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SPONTANEOUS IGHITION IN SLABS WITH PACES AT DIFFERING TEMPERATURES
by

P. C'. Bowes and P, .H, .Thomas

1. DTRODUCTION

. OCritical conditions for spontanecus ignition or thermal exwnlosion in bodies
generating heat and exposed to surroundings at constant uniform tempfx'jxtum , have
been obtained mathematically by Frank-Kamenetsky (1)(2) and Chambré (3) for bodies
whose surface temperature remains equal to the ambient temperature, and by Thomas (&)

for bodies whose surface temperature is governed by Newtonian ccoling.

The present note extends the analysis used by the above authors to the
spontanecus ignition of a plane slab, one of whose faces is maintained at a constant
high temperature while the other cools to the atmosphere,

The solution of the problem is approximate and has been possible only for a
limited range of the variables, but it appears to be adequate for the applications
contemplated, These applications are, primarily, the ignition of fairly thick
layers of dusts on hot surfaces and the ignition of combustible lagging,

A cuestion of more general importance is the relationship between conditions
for ignition in a given material in different emvironments., In particular, there
is the possibility of using data relating to the ignition of a slab of material
in contact with a hot surface to predict the conditions for ignition of a body of
the material exposed to a uniform ambient tempernture, and vice versa, This
question is considered in part in this note,

The validity of an approximation used in the analysis has been assessed by
reference to experiments on the ignition of wood fibre insulating board.

. 2. THEORETICAL
2 (1) General

We consider a plane slab one surface of which is maintained at a constant
temperature Tp, greater than the atmospheric temperature Tp, while the other
surface is exposed to the atmosphere and assumes a temperature Tg, between Tp
and Tg, which depends on the heat balance at the surface,

An exothermic reaction takes place in the material of the slab, It is
assumed that at any point in the slad the rate of the reaction depends solely
on the temperature at that point, and that the rate is related to the temperature by
the Arrhenius equation, We then have

- E .
q = e B RS S € )
~where
q = rate of heat evolution per unit mass (ecal/g/sec),
Q = heat of reaction per gram,
f = pre-exponential constant of Arrhenius equation,
E = apparent activation ene (cal/mol),
T = absolute temperature (°K),
R = gas constant (cal/mol/°K),

For heat transfer by conduction, the temperature distribution in the slab
in the steady state, when the rate of heat generation is equal to the rate of heat
loss to the surroundings, will be given by solution of ' '

- B

- T : ' |
%_x%rz - e e teeeesnensaseneansa(2)
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for the boundary conditions

X = 0, T = T—D nu..rlol.c..lnl!or‘ﬂo..(}i)

and
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H(T, ~ Tq)

II(TS - Tp) - H(TQ nd TP)......o-o.loooo'oal(jii.

1]

where

co-ordinate normal to surface of slab (cm),
seni-thickness of slab® (cm),

density of slab (g/cmd),

thermal conductivity of slab (c.g.s. units), .
overall coefficient of heat transfer between slab and
surroundings (c.g.s. units).

HROHHK
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It is required to find the limiting conditions at which a steady state
ceases to exist in the slab and the temperature rises indefinitely to ignition..

Following Frank-Kamenetsky, equation {2) and the boundary conditions are
vut into dimensionless form as follmjrs:w

d20  _ _ b ‘
—d-—z-z = [ . -..«,ooano.-enooeoove(lf')
z = O, & = 0 e meoeao(51)
4 = 2’ _.de = .mes-meo '0.1;.0'..».onno-|os(5ii)
d =z
Whem A = % ceseacsoascssavoes o(sj-ii)
3 =2 E - ’ . c0&6DOOCN eSS -.
7 (T - T,) | ceveron (5iv)
13 _E
6 = pr EI2 e RTP .....c..»o-oou-noo(sv)
KR T2
o = 'H_E .-oo.oec-ocuooon-(sv'i)
X

. The definition of the d:.mensionless temperature, 0, is an approximation that
neglects the second and higher powers of (P -T )/’l‘ in the expansion of the
right hand side of the identity

E - E T T,
RT-RT. (1 + %)

P - Tp
and it is strictly valid only for (T - TP)<< T, -

However, in many appllcatlons for which this analysis is intended (T -~ T )
is of order 0,5 T The magnitude and effect of the error thereby introduced’
is considered latgr. The immediate justification for use of the approximatiicn
is that, in the region where it ceases to hold, the rate of heat production is
negligible compared with the rate in the region where the approximation is good.

¥ The semi-thickness is introduced here for the sake of conformity with the
equations for bodies in surroundings symmetrical with respect to temperature,
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The limiting conditions for ighit:ion will be determined by the maximum
possible values of the parameter §, for given values of € and 0.

On physical grounds we nay expect the temperature in the sleb, in the steady
state, to have a meximum; and this will be defined by

g S Owhen 6= O, = naximum,
The solution of equation (&), subject to this condition, is
8 = loge A - 2 loge cos}{‘\?. (z-—C)] ' RS €Y.
where & and C are integration constants, of which A = eg’“
If z = z,when O = Op, we have C = zp.

Inserting the boundary condition (5i) and (6) gives

A = cosh? (CAOA/2) | | ceeeeaeeesl7)

Differentiating (6) with respect to z,

L0 el [ o] }' BT

Combining (8) with (5ii) and (6) we have
- (B8 + 80)
2 2

7 g e . = COSh(P-CP) lo...loo"(s)
where P = 325Aand,ﬁ = tanh (P - g—2--)

Eliminating A between P and (7) we have

COSh%‘E: J%,

whence,
C, .

: CP _ 2 CP . 42 _ P2 _ %

sirh 5% = {cosh > 1)? = ( 1)z
Substituting these express jons in (9) we obtain, finally

8 = _29) [coshP-cosh (J +_.Q§,..,.....(10)

sz_nhP

In order to proceed f\zrther it 1s necessary to mtroduce restrictions on
the range of some of the quantities in equation (10), Thus, we suppose P is
sufficiently large, and C sufficiently =mall, for § to be unity; this is
Jjustified later. ’

D:-.f[‘erent:.at:.ng equation {(10) with respect to P (with § = +4) and equating
to zero, we find 0 is a maximum when

(P 5]
2(1 - P coth P) [cosh P - cosh (.1;,,& + _39_-)]+ .g‘_xe (’za”' - )

1 = 8h P) P ginh P = 1) .
+( 2q) s O ..‘......(11)
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Since we are restricted to values of P larce enouch for @ = 1, we may put
coth P = 1 in (11), '

For given values of 0, and o, the value of P that satisfies equation (11)
can be found by trial, and the corresponding value of dc¢ can be obtained by
inserting the 6y, o« and P in equation (10), This hos been done for values of
= between 0.5 and co , and B, between ~8 and -18; these vulues being chosen
as covering the probable range that will be encountered in the applications
outlined in the introduction, Calculated values of 8¢ are tabulated in Table 1,
and plotted in Fig, 1 with a logarithmic scale fore, It may be noted that the
* lowest value of f§ in the range covered was 0,99 at 8, = =10, = 0,5. It
thus happens that the restriction B = 1 is not unduly severe fron the point of
view of practical application. The range may, if necessary, be extended dowm
to about 8, = -4 for high « , This may cover ignition in thin layers of
highly reactive materials at low hote-surface temperatures.

Values of A, O, and C have also been calecuwlated and are given in Table 1.
In the ranges of « and O covered, ¥ A, and hence Oy, appears to be indepsndent
of e for g},iven 0,, but decreases as BOL increases, C, which defines the
plone in which © = 8, varies with both 84 andec. '

2 (ii) Value of 8, when «= 0

When I = O and, hence, o« = O we have, from condition (5ii),

48 - ootz = 2,
d z

i.e, from equation (6)
e:.em&tzm = 2 = C.
" Equation (7) then becomes

A = cosh WA

The maximun value of ¥28 for which -this equation has a solution is
0.663, Hence, when «= O,

b¢ = 0.22amd & = 1.19

* 85 here is exactly one quarter of the value of &y for a slab with
both faces at equal fixed temperatures; the present slab,vhen « = C,
representing one half of' the symmetrically heated slab

3, APPLICATION OF THEORY TO IGNITION EXPERDMENTS
3 (i) General

It follows from the definition of & ,equation (5v), that a plot of loge
(8, T,%/r2) vs, 1/T, will be linear with slope = E/R; and further, substitution
of equation (1) inté the definition of & provides an expression for the rate
of heat evolution at temperature TP.

Thus,

q (1) = KR 6 Tp° | TR 7
i -

titchell's (5) results on the ignitien of fibreboard blocks exrosed to
uniform anbient temperatures have been shown to obey the above linear .
relationship {16), ond results on the ignition of dust layers on a hot surface
(to be described elsewhere) also obey it. T, is now the minimum hot-surface
temperature, or minimum ambient temperature, for ignition and is close to the

moximum hot surface, or ambient, temperature for a steady state,



3BLE 1 (PART 1)

I TIION OF SLABS WITH FACES AT DIFFERING TEMPERATURES, CRIDICAL COHSTANTS

3 - 3 . A

Gl Pl l/al a*l e* cf oot 1P 1% (VA | A% 6.
-8 0,5 - - - - -12) 0.5 |3.44 | 5.74] 1,015
1,0 |3.33 | 5.18 11,035 0,155 1,0 | 4,59 [10,25) 1,015
2.5 |4.16 | 8,08 1,036 0. 124 2,5 |5.75 [ 16,00, 1,013
5.0 (4,52 | 9,52 |1.035 O, 114 5.0 16,26 |19,00] 1.015
10,0 (4,74 { 10,55 [1.031 0,108 10,0 | 6.55 | 20,85! 1.014
20,0 | 4.85 (11,04 1 1.032 0, 106 20,0 [ 6,71 1 21,87] 1,014
= ] 4,98 11,65 | 1,032 0,103 o0 6,88 | 23.0 1,015

Mean [1,034 ) 1,068] 0,066 Mean| 1,014 1,029}0,028

-10 | 0,5 [2,96 | 4.19 | 1,022 0,139 -13| 0,5 | 3,68} 6,621 1,012

1,0 |3.95 | 7.46 |1.022 0. 104 1,01 4,94 11,72 1,016

2.5 |49k | 11,65 | 1,024 0.083 2,5 | 6.14418,3 | 1,013

5.0 |5.38 | 13.88 | 1,020 0,076 5.0 | 6.69/21,9 ] 1.010

10,0 {5.64 | 15,28 | 1,018 0,073 10,0 | 7.0 24,0 | 1,012

20,0 |5.74 [16,02 | 1,022 0,071 20,0 | 7.19]25,1 | 1.014

o | 592 |16.80 | 1,021 0,069 oo 7.36(26.4 | 1.016
Mean 1,021 | 1, 0u2! 0,041 1,013] 1,.026]0.026

f-11| 0,5 {3.20 | 4,93 |1.020 0,119 -4 0,51 3.92 7.53| 1.010

.| 1.0 |4.26 | 8,76 11,018 ‘ “1 0,089 1.0 ] 5,241 13,42 1,012

2.5 [5.33 [13.70 [ 1.019 - _ 0,071 -2.5 | 6,54 21,05 1.010

5.0 |5.83 116,35 | 1.019 0.065 5.0 | 7.13|25.00] 1,009

10,0 | 6,09 |17.91 1,018 0,062 10.0 | 7.48| 27,35 1.012

20,0 | 6.2 [18.8 |1.016 _ 0,061 20,01 7.66|28,75] 1,010

oo [6.40 (19.8 [1.018 0,059 oo | 7.84 30,08] 1,011
Mean }1.018 | 1,037 0,036 ' Mean] 1,011{ 1.022{0,022

¥<Calculated from mean value of,fﬁﬁfﬂ_



TABLE 1 (PART II)

IGNTTION QF SLABS VITH FACES AT DIFFERING TEMFERATURES. CRITICAL CONSTANTS

< - ¥ *® .
6 |=1P 1o |/A| A% &M c 6 |x | P | S | /Al A*l G | C*
=15 1 0,5 | & 17 8.53 1.010 0,069] -17 | 0.5} 4,66] 10,50] 1,008 0,055
1,01 5.,56] 15.19] 1,010 0.052 1,0| 6,21| 19,00 1,007 0, 0L2
2,5 6,95 23,56/ 1.011 0,041 2,51 7.77f 29,70 1,009 0,033
5,01 7,61 28,26] 1.0%1 0,038 5.01 8,47 35.43| 1,007 0.030
10,0 | 7.94| 30,94 1,010 0,036 10,0 8,88} 38,84 | 1,009 0,029
0.01 8,14| 32,50 1,010 0,035 20,01 9.1 1 40,65 | 1,009 0,028
=0 | 8,34 34,12 1,010 0. 034 o | 9.32) 42,66 1,009 0,028
u Mean| 1,010! t 021! 0,020 _ Mean | 1,008] 1,017 O, 07
—’16 0;:5 LI--::J-&-Jf 9963 .1000? . On061 "18 095 4091 11889 10007 000}4-7
1.0 5.89| 17,06 1,010 0,045 1,0 6,54 21,15] 1,005 0,035
2.5 7.36{ 26,60 1,010 0,036 2,51 8,19 33,02{ 1,009 0, 028
5.0 8,03 31,70 1,009 0,033 5.0| 8,92} 39,28} 1,007 0,026
10,0 | 8,41 3474 1,009 0,032 10,0} 9.35] 43.15| 1.006 ‘0,025
20,0 8,61 36,50 1,008 0,031 20,01 9,581 45.3 | 1,007 _ Q, 024
<o | 8,82| 38,38 1,009 0,030 oo | 9.81| 47.5 | 1,006 &i 0,024,
Me 1,009 1,019{ 0,018 . : Mean! 1,007{ 1.014g4 O, 01k

¥-Calculated from mesn value of v/ 4
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At the least the theory provides a linear relationshiv. based on a simple
model of the self-heating process, for correlating the results of ignition
experiments, The theory will be of more general interest, as indicated in the
introduction, if it can be shovm that the values of the aectivation energy E
and the rate of heat evolution at a given temperature q (or, more generally;
the product Q f in equation (1) )} yielded by the theory are truly characteristic
of a given material and are independent of the conditions under which ignition
experiments are carried out. If this is so, it will be possible to predict
ignition temperatures under "hot surface" conditions from "oven" experiments
and vice versa, The possibility of this general application of the itheory
depends on two considerations ;- . ‘

(2) The validity of the simple model on which the theory is based;
i,e. a mate of reaction depending solely on temperature and
obeying the Arrhenius equation, and heat transfer by conduction,

(b) the error introduced, in the theory for slabs with faoces at
differing temperatures, by the approximation in the definition of
the. dimensionless temperature,® {’equation 5iv) ).

In what follows we are primarily concerned with (b), The arrer is estimated
by aprlying the approximate theory to the results of some ignition experimenfs
with wood fibreboard, and then making a comparison with a mmerical integration
of the exact equation (2) appropriate t6 the conditions of the experiments.

% (ii) Experimental

Ignition temperatures were determined for cwo different thicknesses of
wood fireboard, in pieces 6 in, square, in contact with a horizontal metal
surface capable of being maintained at any desired tamperature to within 17C.
A fine thermocoupe was stretched across the centre of the upper foce of the
fibreboard specimens, The fibreboard was oven dried at 105°C for two hours
in order to prevent it curling during tests,

I? ignition occurred a.t. a g‘iven temperature of the hot sarface, and no
ignition occurred at a temperature 5° lower, then the upper temperature was
regarded as the ignition temperature,

3 (4ii) Results

The experimental results are given in Table 2 together with the calculated
activation energy and rates of heat evolution. Details of the calculations are
given in Appendix 1, The rate of heat évolution af 2509C has been calculated for
comparison with earlier results,

TABLE 2

Ignition of wood fibreboard on hot surface

Thickness of fibreboard, cm, 1.27 2.5k
Ignition temperature, ©C. 305 275
Indicated temperature of cocl surface, ©C, . 90 60
Activation energy, cal/mol, 27,800
Rate of heat evolution, cal/g/min, at 3050C 2,60
i at 2759C 6.06L
: at 2500C 1.96
Value of product @f (equation 1) 1,17 % 1010:
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3 (iv)h Temperature distribution in steady stale

Assuming thai a stead; stabte tecmperature distribution is possihle in the
fibreboard with the hot surface at the ignition temperatures given in Table 2,
certain features of this temperature distribuiicn, and some associaied quantities,
have been calculated and listed in Table 3, The values are obitzined quite simply
from equations in section 2 (i); details are given in Appendix 2,

Since O¢varies rapidly witlec , at low e, it is necessary ¢ calculabe o with
fair accuracy. This requires a knowledge of the temperature of the cooling
.surface, waich initially can be colculated only by assuming that the zlab of
fibreboard is inert and dces not generate heat,

Where appropriate, the quantities given in the Table for the reastive _
fibreboard are compared with corresponding quantities calculated on Sne assumption
that the fibreboard is inert,

The Table is self-explanatory except perhaps for the entry called "ilaximum
temperature rise due to reaction", This is calsulated at the plane in the slak
where the temperature exceeds, by the greatest amount. the temperature that would
exist in that plane by virtue of the temperdture gradiemnt (,Ts w T J),’Zr if the
fibreboard were inert; the maximum temperature rise 1s the value of this =ucess,

TABLE 2

Steady-state temperature distribution in fibreboard

Thiclkness of slab, cm. 1,27 2,545
Temperature of hot surface, °C. . 305 275
Maximum temperature in slab, °C, 305,77 275,65
Position of maximum® om, 0, 0,08
Temperature gradient at cool surface, 9C/em. ' .
Reactive w197 98
Inert ~-175 -85
Heat flux at cool surface, cal/sec/cm? ,
React ive 23.6 x 1072 11,7 x 10"
Inert 20,7 x 1073 10,2 x 10=7
Temperature at cool surface, “C,
: Reactive 23 63
Inert - 86 60
A. Dimensionless,
Reactiwve 1,85 3,28
Inert {80 3.07
Maximum temperature rise due t¢ reaction, ©C. 29 .26
Position of maximum temperature rise¥ cm, 0,35 0,64

u# measured from hot surface

There are three main points of interest arising from the data in Table 3,
First, the maximum temperature is less than 19C above the temperature of the
hot surface and the maximum occurs close to the hot surface, Second,, the heat
flux at the cool surface due io the reaction, (e,.g. 23.6 x 10=3 - 20,7 x 10=2 =
2.9 x 1077 cal/sec/en® for the slab 1.27 cm. thick), is not large compared with
the total {lux,and the steady state is clearly associated with a relatively
snall amount of self heating, Third, the value ofo,calculated on the assumption
that the fibreboard is inert,is adsquate for practical purposes,
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It may be noted that as the thickmess of the slab is increased, the heat flux
at the cool surface due to reaction will become an increasing fraction of the

" total flux ando{, which will also inorease, will be subject tc increasing error,

At the same time, however, it is evident from Fig. 1 that, as« increases,
errors in « become less important,

3 {v) Integration of exact equation for temperature distribution

For the conditions

T = T,atx = O
T = Tga.tx.-.r,dT
T = Tg maﬁmm),-a—-;: = 0,

the solution of the exact equation (2)yobtained by mudtiplying the equation by .
dT/dx and integrating twice, may be expressed as follows:-

Tm ,

_ Tm
g \% Tn _Bpr K 225
[ ™ - - 2QFPT
( e m;n) dT + (L '3 CJT)dT= ('Q e (13
\ 7 » 3
Ts - P
Inserting experdimental values of T,,and values of T, and Ty caleculated on
the basis of the approximate equation (B, the left-hand side of the above has
been integrated mumerically and the equation solved for the product Qf.,. For
the two sets of temperature limits available from the tests on the two thicknesses
of fibreboard, we find:- '

0,93 x 1010

Fibreboard 2.5 cm., thick, Qf 10

Fibreboard 1,27 cm, thick,Qf = 0,91 x 10

Ty caloulated on the basis of the approximate theory, will be subject to
very 1Pitie error; and, because Tp - Tg is large, the integration of e E/RT
between these limits is not sensitive to error in the lower limit T, lence,
we may expect the error in Qf to be small, -

Pates of heat evolution at given temperatures calculated from eéua.tion (1 )
with the mean value of Qf (above) inserted are given in Table )4, where the figures
in brockets are the values obtained previously from equation (12).

TABLE &4
Temperature |Rate of heat evolution F
°c ) cal/g/min
305 19.80 (24,60
275 5.30 26.64
250 1.55 (1,96

It can be shown that the error, AT, in ignition temperature calculated
from (5v), due to an ervor & (Qf) in Qf, is given by

AT . T_(_A_Lg;}ﬁ_»v RT , Agf) .
T Qf(2T E Qf

Since, here, A(Qf) = 0,25 x 1010 the error in calculatirg the ignition
temperature of a block of fibreboard, exposed to a uniform ambient temperature,
with data obtained from ignition in'contact with a hot surface, and using the
approximate theory, will be about 1 per cent CK; i.e. about 4°C at temperatures
near 200°C, An error of this order is quite acceptable for practical purposes,
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3 (vi) Validity of Model

The rate of heat evolution at 2509C calculated for thf §ibmboard used in
these tests is one-fifth of the rate calculated by Thomas from Mitchell's
ignition results, (5) and the activation energy is slightly higher, These
differences may be due to differences in the fibreboard and do not necessarily
afford an indication of the validity or otherwise of the model on which the theory
is based, or of the possibility of relating the two types of ignition experiment,

However, rates of heatling calculated from Mitchell's ignition experiments
. differ considerably _ffo rates calculated from his self-heating tests in which
no ignition oeccurred » The reason for these differences is not clear; but
it does not depend on the mathematical analysis, and it suggests that the model
. may be inadequate. This question is being investigated further cxperimentally.

4, CONCLUSIONS

1. It has been possible to extend the thermal theory of explosion to the
- spontaneous ignition of a slab with one face maintained at a relatively high
tenperature, and the other face cooling to the surroundings, I‘or a limited
though useful range of the variables irnvolved,

2, Provided the simple model of the ignition process on which the theory is
based is valid, it should be poasible to -calculate ignition tempexatures
for the ignition of a given material, in a uniform ambient temperature,
with the aid of data obtained from e.xpenmenta.l ignition of the material
on a hot surface (and vice versa), to within about 1 per cent (9K); i ..
about 4OC at 200°C,
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APPENDIX A

Details of calculation of activation energy, etc.

1. Properties of wood fibreboard

Den.sity PPN “ne PP . e se s 0023 g/cm3
Thermal conductivity (7).. tee aes 1.2 x 1074 c,g.5. umts.
Emissivity ... .. +s¢ oo o.. 2assumed unity.

2. Calculation of «

The fibreboard is assumed to be inert so that the heat flux at the cool
surface is given by the simple conduction equation, With this assumption the
-.cool surface temperature is determined by graphical soclution of the following
equation for the thermal balance at the cool surface:-

Kt - tg) ’ =
-—P—z———-g OE(tS + 273)1'- b (to + 273)9 + }lc(ts - to) o«oo-oo‘--(17)
o .
where '
tp, tas to = temperatures of hot surface, cool surface, and

surroundings respectively, °C,

0 = Stefan-Boltzmann constant, c.g.s. units,
he = convective heat transfer coefficient,

The following expression for hg, for horizontal plates facing upwards, has
been used;~

he = 0,38 (tg - £,)%+25 x 1,36 x 10 cal/en?/sec/oc (7)

In the above éxpmssions the temperature of the surroundings was taken as
25°C, , ' :

« is obtained from _

« = % -ts- .
zits =%5)

3. JActivation energy

We have
o

E = 2,303 R °g10( ?2-)1 - 10810( T )2
(1/Tp)2 = (1/Tp)1

where the subscripts 1 and 2 refer to the two thicknesses of fibreboard,

It is necessary, rirst, to assume a value of E in order t: calculate B4
and so obtain &, from Fig. 1, The value of E calculated from the above
equation is then used to correct Op and 8. Further approximations may be
made if desired, but will usually be unnecessary since O, appears in the
logarithms and E is therefore relatively insensitive to systematic errors in &g,

The rate of heat evolution is obtained from equation (412) and converted

to cal/g/min,



-ii- Appendix 1 (continued)

L, Dimensionless auantities

The values of the dimensionless quantities appearing in the amalysis and
used in these and later colculations are tabuloted below for the two thicknesses

ol fibreboard,

Fibreboard thickness, cm, 2,54 | 1.27

Dimensionless quantity:-
« 3.1 1.3
6, ~11,5 |-11.6
O¢ 15.8 13.2
P 5.75 5.20
On 0,032 0.032
C 0.062] 0.070




APFENDIX 2

Temperature distribution in steady state

. {a) Maximum temperature.
| tmu=‘?ﬂ>fem+Tp.°C
(b) Position of maximum. "
x = r(C, cm

(¢) Temperature gradient at c_:ooll surface.

dtg _ RTp? a0s o
dx T d. ° om
where @ © s is calculated from equation (8) for z = 2.

dz
For inert slab,

d s =% -%  oc/om,
d X inert - 2r

(d) Flux (Fg) at cool surface.

Fg = -K @ ¥3,  cal/sec/cm2
' d x ,
(e) Temperature of cool surface-

Obteined by substituting flux Pg in left-hand side of equation (17)

and solving for t4 gra.phic&l],y
(£) e for reactive slab.

Fron boundary conditlon (5i1) we obta:.n

-_____2 4aés ax(tg = to)

d ®
whence

| - - - P -, d ts
( . .ty = %9 d x

(g) Maximum temperature rise due to reactionm,

If the slab were inert the steady- state tempemture distriputioe wiuld
be linear with gradient ‘

TS—TR
2r

If T1 is the tempefa.tum at x we have

E..:E.B: X - Z
Ts =~ Ty 2t ~ 2

Converting to dimensionless form we have

- 3 o




by equaticn

~ii- Appendix 2 (contimed)

In the presence of reaction the temperature, © , at x is given
?6). Hence

e - 61 = -2z es +1ogeA—2loge Coshg (Z"C) .ooooooo-o-.o-(18)

z
This difference is a maximum when
0
—ZE + Ptanh'g (Z-‘C) ='0 ..00000000.00(19)

For given @y, P and C we solve (19) for z and then obtain

.(6 - 81 )pax by inserting these values in (18),

L4

Then (T = T1)pax = RTEZ (0 - 81)max,
E
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