at the centre

