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Summa.r;r

An approx:i.1nate theoretical ana,1ysis is gi:ven of a thermal. explosion or
ignition. The treatment leads to anaJ;ytio expressions for the ef'f'eot of reaot.a:nt
consumptdon on the oritdoaJ. eJqlJ.osion parameter and the induc·tion pe>:riotl. :r·or·
a theoretioa1. model. where spacial. variAtio:n of. temperature is neglet:rted.. i. e.
where it i.s treated :in terms of an eff'ecti've transfer coeffioient. The results
are found to agree satisfactori.1y in a. certa.in range with the more detailea.
a.:na1,yses leading to graphical sOlutions by Rice, Allen and. CampbeJJ. and.
Todes and. Melentiev. The effect of' rea.c:tan~ oonsumpM.on on the critical value
of' the expJ.osion parameter is shown to be abO'lJ.t twioe that oaJ.oulated by
Frank-Kamenetski:i.. In particu1.a.r it; i.s shown that for a heat of' reaction of
100 ca1.Igm and an activation energy of about 25.000 ca.1/moJ.e - '\Talues 'l;ypiGal
f'or the self heating and. ignition of fibre insulating boards - there is a
significant effeot of reactant consumption on the induction period if the
expJ.osion or ignition parameter is l.ess than about twice the critical va.1.ue
calculated assuming no reacrtant J.oss.

August 1959 Fire Research Station,
Bareham wooa.•
HmrS.

© BRE Trust (UK) Permission is granted for personal noncommercial research use. Citation of the work is allowed and encouraged.



Notation

We have the follow:i.ng notation

x = distance co-ordinate•

e = dimensionless temperature equal to"!" (T - To)
RT2 .

o

li

r _ haJ.f width of slah. radius of cylinder or sphere

t :::. time

a ::: themal diffusiv:i.ty of the solid ::: K/po

dimension.'.':;s,; time equal to at
T2.

density o:f sol.id

I! •. the specific hea.t

:. ::: the themal coniluct.ivity of the reacting material.

l' _. the f'requency factor

,s ::: the dimensionless rate of heat evolution

•

•

n ::: order of reaction

B .- the dimensionless adialJatic temperatura rise :::

E ::: activation energy

R = universal gas constant

Q ::: heat of reaction per unit mass of substance

mtc'= mass consumption of reactant per unit volume per sec.
,I

k = 0.'1 or 2 for the slab, cylinder am. sphere respeotiveJ.;v.

The suffix 0 denotes or:itica.1 conditions

A = effective transfer coeffioent

W ::: concentration of reactant by volume

Wo = initiaJ. concentration

T = absolute temperatura

To = initial tempera.ture and. the ambient temperature

X ea modified dimensionless time

Y :: modified dimensionless temperature

p ee a mean value of 1 + 0.72 fJ + if.

N = 1 .39 (.-l4i/3 ~np

~ and Bi =Airy- :functions

dimensionless time as defined by Todes and Melentiev

r = a parameter defined by Todes and Melentiev



a constant mean vaJ.ue of' cl.9
ci.'t

A=

•

•

'.
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1. Introduoti.on

Rice Allen and. Campbell ( 1) and. Todes and Melentiev' (2)(3) have given

theoretical analyses of thermal explosions in which the loss of reactant

during the induction of the explosion was taken into account, Solutions such

as these and. those by electronic computers give results in an exact numerical

f'orm but it is also desirable to obtain where possible a more general and. simpler

solution w:ith fewer independent parameters. even at the expense of some ezactmesa,

Frank Kamenetskii (4). with this object in mind. made an ~sis which ledte a

simple fonm:tla ",howing the effect of the heat and order of reaction on the

critical par-<1llleter of explosion. In this paper it is shown that Frank Kamenetskii' s

reSl1::c. underestimates the effect by a factor of about 2,

In gaseous explosions reactant loss is very small because the heats of reaction

are high. but in the application of thermal explosion theory to the self heating and

ignition of wood and similar materials with Low heats of reaction. the effeot of
, , ., I"

reactant loss is not negligible and must be considered ,in aII<1 theoretical e..ro.1ysis
, {

or interpretation of experimental data, Such an application of theoretical results

to experimental data w:ill be considered el.sewhere.

In this paper the equations of thermal e:)Cplosion for the near critical conditiO!

are reduced by means of certain approximationsto a non=linear differential equation,

the solution of which can be obtained in berma of tabulated Airy functions. In

particular, an equation simflar to that obtained by Frank Kamenetskii, but with a

different numericaJ. constarrt , is obtained relating the' critical explosion parameter

to the heat of reaction, and an equation giving an upper limit to the induction

period is obtained from a single relation between two groups of parameters. A

method is given for evaluating the induction period generally. The results

obtained by this anaJ.¥sis compare' satisfactorily with the deta.iled calculations of

Rice Allen and. Campbell.

In this paper we shall use the word explosion to include the self ignition of

self heating materials •



2 • Theo:r:;y

2.1 • The oo.sic eguations

We write the reaction equation as EI.
- /~T

mill = -fl~ = ;p f.e.- .

where W =Wo at t = 0

...

- E/~7;C ..... \'e /+ O'7:lG + e ./.
•

We employ t!J,e qua.d=tic approximation to the ArThenius law as given

by Gray and Harper (5)

-G/~T

-e..

so trJ:J.t from the definitions of

equation (1) becomes

dA-
cl~

The equation of heat conservation for a symmetrically heated

material is

d-r) =fC dT _
£ at

Q..
tve

"'*' (4-)

where T = To at t = o ,

We approximate the left hand side of this equation by ...- Ir."A .[1-7;;)/y,"2-
where A lIlll¥ be regarded as an effective transfer coefficient. It can be

shown (6; that this is satisfactory for the steady state and that A

can be evaluated in terms of k and the real surface transfer coefficient.

Because the spatial temperature distribution will not be greatly different

in form in the transient state, i.e. it can be approximated by a sine

distributicn, the same approximation is assumed applicable in the transient

state. The thermoJ. equation then reduces to

,

Apart from the inclusion of A and the use of the quad=tic instead of

the exponential approximation, this is similar to the fom originally

discussed by Semenoff (7). Rice, Allen and Campbell made no approximation

-2-



•
. to the Arrheriius law•

In the reaction equation (3) we shaD. conventionally neglect the effeot of

temperature va.r:i.o.tion on the rate constant and we assume a mean vaJ.ue p

for 1 + 0.720 + 02• Approximate upper and lower limits can be ascribed

0"

,
•

to p

or

• We then obtain
~--

A'H. =- (/ T(~-I)F. cr: r/E) ii-I

- etI:r. .
A = ~ B for n = 1

To obtain an asymptotic solution for large vaJ.ues of B, we ma;;r

(6)

further approximate and write

A,'1.. =- 1-

on the assumption that

'l1..f'.cr:?:
:B

l-A1{~ /

Equation (7) can be inserted into equation(S) which we noW proceed to

solve for the asymptotic case of large but finite Bin.

2.2. Solution of equation

We introduce certain parameters and va.r:i.o.bles defined by the following

equations:

(a.) 9- (8)

Y is a. modified temperature vo.riable.

me tfT = A (I +- X)
B' L...\ tv

X is a modified time variable.

(0)

For no loss of reactant, i.e. for n equaJ. to zero,' the oritico.l

vaJ.ue of d is

=

.'

which is the critico.l value given by Semenoff's theory (7) •

In equation (10) /). is a measure of the excess of cr over the critical

vaJ.ue for no reactant loss.

-3-



( d) lastly we introduce a parameter
~ 2-1

.N ===- ~;' 7~ ~ E ,~
.' (~l:Jz/3

Introducing these into equations (5) and (7) gives

( 12)

which is independent of 1l

The initial. condition is

when X = -N.

Because the quadratic approximation underestimates bhe actual

temperature function in the .A:rrl1enius term when 6> 2 we shall, like

Rioe, Allen and. Campbell, consider 6 equal to 2 as the end of the

induotion. Thus, if Xi is the value of X at the end of the induction,

i.e. onset of explosion or ignition

y= f-j N
:<'72~

when X = ~

the suffix, i, denoting the end of the induction.

We shall first find the asymptotio solution for large values of B,

that is, we neglect the last tm> terms in equation (13) and (14) and

solve

ciY_ y2-_ ;X
(15i)- -

d.. 'f. ,
with Y = -(X) when X = -N

and Y = +00 when X = X.
J.

We substitute Y= - J.- ~
. t-t cLX ... ·

-12'a-u:
0<. ')(:l -=- -X U· .

-4-

to obtain

(15ii)



('16)--

'.

.'

which is the standard form of Airy's equation to which the solution is

where 01 and. ~ are constants an:l ~ ana. Bi are the two in.dcpend.ent Airy

functions, which have been tabulated (8). The solution for Y is thus

4/(Xj + ~ g/(y)

At(X) + () e. ('6J
where the dash denotes differentiation and b"'is °2/ °1 and is obtained from

the initial condition.

Pn E-NJ
"E; (-N)

Th,e equatdon for Y is sketched in Fig. (1). The curve y2 ::: X defines

the locus of all points where ~ is zero and the two branches of

'X = y2--fy
the locus of points of inflexiono

-5-



Typical Y(X) curves axe shown in Fig. 1. The value of Y for the

1 ,
point P is Z3 1 e. 1 .26 so that the value of e corresponding to this

, (; t:?.,11
point is 1 + 1.76\.~ • Apart from heating conditions near the

critical state the value of e at the inflexion is bejween 1 and
~ fo, 113

1 + 1.76 (1f) i.e. e is near unity for large values of B.

3. The critical condition

As will be seen from Fig. (1), the critical value of N is that whioh

-,

makes Y

i.e.

infinite at an infinite vn.lue of Xj

1/; (-NL)

8/, (-NJ
8; (~

From tables of the Airy functions No is found. to be 2.338.

We must IlOIV obtain a value for r .
We have B

F =.fJ + 0.726+ 82) d1"'

o

ana sinoe over a large range of Y. 0 is close to unity, we get p'; 2.72,
approx:iJnately as an upper limit. This corresponds approximately to the assump-

tion by Rioe, Allen ana Campbell of a mean rate constant determined by the

temperature at the inflexion. e increases less rapidly than in proportion to

T so a minimum estimate can be obtained from

I

= 'f = }(1 + 0.720 + 02) de = 1.69.
o

The ohoice of a best estimate for p without a more sophisticated

mathematical treatment is somewhat arbitrary ana the mean value of 2.2 is taken

for the purposes of this paper.

From the definition of N we then obtain the equation defining the effect

of reactant oonsumption on the critical parameter

whioh for large vn.lues of B becomes

cf(~ = d;.(~ ( / -+ ~'R~~~]
which is EtimiJar in fom to the result given by. Frank Kamenetskii (4) onJ,y that

2.85 replAces 1.39. We can evaluate

13 % /:<1;,(/3)- cr;(~)]/cr:.(8)
. from the detailed calculation by

-6-



Rice, Allen and Campbell. The value of this q).l!U1tity over the range of their

calculation /1:1..<: B< R80 varies between 2.4-5 and 3.00 but in view of

the approximations made in both treatments, little significn.noe con be attached

to this variation and the two resu1:ts m:'o/ be regarded as being in good agreement.

4-. The explosive or ignition state

4-.1. Limiting values of A.
We now consider the induction time for explosion or ignition.

The eqp.ation

Ai (X,) + (S 8;(X;J - 0

defines values of J4. for values of N greater than No and we obtnin the

relation shown graphicuJ.ly in Fig. (2).

From equations (9) and (12) we have

(20i)

(20ii)

(20iii)
7

I

o· 6/ 0<; f-N)/~
s II L\
J- f&.\ 1 (Xi ~N) ,
~ l~.J I, I/~

whiCh with P = 2.2 is \..R'FJf)
L fA

O~5"S- C~J j (Kl f-tI/)
The ordinate X:i, + N may thus be direot::l;y .related,to,th~ ~'?ti,on. period Ti •

Eqp.ation (19) refers to a zero vaJ.ue 'of A; this gives an upper limit

to the value of the inauotion period. A lower limit is given by the adiabatic
, ,

case A equa.L to 1 and neglecting reactant loss, (thereby slightly

reducing the value Of(~ + N). We have from equation ( 5) with A =0 and >-. = I

where the end of the induction has been taken at e = 2.

In the notation used here this becomes

(Xi+ N)F
Alternative::l;y putting .4

= 1 0 47
.

equaJ. to 1 in eqp.ation (13) gives

-7-



Integrating this between the limits
I

CL Q.-.( - N-ex-eXi
gives after some rearrangement

Z 2- ' J"':7
N - Xi =- e. q 3..,/N

Equation (22) has also been plotted in Fig. (2). For large N this tends

to the result given by equation (21).

We now have obtained upper and lower limits for ~he induoti:-0n period :in

tems of' a parameter No We now develOp approximate equatdons for

intermediate values of A and. the results of these are compared below with

some results of more detailed Oalculations by other authOrs.

4.2. Intermediate values of A
For Jarge values of N, equations (17) and (19) tend to

~+ N

which is similar to the result for' the adiabatic case emept T
replaces 1.47. The:f'a.ot that (Xi+ N)fNapproaches a constant value,

expresses the faot that at large values of B the product 1'; a becomes

independent of' B. We thus write:

x; +-N -= (24)

where JL ·depends on ~ and lies between 1.47 and 1'\. 'Since X varies

between -N and -N + jh - a range whiah decreases ~s N iIXn:~ases - we ~

as a first approximation treat X as constant in equation (13). This is

equivalent to treating A as constant on the right hand side of

equation (5). Thus, in that equation we put X equaJ. to its mean vaJ.ue

X = ~+ ~2.J N

and. solve the equation to obtain a better approximation. Equation (13),

therefore, beoomes •

, cLu...----- -( (_ ....R..,) ~.:z /I{ .....

-jtjrJ - ~wt /1-txjN- ~}26)
-8-

and we eventuaJ.J.y obtain

L/ 0.. No
I~ .:<.

This IIl8\Y' be solved by the substitution

y~ --'-.
LA..-



where

a = J2.-;2
N - N Jl-

o - z..JN

1'4 = N~~ I - tN~.)
and. an integration oonstant¢

Inserting the initiaJ. and finaJ. oonditions eventually gives

~f'x;rNj jM- ~2!= -

When N --? (J) ., M ~No -:;:> N

Hence from equation (27) and equation (24)

-= - .2J~~Z24 (,) I-O'6f~O(28)
1-~y~A

For small values of A we have the approximation

From the definition of Jl. in equation (24) and equation (20)

it follows

0-6/ JL-wr
(30)

Eliminating Jl between equations (28) and (30) gives the asymptotio

solution for large N for a:ny value of t:4. • That is ,it gives the

sQllitiqn to·the_o.a~ of infin:ite Bin and is equivalent to that given

by Gray and Harper.

Equation (~7) is an approximate solution for arv vallie of N or 1:4. •

In the case of zero·b,. , it reduoes to

--X" t-N, I 7N - rr­
V 27ii

This equation which is essentially derived from equation (5) with

A equa]. to a oonstant is shown in Fig. (2). It agrees well with the '~exaot"

solution for N > If-. It gives an: incorreot oritical vaJ.ue because

near the oritical state the temperature time behaviour is more closely

governed by the maximum value of X rather than the mean. Thus, had

we adopted

Xf-N --
-9-



as an approximation in the differential equation we would have

obtained

--.

This gives too high a value for Xi + N except of course at infinite N,.
. , l/;

"."3 ,
but the critioaJ. value f( i.e. 2.15 is in good agreement' with the

vaJ.ue 2.34- alread;r obtained. Equation (27) is also pJ.otted in F:i.g. ("2)

for A equal to"/. This gives values of Xi + N slightly higher than

equation (22) which was derived from equation (13) t while for A zero

equation (27) in the simplified form of equation (31) gives values which

are slightly lower than those obtained f'rom (19), also derived from

equation (13). It:i:s" reasonable to expeot, therefore, that for

intemediate values orA equation (27) is as good or better an

approx:i.mation than at the extreme values of A .

We may"note that the condition for the employment of equation (7)

for a first order reaction is that to a 5 per cent approxima.tion

,
f :~.

p .d.7':

B

Xf-N
Provided B is in excess of 30 t;his condition may be regarded as being

satisfied for N/,3.4 and for lower vaJ.ues of Nwhen B is J.Arg~r. We

can for oonvenience in cases where .4 .is small, use equation (27) in

the f'orm of' a oorreotion to the solution for A equal zero, by
ilL

developing a series for Xf. + N in ascending powern of A •
This gives

5. OomI?3-tison with more detailed oaleulation

5.1 • Caloulations of' Todes and Melentiev

Todes and Melentiev (2) have published various graphs of temper-

ature against time for four va1.ues of B. Two of these are for low

vo.J.ues of B which do not give a sharp ignition or explosion.

-10-



Of the two others one can be used for obtaining the induotion time over

a small. range of values of cl near to the critical state ;miO~ is a

sensitive test of this calculation me'thod., This is Fig. (7)p,1605 of

reference (2). The ~eter d does not appear explicitly but the

ratio ~ equals -» in thei~ notation o Denoting the time variable

used by Todes and. Me1entiev as 7; we have

The graphs are for the condition n = 1 and B =300 so that with P = 202

Ltc = 2 0 34 2/ = 0.063
0.83 JOO 3

Therefore the criticaJ./- given by Todes and Me1entiev, 00693 x 10~10

00693 f;{ 10-10
corresponds to a",)At. for no loss of reactant of 0

0

937 i.e..

0,,740 x 1010• From,/' a:nii/'t we calculate 6. o.s ,- ~~c ~bu N.

From Fig. (2) we find Xi+ N for zero A, apply the correoti.on given

by equation (32) and'{;se equations
l
(3:3) or (22) t~' evaluate'?; ..

The caJ.au1ations are given in Table (1) for the region near the critioaJ.

oonditiol'l.

Table 1. Comparison w:i.th some calculations by TOMS and Me1entiev .

..
1"( x10-10 1'T x10-1O

/A it N (~+ N)f
from Fig. 2) (Xi + N) caJ..aulated oaloulated

I 'l '1'hnmo ." } tT& M)
0.65 x 10~'10 0 ..121 4 ..5 1 061 1 ..03 15 ..9 16.5

0.68 x 10-10 0.088 3.05 2.25 1.80 26,,5 23

0.69 x 10-10 0,,0725 2.53 2.93 2..46 35 ..5 33

The induction times given by the two methods of oaleuJ.ation are in

good agreement.

5.2.. Calculations of Rioe, Allen and Campbell

The results of the oalculations by Rioe, All.en and Campbell are

given graphica.l.ly for a range of oonditions, and we have accordingly

evaluated a number of results by both methods in the range just above

the criticaJ... Certain vaJ.ues of the parameters f and 8 used by Rice,

Allen and Campbell verehaJren and .A was then found ,from

f "=. <kId - /- A .
The parameter I used by" Rioe, AlJ.en and Campbell is :in the notation
of this 'raper, I = (>.•,0:7:: and e = 1/2B.



We have 1 + X:t = ..L
N BA

"

so that from the definition of N. with P = 2.2', ,:' '. ~"

, (~ + N) = °Bf:& .', '
This equation was used to obtain an estimate of X:t + N from the vaJ.ues of I

given by Rice. Allen and Campbell. The oalculations are B'llIlIIIlarl.sedin

Table 2.

Table 2.

Comparison with some oaJ.aula.tions b;r Rice. Allen and. Campbell

'.

176QE B
-~Iof ' Ii N ~N)o:f'rom - or.:t+N),, - (Xi + ~)froin

Fig.2. ~ equatiOIR.~2) Rice Allen• ,S' • "
8: Campbell

"

30 29.4 0.175 0.33 2.59 2.83 1.71 1.67

30 29.4 0.20 0.364 2.86 2.44- 1044 1.51

10 88 0.075 00158 2.58 2085 2015 2005

10 88 0.100 0.'1.04- 3.27 i..~ 1."-7' 1.50

10 88 0.175 0.33 504 1 0 41 0.81 1.04-

5 76 0004-5 0.098 2057 2087 2036 2.25

5 ~76 0.05 0 ..108 2.79 205'1 1096 1088

5 ~76 0.10 0.2Q4. 5.21 1.44- 0.94- 1.04-

4 ~20 0.05 0.103 3.07 2.24 1.73 1.71

4. ~20 0.10 0 0188 5.52 1.4-0 0 0 92 0.911-
• --

Again the agreement is quite satisfaotory in view of the appro:x:l.mations

IIlBilfl in both treatments.

6. Non explosive conditions

For N<. No there is no inf'le:x:ion and a rises to a max:iJJIum vaJ.ue of ord=

unity and then falls. The position of 'chis ma:x:1JDum is ob.~,fImo11~ (,'4­

differentiating equation ('15) and putting.2! zero. The solution is : ,ax
given in Fig. (2) in tems af the modified time ~+ N for the speoiaJ. case

of zero h, •

-12-



7. The induction :period at the oritica.J. condition

Rioe, Allen and Campbell pointed out that in theory very large induction

periods can be obtained near the critical condition when the heat of reaction

is large, but in practice it is not possible to achieve these (1). The

mathematical analysis given by Rice, Allen and Campbell and that given here

are~ valid for this case, because of the approximation of a: rate

oonstant which does not vary '\Vith temperature. However, for the sake of

general:i.ty we' shall obtain,' by'm~ of dif'fereiltapprilximation, atheoretica.J.

result for this situation which it is interesting to compare with a numerical

theoretioaJ. result obtained by Todes and Melentiev (2). We note that the

critical state is characterised by an almost linear rise in temperature over

a relatively long t:iJne. We shall revert to the expo~ntia1 approxima.tion to

the Arrhenius law for mathematical convenience and write equation (5) in the

form

I\~ = ! fi1 ,,+ 4/3!.:"
This is differentiated treating :::. as a constant ¥'.
A CJCA..eI ~ by means of equation (3) then gives,

&17"
reaction

The e1im:ination of

for a first order

At the critical condition cf is appro:x:i.ma.te1y Afe and we solve equation

(35) which is quadratic in jt'to give

;Zf - -(fJ-I - e:) +i:-&---/--e-::--)-,,,-1-----: (,36)

In the case of large vaJ.ues of B. a minimum value of

value of Om, where Om - 1"::::"'> (e-~-o/g
so that equation (36) can be simplified to

&..e 19-1

13

~ ocours at a

and '¥' is a minimum when

£I 2-
C71J( -I

-13-
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Hence from equation (37)

l.f1",;.. =
7r

(4.0)

Approximately, the 1nduotion period is given by

r-')--c' ~ ehl
(; 1.;-.. If1' io

r'-''''
which from equations (25) and' (27) gives

t)-IZS<

·cr
Todes and Melentiev give some graphical., results in Figo (f) p ..1606 of

reference (2) in terms of va:rlAbles 7;, the suf'f:!xdenoti:ng T<?dB~~ time

variable and. a cooling paramete/ a In terms of these 3 equation (4.1)

becomes

«e:r
/A

The 'graph in, this figure is for B' equa1 to 216 and. it gives 'the critioaJ.

...

value "s" as 6.az.. x 10-9 so that we oaloulate from equation (42,)
.. .

oritic8J. induotion period as

0- S 3 ;c :l ( b ,e 10 ?: ' 10
-='- / .. I Yo I' 0

the
.'

6 A <f' ¥. J!nvy

which agrees very olosely (J.ess than 5 per oe~) with the result ,obtai..nad

by Tod.es and Melentiev 0

The solutions to equation (36) have been oalou.lated for a range of

vaJ.ues of B, S<d~ and these show that 7;d" ; is w:f.thin:!' ~ of the resultcs
derived for large B.

However, the oalculations of Todes and Melentiev far B equal to 9 show

that at this low value of B, there is no marked distinction between ignition
~

and non-ignition and the identti'ication of an induction period is somewhat

arbitrary and the result obtained from equations (41) and. (~) o:nl\v gives ~he.

order of magnitude of the time to reach a temperature corresponding to 0 unity..
I

8.. Discussion and cono1usio~

The ana.lysis in this paper of the thermaJ. explosion equations gives get:lBraJ.
results in terms of tabuJated functions.. Comparison with more detailed a:naJ.yses
which make feWer approximations but whiah do not lead. to general sol-gtions shows
this treatment to be satisfactory for large but finite valuE\ls of B, In P?,rtioular9

the generaJ. formula for the effect of reactant l.oss on the oritical eocplosion
parameter is satisfaototy for values of the dime~ionless8:a:ia.ba.tio temperature
rise of the reaction, at 14ast as low as about 20.. ,Induotion p;:l'riodB have been
obtained in tems of the roots of an equation of tabu.lB.ted f'uilotions ana. a sim.pl.e
oorrection which gives results agreeing with more detailed I1UJII6rioaJ. caJ.cuJ.atiOIlS o



•

In partioular, this a.naJ.ysis has shown the importance of a parameter N

which has, as was shown by Frank Kamenetskii, a oritioaJ. value far eJqil.osion

where there is re'l.Otant C(hlsumI,tion. Apart from this one oar also say from

equations (24-), (27) and (31), that for induction times to be affected

more than 5 per cent by reactant loss the value of N should be such ths.t

The largest value ofJI. is

2 in the entire range of 6.
condition as approximately

7r and as Jt only varies by a factor of about
tlj

and ...12..- by about 25 per cent, we take the

The rsnge of values of N where reactant consumption affeots the behaviour is thus

re~tively small, 2.4 < N < 4.3, and this demonstrates the usef'uJ.ness of

this paxameter in describing the explosion behaviour.

For a material such as fibreboard, the heat of reaction is of order

100 oaJ/gm and E about 25,000 oaJ/gm/mole. B is about 25, so tha'h N is

about 7 A and the role of reactant loss must be considered for heat:ing

conditions, where d is less than 2.50: •
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