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Summary

An approximate theoretioal analysis is given of a thermal explosion or
ignition, The treatment leads to amalytic expressions for the effect of reastant
consumption on the oriticel explosion parameter and the induction pericd Por
a theoretical nodel where spacial variation of temperature is negleuted, i, e.
where it is treated in terms of an effective transfer ccefficient, The results
are found to agree satisfactorily in a certain range with the more detailed
analyses leading to graphical salutions by Rice, Allen and Campbell and
Todes and Melentiev. The effect of reactant consumpiion on the oritical value
of the explosicn parameter is shown to be about twice that caloulated by
Frank=Kamenetskii, In particular it is shown that for a heat of reaction of
100 cal/gn and an activation energy of about 25,000 cal/mole - values bypical
for the self heating and ignition of fibre insulating boards - there is a
significant effect of reactant consumption on the induction period if the
explosion or ignition parameter is less than about twice the oritical value
calculated assuming no reactant loss,
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Notation

We have the following notation
® = dimensionless temperature equal to E1‘?.,.2(513 -T,)
x = distance co-ordinate °
r = half width of slab, radius of cylinder or sphere
t = . time
a = thermal @iffusivity of the solid = X/po
"r = dimensionisas time equal to é-i__f_

density of solid

Qb
i

3 = the specific heat

L = the thermal conduciivity of the reacting maberial,

—~ERT;

n-i, 2 ©

QP E e
K.R.T*

= the frequency factor

o =
n

the dimensionless rate of heat evolution

order of reaction

fu
i

the dimensgiornless adiabatic temperature rise = %;—ra %
=]

i

B

E agtivation energy

R = universal gas constant

Q@ = heat of reaction per unit mass of substance

n'™= mnagss consumphtion of reactant per unit volume per sec.

k = Oy 1 or 2 for the slab, cylinder amd sphere respectively.

The suffix ¢ denotes critical conditions

A = effective transfer coefficent

W = concentration of reactant by volume

W, = initial concentration

T = absolute temperature

T, = initial temperature and the ambient temperature
X = modified dimensionless time

Y = mnodified dimensionless tempei“a‘mre

P = a.mea.nvalueof‘l+0.726+52

N = 1,39 ('-ﬁ:%)z/ 3 B

A; and B; = Airy funchions

Tr  dimensionless time as defined by Todes and Melentiew

/L = a parameter defined by Todes and Melentiew



'\P a constont mean value of S.i'_B..

X: — Ai (“N) ar

Bi (“‘N)




1. Inftroduction

Rice ‘Allerl1 and Campbell (1) and Todes and Melentiev (2)(3) have given
theoretical analyses of therm;al explosions in which the loss of reastant
during the induction of the explosion was taken into ascount. OSolutions such
as these and those by electronic computers give results in an exact mumerical
form but it is alsc desirable to obtain where possible a more general and simpler
solution with fewer independent parameters, even at the expense of same exsctness,
Frank Kamenetskii (4), with this object in mind, made an analysis which led to a
simple formuta showing the effect of the heat and order of reaction on the

critical parumeter of explosion, In this paper it is shown that Frank Kamenetskii's
resuss underestimates the effect by a factor of about 2,

In gaseous explosions reactant loss is very small because the heats of reaction
are high; but in the application of thermal explosion theory to the self heating and
ignition of wood and similar materials with low heats of reaction, the effect of
reactan‘l;. loss is not negligible and must be conéidémd in any theor;eticaJ:. Msis

_ {
or interpretation of experimentai data, Such an a.ppiica.tién of theoretical results
to experimental data will be considered elsewhere,

In this paper the equations of thermal explosion for the near critical conditio
are reduced by means of certain approximationsto a non=linear differentisl equation,
the solution of which ean be obtained in terms of tabulated Airy functions, In
mﬂi@w, an equation similar to that obtained by Frank Kamenetskii, but with a
different mumerical constant, is obtained relating the critical explosion parameter
to the heat of reaction, and an equation giving an upper limit to the induction
periocd is obtained from a single relation between two groups of parameters, A
method is given for evaluating the induction period genmerally. The results
obtained by this analysis compare  satisfactorily with the detailed calculations of
Rice Allen and Campbell,

In this paper we shall use the word explosion to include the self ignition of

self henting materials.



2. Theory

2.1. The basic egquations

We write the reaction equation as E /‘Q -

m' = —pdwW = 2 . W
pad = pf

"
(1)

where W=W, att = o

We employ the quadratic approximation to the Arrhenius law as given

by Gray and Herper (5)
~ERT - ERT
ie, 2 = (/+07‘20+9) (2)

80 that from the definitions of A [ ‘5 & B

equation (1) becomes

dd — — & 3" a B
7 ._:g.../\ //7‘—07291’"9j (3)

The equation of heat conservation for a symmetricelly heated

material is
O £ dr) _ o7 "
Ka".,?-+3c*2§. ._../C___.- (%)
where T = Toatt = o.

We approximate the left hand side of this equation by =— /rA '(‘7-_'7;_ )/ra.
where A may be regarded as an effective transfer coefficient. It can be
own (6; that this is satisfactory for the steady state and that 4
can be evaluated in terms of k and the real surface transfer coefficient,
Because the spatisl temperature distribution will not be grea:l:lyi different
in form in the transient state, i,e. it can be approximated by a sine
distribution, the same approximation is assumed applicable in the transient
state, The thermal equation then reduces to
0 . S A (1+o720 +92)"“ A0 (5)
ot
Apart from the inclusion of/\ and the use of the quadratic instead of
the exponential approximation, this is similar to the form originalily

discussed by Semenoff (7). Rice, Allen and Campbell made no approximation
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"to the.Arrhenius law,

In the réaction equation (3) we shall conventionally neglect the effect of
temperature variation on the rate constant and we assume a mean value p
for 1 + 0,720 + 02, Approximate upper and lower limits can be ascribed

to p ., We then obtain

= (1 #+(m-1p. cf'r/g) (6)
—~pdT
or A = e B for n=1

To obtain on asymptotic solution for large values of B, we may

further approximate and write

A= /— “—7’0—3{7" . (7

on the assumption that J— A’( << /

Equation (7) can be inserted into equation (5) which wenow proceed to

solve for the asymptotic case of large but finite B/n.

2.2, Solution of equation

We introduce certoin parometers and variables defined by the following

equations:
(a) e = /+ /é?72A &/‘/z (8)

Y is a modified temperature variable,

(1) 732%?1;3- = Zﬁ (f/ 7+ _2£>) (9)
~N .

X is a modified time variable,

(o) “9725 (- &) (10)

For no loss of reactant, i.e., for n equal to zero, the critical

value of J is

- A
JE-EZ . (11)

which is the critical value given by Semenoff's theory (7).
In equation (10) A is a measure of the excess of d over the critical
value for no reactant loss,

Ll
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d e . uz Y /. (1
X =Y —X {\A(I-f- X/N) WX,\/3724//V (43)

(d) Lastly we introduce a parameter . S
5 %

Introducing these into equations (5) and (7) gives

P
LN

| 72
o 2 2 p Y
1€, %‘; X — 7 (5(7"/\:)?@ 2 z/;—XY. ‘?L%‘O(m).

%
72 B
which is independent of .A

The initial condition is

ng__: N _ /;% s
) 72/ 272 %

when X = =N,

Because the quadratic approximation underestimates the actual
temperature function in the Arrhenius term when €22 we shall, like -
Rice, Allen and Campbell, consider O equal to 2 as the end of the
induction, Thus, if X; is the value of X at the end of the induction,

i.e, onset of explosion or ignition

%
), ! N R 3
p—l e _—
. '2'72A - ,?72 q‘[)

the suffix, i, denoting the end of the induction,

when X = L_L

We shall first find the asymptotic sclution for large values of B,

that is, we neglect the last two terms in equation (13) and (14) and

solve
O—Lr“ Va'“x (154)
d¥
with ¥ = -00 whenX = -N
and Y = +00 when X = X,
We substitute Y — — L 0_(4_,4 _ to obtain )
noad X, :
ot -
= — XU o (151i1)

oAy
A " | |



which is the standard form of Airy's equation to which the solution is
u = 01 Ai (X) + 02 Bi (X)
where o, and o, are constants and A4 and B; are the two independent Airy

functions, which have been tabulated (8). The solution fcr Y 1is thus
/ /
.Y e 'qi ( X) 5 EE (’9
Alx) + 5 Bi¥

where the dash denotes differentiation and X is 02/01 and is obtained from

(16)

the initial condition.

. \ AN
i.e. = " —_—— (17)
v BN 7

The equation for ¥ is sketched in Fig, (1). The curve Y2 = X defines
the locus of all points where Oéé_\: is zero and the two branches of
K="=
2y

the locus of points of inflexion,



Typical Y(X) ocurves are shown in Fig. 1. The value of Y for the
point P is 25 4 e 1.26 so that the value of & corresponding to this
: 2
point is 1 + 1,76 (% . Apart from heating conditions near the
critical state the value of 6 at the inflexion is between 1 and
s :
1+ 1.76 @ i,e, @ is near unity for large volues of B,

3. The eritical condition

As will be seen from Fig. (1), the critical value of N is that which

makes Y infinite at an infinite value of X;

i.e. A @ = A M) R; (>
Bi (M)
From tables of the Airy functions Np is found to be 2,338.

Wo must now obtain a value for F .

We have 6
P o= s/(1+0720. 62) ar
7 .
°
and since over a large range of Y, O is close to unity, we get p 2 2,72

approximately as an upper limit. This corresponds approximately to the assump-
tion by Rice, Allen and Campbell of a mean rate constant determined by the
temperature at the inflexion., © increases less rapidly than in proportion to

"Z" 80 a minimmm estimate can be obtained from

/
= f:- = 1(1 + 0,720+ 62) @@ = 1,69,

The choice of a besf estimate for p without a2 more sophisticated
mathemntical tmatment_ is somewhat arbitrery and the mean value of 2,2 is taken
for the purposes of this paper.

Prom the definition of N we then obtain the equation defining the effect

of reactant consumption on the critical parameter R
24 —/
Ew = de@ (| — o?-&’f[ig—) ) (18)

which for large values of B becomes

g = de ( ]+ 4“’(/-@—)%)

which is similar in form to the result given by Frank Kopenetskii (%) only that

2.85 replaces 1,39. We can evaluate

B[ %t -] f0o

from the detailed calculation by
B



Rice, Allen and Campbell, The value :of' this quantity over the range of their

calculation 22< B<C £80 varies between 2.45 and 3,00 but in view of

the approximations made in both treatments, little significance can be atta.éhed

to this variation and the 'l:wo results may be regarded as being in good agreement.
osive or ignition staté

4.1, Limiting values of A

We now consider the induction time for explosion or ignition.

The equation

A; (_Xz) + & BE(Xf) - O (19)

defines values of Xy for values of N greater than Ny and we obtain the
relation shown graphically in Pig. (2).

From equations (9) and (12) we have

o6y
T = T (X; f-N)/ N/ | (201)
+ M (2011)

= 7 G
which with p = 2.2 is (r72 A%

™~ - O 5 'E) SZX’ f—’\ﬂ (204i1) )

(

The ordinz;.te X; + N may thus be directly related to the induction periocd Ty.

Equation (19) refers to a zero value of J\ ; this gives an upper limit
to the value of the induction period., A lower limit is given by the adiabatio
case A equal to 1 and neglecting reactant loss, (thereby slightly
reducing the value oftlg-_ + N).We have from equation ( 5) with A = O and A= |

T L = o- &g

where the end of the induction has been taken at @ = 2,

In the notation uéed here this becomes

g W/ = 147 (21)
Alternatively putting A equel to 1 in equ.a'l:ion.(‘IB) gives
Ny - — XdX
et aN YA
where a = 2. (2
N



! A
Integrating this between the limits — & G a e =~NEXSX;

gives after some rearrangement
2 2 -
N— X = R93/N (22)

Eéﬁa.tion (22) has also been plotted in Fig, (2). For large N this tends
to the result given by eguation (21).,

We now have obtained upper and lower limits for the induction period in
terms of a parameter N, We now develop approximate eqations for
intermediate values of A and the results of these are compared below with
some results of more detailed calculations by other authors,

4.2, Intermedinte values of A

For large values of N, equations (17) and (19) tend to

Xi-i'N = ‘—}—TA% (23)

which is similar to the result for the adisbatic case exgept 1
replaces 1,;7. The fact that (Xj+ N)ﬁ\f_ approaches a constant value,
expresses the fact that at large values of B the product 7:' d~  becomes -

independent of B, We thus write:

X; +N = % N —> oo (2)

where J! -depends on A and lies between 1,47 and “T[ . -Since X varies
between N and -N +J"% - a range which decreases as N increases - we may
as a first approximation treat X as constant in equation (13), This is
equivalent to treating N\ as constant on the right hand side of
equation (5). Thus, in that e-quation we put X equal to its mean value
X = N+ i‘n"———jﬁ _
and solve the equation to obtain a better approximation, Equation (43),

therefore, becomes .,

aul’ - ~ St 272A [y T
Y- E5w) 4N -.ZJR(_(_Y)%/N m)(zs)

This may be salved by the substitution ‘
e — A ol :
; w (— <R\ oK
( _2,v‘/a-)
and we eventually obtadin

. __m\/ fw_ _‘_ﬁawe/fgﬁﬂf/ﬁf— 26)

8-




where

a = 2’ 2
N
= -
Yo= N ELJTi&
- _ QN
M= N{el - 25)

and an integration constant

Ingerting the initial and final conditions eventually gives

-,-;fo.,.w)/M- i;/f = — 2SH-

/— Ma’
VhenN —> 0 _ M =N, —> AN aund gﬁ\__/gr_; O EEAN
T

Hence from equation (27) and equation (24)

%(ﬂ//ho‘é‘?z&) - —2/2724 ﬁ""'“")(zs)

/—8272 A

For amall values of A we have the approximation
N T (1= tosyZ) (29)

Prom the definition of JLU in equation (24) and equation (20)

it follows

I =  oé& (30)

JL
VA
Eliminating /) between equations (28) and (30) gives the asymptotic
solution for large N for any value of A . That is,it gives the
solution to the case of infinite B/n and is equivalent to that given
by Gray and Harper, .

Equation (27) is an approximate solution for any value of N or L\ .

In the case of zero A s 1t reduces to
i
N— T
2/

This equation which is essentially derived from equation (5) with

KN = (1)
) equal to a constant is shown in Fig, (2). Tt agrees well with the Nexnot!"
solution for N/ >4 . It gives an incorrect critical value because

near the critical state the temperature time behaviour is more closely

Boverned by the maximum value of X rather than the mean, Thus, had

we adopted
XiN =

-9



as an approximation in the differential equation we would have

obtained
Xi +N = / =
N— %
This gives too high a wvalue for Xi. + N except of course at infinite N,
" %

but the oritical value A * "i,e, 2,15 is in good agreement with the
value 2.34 already obtained., Equation (27) is also plotted in Pig, (2)
for A equal to"/ . This gives values of X3 + N slightly higher than
equation (22) which was derived from equation (13), while for A zero
: equation.(27) in the simplified form of equation (31) gives values which

are slightly lower than those obtained from (19), also derived from
equation (13), It is me# reasonable to expeot, therefore, that for
intermediate values of 4] equation (27) is as good or better an
approximation than at the extreme values of A .

We may note that the condition for the employment of equation (7)
for a first order reaction is that to a4 5 per cent approximation

A.IT /
e <74

ie XN << 02 Ba/
Provided B is in excessof 30 this condition may be regarded as being
sati:s'fied for N73 A4 and for lower values of N when B is la.rge;r. We
can for convenience in cases where 4 is smail, use equation (27) in
the form of a correcotion to the solution for A equal zero, by
developing a series for Xj + N in ascending powers of AVL

This gives

(xp+y)y = (i en)  i=tos Ja (- ,r;ﬁs[)) j)ua

+0:34% A .
5. Con;_parison with more detailed calculation

5.1. Caloulations of Todes and Melentiev

Todes and Melentiev (2) have published various graphs of temper=
ature against time for four values of B. Two of these are for low

values of B whioh do not give a sharp ignition or explosion,
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Of the two others one can be used for obtaining the induotion time over
a small range of values of c§ near to the critical state ;vhiqh is a
sensitive test of this caloulation method, This is Fig. (7)p1605 of
reference {2), The ;;arameter S does not appear explicitly but the

Me

ratio Cr/d’c equals /A in their notation, Denoting the time variable

used by Todes and Melentiev as 7. we have

7;/“ = e.d . T (33)

The graphs are for the condition n =1 and B = 300 so that withp = 2.2

_ 2,3l ;
A, - 0,83 300%3 0063

Therefore the critical A given by Todes and Melentiev, O -693 x 10710

-10
corresponds to a/u‘ for no loss of reactant of 0 6930"{9;3 i.e.

0. 7ho x 1010, From s and M, we caloulate A as \— P omd howee A,

From Fig, (2) we find Xj+ N for zero 4 , apply the correction given
by equation (32) and use equations (33) or (22) to evaluate 7% .
The caloulations are given in Table (1) for the region near the critical

condition,

Table 1, Comparison with some calculatiohs by Todes and Melentiev

) xl + N) T 210710 | 1 21010
A 4 N Pig.02) | (X + N) |calowlated |caloulated
| — \Thomas) | (T & M)
0.65 x 10~10 | 0,121 | 4.5 1,61 1,03 15,9 16.5
0.68 x 1010 | 0,088 | 3,05 2,25 1,80 26,5 23
0.69 x 10~10 | 0,0725| 2,53 2.93 2046 3545 33

The induction times given by the two methods of calculation are in
good agreemernt.
5.2, Calculations of Rice, Allen and Campbell

The reéults of the ocaloulations by Rice, Allen and Campbell are
given graphically for a range of conditions.and we have accordingly
evaluated a rmmber of ~re8ults by both methods in the range just above
the critical. Certain values of the parameters f and © used by Rice,

Allen and Campbell were taken and A was thon found from

. F o= defy = )~ A
The parameter I used by Rice, Allen and Camvbell is in the notation
of this paper, I = B, T and 8 = 1/2B.

@] f=



We have 1+x'1

N BA
so that from the definition of Ny with p = 2,2 , : :° - 'n.
' (Xy + W) = _ﬁﬂ

This equation was used to obtain an estima.te of Xy + N from the values of I
given by Rice, Allen and Cempbell, The calculations are summarised in
Table 2,

Table 2.

Comparison with some cdleulations by Rise, Allem and Campbell

17606[ B ol-bgfl A | ¥ fxi;}gogm b; e(.xw)A' (X1 + Wfrom

. 2o  equation(32)| Rice, Allen

— | & Cempbell
30 | 29. | 0.175| 0.33 | 2.59 2.85 1.7 1.67
30 | 29.4 | 0,20 | 0,36k | 2,86 2.4 1ok 1051
10 | 88 0,075| 0,458 | 2,58 2,85 2,15 . 2,05
10 |88 |-0,100] 0,204| 3.27| 2. 147 | . 1.50
10 |88 | 0.475| 0.33 | 5. | 1.4 0,81 1,04
5 176 | 0,045 0,098| 2,57| 2.87 2,36 2,25
5 N76 | 0.05 | 0,108| 2,79 2,51 1096 1,88
5 N76 0510 | 0,204 5.21 1 bidr 0,9, 1.04
4 20 | 0,05 [ 0,103 [3,07| 2.2k 1.73 1.7
14.._3220 0,10 | 0,188 5,52 140 0,92 0,9

Agein the agreement is quite satisfastory in view of the approximations
made in both treatments,

6. Non explosive conditions

For N< N, there is no inflexion and @ rises to a maximm velue of oxdsr
unity end then falls, The position of this maximm is obtained for A-zen Gy
differentiating equation (15) and putting % zero, The solution is
given in Fig, (2) in terms of the modified time X+ N for the special case
of zéro A . .

-1 2w



7. The induction period at the oritical condition

Rice, Allen and Campbell pointed out that in theo:jr very large induction
periods can be obtained near the ceritical condition when the heat of reaction
is large, but in practice it is not possible to achieve these (1), The
mathematical analysis given by Rice, Allen and Campbell and that given here
are hardly valid for this case, because of the approximation of a rate
constant which does not vary with temperature, However, for the sake of
generality we shall obtain, by means of different approximation, a theoretical
result for this situation which it is interesting fo compare with a rumerical
theoretioal result obtained by Todes and Melentiev (2), We note that the
critioal state is characterised by an almost Ilinear rise in temperature over
a relatively long time, We shall revert to the expon¢ntial approximation to
the Arrhenius law for mathematical convemience and write equation (5) in the
form .
N=) L8+ hp) -6

= _o_éf’ e

S

This is differentiated treating :_g; as a constant V » The elimination of

(3%)

A % by means of equation (3) then gives, for a first order

reaction : &
AY + (WH?Q y = _}%[ ¢ /%’L%L@) (35)

At the critical condition Cf is approximately Jl'll/e and we solve equation

(35) which is quadratic in'yzto give

O-1 = -
(0 o) HEET

A
In the case of large values of B, a minimum value of
value of &p, where Op - 1 >> [Q‘Q"-‘J)/B
so that equation (36) can be simplified to
&~/
o & e (37)
A B

and ';0 is a minimum when

2.
Gy =/ = b = © (38)

ie, O = 1.62 (39)

ocours at &

N\

13-



Hence from equation (37)

Y — 452 . "~ (40)
=) a8
Approximately, the induction period is given by
> = On
] 5w %“"
which from equations (25) and (27) gives
01ZR ' | .
75U - g ~ o (W)

Todes and Melentiev give some graphical results in Fig, ('f) P.1606 of
reference (2) in terms of vardables 7; , the suffixdenoting Todes' time

variable and a cooling paz‘ametey . In terms of these, equation (41 )

beconea
T = ed T _ 0326
z e . (42)

The ‘graph in this figure is for B equal to 216 and it gives the oritical
value of. /l( as 6.82;. x 10=? so that we calculate from equation (42) the

critical induotion period as .
@
: O-23xArbxro " : 0
T = bl ~ // xso
€-€E¢
which agrees very closely (less than 5 per cen;t) with the result obtained

by Todes and Melentiev, _

The solutions to equation (36) have been calculated for a range of
values of B,S<A< and these show that "%{ ;is within 1-“5% of the result
derived for large B.

However, the calculations of Todes and Melentiev for B equal t¢o 9 show
that at this low velue of B, there is no marked distinction between ignition
and non-ignition and the identification of an induction period is somewhat
arbitrary and the result obtained from equations (41) and (42) only gives the

order of magnitude of the time to reach a temperature corresponding to O unity,
8, Discussion and conclusions l

The analysis in this paper of the thermal explosion equations gives general
results in terms of tabulated functions, Comparison with more detailed analyses
which make fewer approximations but which do not lead to general solutions shows
this treatment to be satisfactory for large but finite values of B, In particular,
the general formula for the effect of reactant loss on the oritical explosion
paremeter is satisfagtory for values of the dimensionless adisbatic temperature
rise of the reaction, at lgast as low as about 20, Induction periods hawve been
obtained in terms of the roots of an equation of tabulsted functions and a simple
correction which gives results agreeing with more detailed mumerical caloulations.

Al



In particular, this analysis has shown the importance of a parameter N
which has, as was shown by Frank Kamenetskii, a critical _value. for explosion
where there is reactant cuusumption. Apart from this one car also say from
equations (24), (27} and (31), that for induction times to be affected

more than 5 per cent by réantant loss the value of N should be such that
JL /

n = o

2w ro

N> (sF)”

The largest value of 1 is 77 and as JU only vaeries by a fagtor of about

%

2 in the entire range of /\ and 2 by about 25 per cent, we take the

condition as approximately
N > 4.3

The range of values of N where reactant consumption affects the behaviour is thus
relatively small, 2.4 << A < 4.3, and this demonstrates the usefulness of
this paramster in desoribing the explosion behaviour.

For a material such as fibreboard, the heat of reaction is of order
100 cal/gm and E about 25,000 cal/gm/mole. B is about 25, so that N is
about 7A and the role of reactant loss must be considered for heating
conditions, where d is less than 2,5 d, .
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