L3

&

~ n - g DSIR AND FOC
ag RETT T b ﬁf SME{BEZ FIRT RESEAF"M
{i rr"*""nﬂ q [.-«tr AR R e \WJrils 5 oz~ mzation ()
L.wga_,.ﬂ“ hl‘:-“‘h e L owd . H nT FEP-I“JCE - BﬂADY
\No ACOT &l

F.R. Note No.,;9l.

DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH AND FIRE OFFICES' COMMITTEE
JOINT FIRE RESEARCH ORGANIZATTON

This report has not been published and
should be considered as confidential advance
information. No reference should be made to
it in any publication without the written
consent of the Director, Fire Research Station,
Boreham Wood, Herts. (Telephone: ELS 1341 and

1797).

A NOTE ON THE OPERATION CF HEAT SENSITIVE LINE DETECTQRS

by
R. W. Pickard

SUMMARY

The temperature distribution in the element of a
heat-sensitive line detector has been analysed.. A method
of assessing the performance of this type of detector has
been suggested.

Fire Research Station,
Bereham Wood,

January, 1962. Herts.

© BRE Trust (UK) Permission is granted for personal noncommercial research use. Citation of the work is allowed and encouraged.



A NOTE ON THE OPERATION OF HEAT SENSIFIVE LINE EETECTGRS
by
R.‘ Wc HM

1. Intro&uction

Heat sen31t1ve fire detectors depend for thelr operation on the increase in
temperature of a sensitive element, due to heat transfer from the hot gases
rising from a fire. This increasé results im a change in some physlcal property
of the element which causes the alerm to be given. In many designs of detector
the element is small and is affected only by air temperature chdanges in its
immediate vicinity. Such detectors are described as 'point' or ‘spot' detectors.
In other detectors the elemsnt extends linearly over a large céiling area and 1s,
therefore, subject to the varying air temperature conditions aver this area.

The cumlative ef'fect on the element under these co d% ions will differ from
that on a point detector, which has already heen studied? 2) mainly in two
respects. First the rate of rise o{ ir temperature to which the element 1s
subjected will vary over its length 33 and secondly the temperature rise at any

point in the element may depend amongst other factors on the conduction of heat
along the element.-

In the following analysis the importance of these factors is examined in

relation to possible methods of assessing the performance of this type of
detector.
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2. Theoretical
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Fig.- 1 represents a section of a line detector element of length 23
diameter 2r, constructed of a materisl with thermal conductivity K, ﬂen31ty/0
and specific heat c¢. We shall assume that the ends of the olement are
maintained at a constant temperature and that the air temperature rise, to w ,sh
any elemental--section of the element is subjected, varies linearly with time?%



The rate of riss of air temperature Ko at any point X will be assumed
to be a function of OC orly, this function being symmetrical about the

point X = O ., Neglecting radiation and convection losses,; the conduction
equation may be written

H.2Tw <0<)r.[: —6.) + KTV""%/_:?? = Tr";’cgom...,h)

where 9 is the temperature rise of the element at any pcunt ¢

end time t,
and H is the heat transfer coefficlent between the air and the
element.,

Hence
2H (#xb -0) + KVé%ﬂ= L g{;g reveeena(2) -

Applying the Laplace transformation to Equation (2) we obtain, with the
usual notation

2 ("—%’i” &)+ Kv%%% = vpChO ceverend(3)

where O 1is the Laplace transform of &)

To solve Equation (3) it is necessary to insert the form of Kx
Experiments have shown that if the point X:=01is veritically above a fire
then the air temperature rise at any instant can be expected to decrease
B8 X increases to *+&. A form of Kx between 2Cw= 0o and Xx:= €
which fits the experimental results approximately and enables Bquation (3)
to be solved is

_Ax

Ay = K € : veenneen(B)

where 9(0 is the rate of rise of air temperature di‘rectly
above a fire

and /3 is & constant which depends on the height and
configuration of the ceiling near which the element
1ls mounted.

Substitﬁting this form of Xx in Equation (3) gives
- AXx
d, ~of6 + be/g =0
dxt -
26 + £Ch
w

aveoscossal5)

where L o= _
Ky
= 2

and b

Kw p*
The solution of Equation (5) with the boundary conditions that
S -0 00 x=>£ omd d8 >0 o6 X >0,

& = be T _ bR sidall-x) - be oo, ..o (6)
(?t*‘ya i)“ Ck<af"z§f)§fhaiacliz 1‘2}}7g')Cn¢41a€
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The expression for © derived from Equation (6) is very complex and we
‘shall therefore consider a simpler set of conditions, which shows that a
number of valuable simplications may be made to the theory.

First we shall assume that the rate of rise of air temperature to
which the element is subjected is constant ovér its whole length by putting
=0 in Equation (6). This then reduces to

& = %{i— cﬁ‘%} e

Expanding 1 ggzi = in a cosine series and using known inversion

formulae (4) the expression for &  follows

o -l fI- cosk ] _
coak, Jﬁﬁi.e

K+

= ol £
N 4o<.,'rcm<2mu)ze (,_AP Y + ]/r>

T e T

crenessa(8)

. c
where ’T/ = \:'2%‘

Fig.2 shows the temperature distribution to be expected in a detector
element 30C cms long after being subjected to a rate of rise of air -
temperature of 30°¢ per minute for two minutes. The value of T is
taken as 20 records and ‘the thermal dlffu31v1ty‘§¢Ca3 1 cm? s™1. It can
be seen, therefore, that under this simplified condition, the temperature
rise of a detector element with these dimensions and physical properties
is sensibly uniform over almost the entire length of the element.

If the operation of the detector occurs when a given physical
property of the element undergoes a given change, which varies linearly

with temperature, then it is the mean temperature rise which will determine
the overall change in this property. The mean temperature rise éa,w» is

given by e
= ..!- e d‘oc' -
Om = 2 f cereens(9)

Hence :
. 'z; ’a

4
oo . /
- o & >— g (- @w I)n e ‘] fr) cveeesa(10)
s Q”“ 4-,)1;71 ‘Lé.wﬂr;g;:‘}__;%_; + 1]1 J

. > Y .
In the example taken W‘TAM is equal to 2.2 x 107> and in most
practical cases will be very much’ less than unity. Thus Equation (10)
reduces to

| 2N -A
e/vw = 0(0 é (l \/-. ji >— T(‘ ~¢ ’Y.) Ceeenend(11)
3 -




Further, if the.value of ’ég;- 12 exceeds 10, which is likely for most
elements longer than about 100 cms, ‘+hen the expression for Eimv becomes

-
O = O(e{t" g (:—e )j veeevess{12)

Equation (12) is identical with the expression which would be obtained
wers 1( element considered:as a point detector element with the same value
of T 3 It is thus possible to neglect the effect of thermal conductivity
in most cases where the length of element exceeds & given value, if it is
subjected to a uniformly rising eir temperature over its whole length.

It is now necessary to consider whether the above simplifications are
permissible if the element is subjected to a rate of rise of air temperature
which varies over its length in the form suggested at the outset of the
analysis.

Equation (6) gives the Laplace transform of the temperature rise at any
point and the transform of. the mean temperature .em is given by

o
.\ !

. ¢ ‘ :
O = fj@ clac voonenes(13)

3 - bll(l /’)" [,,g( M) be’ﬂ Camkol ()
/aZ(a,‘/g *) *,€<c<,)._/9) gj(a,-ﬁ*)

Now the previous values of /r é’ and h— used suggest that in many
cases 1 = L1 and tanh 04(4-> 0. With tﬁese approximations
coshoed ™

Equation (1l+) reduces to |
B m (ot LY -
e IcrD
s gives | T fi - o7

==_0_(Q— t'_l |"‘e’-5; :
T e A

_ Thp de ey
CriaTpE TR G e
?’kﬁ (";W}oo 1019(15)

Some temperature distributions near ceilings due to a fire have been
determined experimentally (3) and these show that the value of ﬁ is
probably of the order 10-3 em=1, Thus ‘TR A .<< | and we may neglect
the second expression in Equation (15) which “then reduces to

e PN e R
O = 'f,{ﬁ_[_(,—e )L _‘/r(;.'f} )} ceeoesse(16)

- -




Equation (16) shows that even when subjected to a varying rate of rise of
air temperature, the effect of thermal conductivity in most line detector
elements may be neglected and they can be treated as an infinite number of
elemental detectors extended over a length 2.4

3. The thermal testing of line detectors

Ideally, detectors should be tested under the conditions which occur in
practice. However, it is difficult to mchieve these in a laboratory apparafﬁs
and the followi?% method is suggested, which can be carried out in an apparatus
already in use for testing point detectors. This apparatus enables =a
length of detector to be subjected to & uniform rate of rise of air temperature,

It is important to note that the length of detector element used in any
given situastion may vary widely and thus any test procedure in which a standard
length of detector i1s examined must yield results from which the performance of
any length may be assessed.

We will assume for example that a line detector is designed to operate
when its total resistance has changed by a given value AR. This is
equivalent to the "setting" (6) of a point detector. If the length of
detector which can be accommodated in the apparatus is 2L and its resistance
per unit length at ambient temperature is R., then the response time ¢
when subjected to a rate of rise of air temperature K o will be given by
Equation (12) as '

o, [L—- TCm-c‘c/"’)J;zRo‘YL =4Ok D)

where ?’ is the temperature coefficient of resistance of the
element.
b/T
The response times of detectors are gensrally 1ong enough to make C
small compared with unity and we obtain

= AR N .
L R 9L, +T | c esensses(18)

Equation (18) shows that the response time of the detector will depend
markedly on the length of detector for any given value of AR as well
as the rate of rise of air temperature to which it is subjected. Thus, if
the response time of a detector is limited to values such as have been
suggested for point detectors f5 this suggests that the length of & line
detector with a given "setting™ should lie between limits which give these
regponse times,, If one of the critigal values of response times at a rate
of rise of air temperature of, is ¢ then it follows. from Equatlon (18)
that the length of detector 2 l.c which will give this Tesponse ‘time under
the same conditions is given by

i

LC- = L C -’r) * co»l‘---oo(19)
, £ =T | S

The value of T may be deduced using Equatlon (18), by determining
the response time of & given length of detector over a range of rates of
rise of air temperature., If in practice the rate of air temperature rise varies
exponentially from the centre of the element, as assumed in/the analysis in
Section 2 then the permissible length of detector;?g:, can be deduced from
Equations {16) and (18) which give .

ai!
, —e ) = /gftg, ¢ S ‘,:l ,,,,.,.'.(20)
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Fig.3 shows the relation between Le and Le for values of /K? between

5 x 10~4 om~1 and 2 x 10~3 em~1.

The previous arguments must be modified slightly if the detector to
be tested 1is of the "ratemof-rise"?a)t e. Here the detector consists of
two elements with velues of “T of A and'q/e and operates when, we
shall assume, the difference in resistance between the elements. B R has
reached a given value. It has been shown 23 that the response time will

be given by
t=TBL%C<££B_—"- | caensese{21)
where 80 .. _L_R
if the detector is subjected to a uniform rete of rise of air temperature.

In generalljiB :$>JT'A and thus the response time is given
approximately by

REEY ST
C - ,ZRoqLo( ' ..,..o..,,(22)
Hence, with the same notation as previously we deduce
.LC- :'.‘ A'g_’ onooooc-o(25)
e -

whence 2Lo may be derived from Equation (20) as before.

L. Conclusions

An avalysis of the temperature distribution to be expected in the
element of a line detector hes shown that in many cases the problem may be
reduced to ome of an infinite number of elemental point detectors, the
effect of thermal conductivity on the distribution being negligible.

A method of assessing the thermal response of 1ine detectors has been
suggested which could te carried out using an apparatus at present designed
for the testing of poiant detectors. It is further shown that the maximum
and minimuw lengihs of a detector with a given setting may be derived, sueh
that its response time will be within prescribed limits.
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