

DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH

AND

FIRE OFFICES' COMMITTEE

JOINT FIRE RESEARCH ORGANIZATION

FIRE RESEARCH NOTE

NO. 528

THE EFFECT OF WEATHER CONDITIONS ON THE SPREAD OF FIRE IN BUILDINGS IN ENGLAND AND WALES FROM 1951 TO 1961

by

JANE M. HOGG

This report has not been published and should be considered as confidential advance information. No reference should be made to it in any publication without the written consent of the Director of Fire Research.

November, 1963.

Fire Research Station. Boreham Wood. Herts.

F. R. Note No. 528

DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH AND FIRE OFFICES' COMMITTEE JOINT FIRE RESEARCH ORGANIZATION

THE EFFECT OF WEATHER CONDITIONS ON THE SPREAD OF FIRE IN BUILDINGS IN ENGLAND AND WALES FROM 1951 TO 1961

by

Jane M. Hogg

SUMMARY

Two measures of fire spread have been used to test whether the kind of weather conditions which affected the number of fires occurring in buildings in the years 1951 to 1961, inclusive, also affected the resultant spread of fire. The amounts of sunshine and rainfall appear to affect the spread of fire, but vapour pressure, which had been found to influence fire starts had no measurable effect on fire spread.

THE EFFECT OF WEATHER CONDITIONS ON THE SPREAD OF FIRE IN BUILDINGS IN ENGLAND AND WALES FROM 1951 TO 1961

by

Jane M. Hogg

Introduction

Certain weather conditions appear to affect the number of fires which occur in buildings and are attended by the brigades. More fires seem to occur if the amount of sunshine increases, if the vapour pressure falls, or if the amount of rainfall decreases (1).

The annual fire loss in terms of property damaged and destroyed, in lives lost and injuries sustained, depends not only on the number of fires which occurred, but also on the extent to which these fires spread. It is possible that the same weather effects which contribute towards the ignition of fire also contribute towards the spread of fire.

Measures of fire spread

Information on weather conditions in the period 1951-1961 has been obtained from Meterological office data and is given in Tables 1-3.

The estimated cost of fires from direct damage in the United Kingdom is published monthly by the British Insurance Association (Table 5). This cost divided by the number of fires which occur in buildings in England and Wales (Table 4) ought to provide a measure of the average size of fires* in any given month in England and Wales (Table 6), which can then be compared with the weather conditions which occurred in that month. This measure is referred to as the "average cost of fire estimate."

An alternative measure of the spread of fire in buildings in a month in England and Wales is given by the percentage of fires extinguished using hose reel jets, power pumps and hydrants (Table 7), henceforth referred to as the fire spread index.

Both of these measures of spread are depicted in Fig. 1 by relating the annual data to that of the base year 1951.

The relationship with weather conditions

An analysis of covariance was employed in order to ensure that any changes in patterns of behaviour by brigades or the public over the years or months would not confuse the results. A summary of the analysis is given in the Appendix.

It appears that the percentage of fires in buildings which required extinction by hose reel jets, power pumps and hydrants increased when the amount of sunshine increased and when the amount of rainfall decreased, but was not affected by changes in vapour pressure. On the other hand, the 'average cost of fire estimate' was apparently quite insensitive to variations in the amount of sunshine. Fig. 2 compares the actual data on fire spread with that which would have resulted if the amounts of sunshine and rainfall had never varied around the average over the years 1951 to 1961. This shows the effect of weather on the fire spread index.

*The estimated cost of fires in England and Wales is not published, but there is no reason to suppose that changes in the cost of fires in England and Wales is not proportional to changes in the cost of fires in the United Kingdom. The amount of variation in fire incidence and in the fire spread index which can be accounted for by changes in the amount of sunshine and rainfall were very similar. The correlation coefficients between fire incidence and sunshine, and between the fire spread index and sunshine are 0.55 and 0.51 respectively, whilst the correlation coefficients between fire incidence and sunshine and rainfall, and between the fire spread index and sunshine and rainfall are 0.62 and 0.59 respectively. On the other hand the correlation coefficient between fire incidence and vapour pressure, and between the fire spread index and vapour pressure is 0.51 in the former instance and is not significantly different from zero in the latter. This is summarized in the following table:-

Correlation coefficients obtained from single regressions

.

	Sunshine	Vapour pressure	Rainfall
Incidence	+0.55	-0.51	-0.49
Spread Index	+0.51	*	0.48

*not significantly different from zero

The correlation between fire incidence and vapour pressure is indicative of a relationship between vapour pressure and the spread of fire since, to have been included, these fires must have been of sufficient size to warrant calling the brigade. The absence of any relationship between vapour pressure and the fire spread index probably means that beyond a certain size of fire vapour pressure has no effect on further spread.

Significant year and month variations

• • .

۰.

الرابع يحادثهم المراجع العالي الموجوع والاعتراف والمام المراجع

.

The frequency of fires has changed significantly over the period 1951 to 1961 inclusive; the fire spread index has also changed significantly over these years; there has, however, been no significant change in the average cost of fire estimate until the data for 1962 are included in the analysis when the change from 1951 to 1962 in the estimate is significant just below the 95% confidence level.

A significant seasonal variation is also apparent in the monthly variation occurring in fire incidence, in the fire spread index and in the weather variables, sunshine, vapour pressure and rainfall. The monthly variation of the average cost of fire estimate (including the 1962 data) is significant at the 90 per cent confidence level. The average monthly variations which occurred over the period 1951 to 1961 in the fire spread index, the fire incidence, and the average cost of fire estimate are depicted in Figs. 3, 4, and 5. Figs. 3 and 4 show that the fires which occur in winter tend not to spread so far as those which occur in summer, (for example) space heating appliances are more frequently sources of ignition in winter than in summer.

Fig. 5 shows seasonal variation in two measures of fire spread which appear very dissimilar. This apparent independence implies that monetary loss is not necessarily linked directly to the physical size of the fire. It would seem reasonable, however, to expect that such a link might exist. The independence which appears in the Figure is itself dependent upon the accuracy, or otherwise, of the overall cost figures published by the B.I.A.

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

الدانية المراجع فالم

The method used to determine the effect of weather conditions upon the spread of fire, is not, however, the best method to use to determine whether there are significant year and month variations in the spread of fire index and the average cost of fire estimate, since the respective five incidence has not been taken into account. The resulting bias has meant that the significance level of the variance rations testing the between year variations are too low, whereas those testing the between month variations are too high. The analysis presented, however, suffices to show that there is more certainty that the fire spread index has changed with the years and seasons, than that the average cost of fire estimate has changed.

Conclusions

Variations in the amounts of sunshine and rainfall which occurred monthly appear to have had as great an effect on the extent of fire spread as on the frequency of fires, while changes in vapour pressure apparently affected the number of occasions when the brigades were called to a fire, but had no effect on the subsequent spread.

There are marked annual and seasonal variations in the frequency of fire and the fire spread index. The variations in the average cost of fire estimate, however, are only significant when the 1962 data have been included in the analysis.

Reference

(1) Hogg, Jane. M.

The relationship between fire incidence and climatological variations 1951-1961 Fire Research Note No. 522, Joint Fire Research Organization, 1963.

Table 1

• 1

•0

,

England and Wales

Estimated Vapour Pressure Mean millibars per day

.

.

1

.

۰.

. .

	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	19 <u>6</u> 1	Total
Jan.	29.3	26.4	28.7	26.6	27.1	28.5	32.0	28.4	25.6	30.1	28.3	311.0
Feb.	27.9	25.9	29.1	26.6	23.6	21.0	30.8	30.6	29.7	28.5	34.6	308.3
March	28.2	32.3	28.6	31.2	24.1	29.6	39.2	26.4	34.1	31.3	34.1	339.1
April	29.1	36.2	31.5	30.8	35.7	29.1	33.9	31.3	37.1	35.3	41 . 2	371.2
May	38.2	46.1	44 <u>+</u> 8	41.•2	36.6	40.0	37.0	41.2	42.6	44.2	38.9	450.8
June	47.6	49.7	52.7	49.1	48.9	46.9	47.9	51.3	50.1	53.0	48.6	545.8
July	57.1	56.7	55.6	52.1	59.1	57•3	60.9	57.5	57.•2	54.3	52.1	619.9
Aug.	55.0	57.9	57.8	55.7	62.7	51.1	57.5	61.1	60.8	56.2	55.3	631.1
Sept.	54.7	42.4	52.5	48.3	51.9	56.3	49.5	58.9	50.3	51.3	57.8	573.9
Oct.	<u>4</u> 2.4	48.8	43.8	49.5	39.5	41.9	45.6	46.3	48.0	46.1	45.1	487.0
Nov.	39.6	29.6	39.6	36.2	36.4	33.1	33.9	36.5	36.5	36.7	33.7	391.8
Dec.	32.4	27.7	38.0	34•3	33.2	34.3	30.3	32.2	33.5	29.9	27.5	353•3
Total	481.5	469.7	502.7	481.6	478.8	469.1	498.5	501.7	505.5	496.9	497.2	5 383.2

FTable22

•

0

EEngland and Wales

SSunshine NMeanhhoursperday

·----

~

.

•

4

	11951	11952	1 1953	1,1954	11955	11956	1 1957	1 9.958	19: 95 9	13960	1961	Total
JJap.	1 12=44	22331	1 12 28	11777	11186	11777	11554	116,63	22558	111318	1.36	18.02
FFeb.	222.29	22775	22324	22093	22882	221.47	22773	1 1999	2 21.9 0	227.73	2.30	26,45
MMarch	33307	2 28<u>8</u>9	′ 4 4 •40	33227	55004	44.47	3 30:08	335.57	33112	2 22,22	4 . 85	39.98
AApril	66324	55k <u>+</u> 49	55772	66207	55557	551•47	552 2 2	5 50:02	1+49:92	5 53 32	3.31	58.35
мМау	- 53-31	66.58	66288	44 99 9	66%64	77 68 0	667.70	55779	77337	5991	6.76	70.73
June	7:60	J 6 .41	±4 <u></u> ;96	L45.69	55!•43	5:•09	<u> </u>	44669	77:471	- 8, 58	7.30	72.04
JJuly '	6.39	5.74	6:05	₊4 ₊ 36	₽8 - 50	5-06	4.54	565	7´。68	4:95	5.3	64.22
Aug.	.4.89	- 5.043	6.29	:3:•99	÷ 6. 35	.4.87	-4-65	4 4- 05	6:67	5.,20	5.6	57.99
Sept.	3.71	4.03	4.88	5.24	•5•15÷	3.30	- 3 - 74 -	-4-14	6.42	4.14	4:3	49.05
:0ct. '	;3:•52	3.30	·2:89	2.67	3:85	3.59	2.731	· 3°•02 .	4:•42	2.16	3.7	35.85
Nov.	1.95	2.33	1.59	1-93	1.82	1.87	.2.10	1.53	1.85	2.15	2.1	21.22
fDec.	1.56	1.68	1.03'	1.•45	1.41	0,66	1.,66	¹ 1• ₀ 01	1.01	1.63	1.8	14.90
Total	, 47.97	<u>,</u> 48.94	· 48₀21	, 42 46	. 53.74	46.42	48.271	4209	55.85	46.17	48.68	528.80

• • • the second • • . • _ ·

> • • • • · · · · · · ·

> > ..

•

ł

•

Table	3
-------	---

England and Wales

Rainfall Inches

Ì	1951	1952	1953	` 1954	1955	1956	1957	1958	1959	1960	1961	Total
Jan.	3.8	3.4	1.4	2.6	3.4	5.1	2.9	3.6	4.1	5.2	4.7	40.2
Feb.	4.7	1 . 1.	2.1	3.4	2.6	1.1	3.9	4.8	0.4	3.2	. 2.8	30. 1
March	4.7	3.1	1.1	3.1	2.2	1.2	2.7	1.9	2.6	2.0	0_6	25.2
April	2.9	2.3	2.9	0.6	·1.4	1.6	0.4	1.2	3.1	1.8	· 3.9	22.1
May	3.2	2.6	2.5	3.0	4.0	0.9	1.9	3.4	1.1	. 1.8	1.6	26.0
June	1.3	2.1	2.4	· 3.5	3.5	2.7	1.9	· 4.5	1.8	2.0	1.5	27.2
July	1.9	1.3	3.8	· 3.5	1.0	4.0	4.1	3.7	2.7	4.5	. 2.7	33.2
Aug.	5.2	4.1	3.3	4.6	1.2	6.1	. 4.1	4.0	1.4	4.5	3.3	41.8
Sept.	3.5	3.8	3.2	3.5	2.0	3.7	5.0	4.8	0.3	ʻ 4 . 5	3.2	37.5
Oct.	1.3	4.1	2.9	4.8	3.0	2.3	3.0	3.3	. 3.4	7.5	4.7	40.3
Nov.	7.2	4.0	2.8	6.6	2.4	1.3	2.5	2.2	4.7	5.9	2.5	42.1
Dec.	4.0	3.6	1.4	3.5	4.2	4.2	3.3	4.2	5.4	4.6	4.0	43.4
Total	43.7	35.5	29.8	42.7	30.9	34.2	35.7	41.6	32.0	47.5	35.5	409.1

1

•

,

.

.

1

Table 5

.

.

٠

:

.

.

-

N

Cost of fires in U.K. (£ thousands)

Estimated direct damage - British Insurance Association	Estimated	direct	damage	- British	Insurance	Association
---	-----------	--------	--------	-----------	-----------	-------------

	. 1951 .	1 <u>95</u> 2	1 <u>953</u>	1954 .	1955	1956	1957	195 8	1959	1960	1961	Total (1951-1961)	1962
Jan.	1 555	2 543	2 006	3 403	1 855	2 025	1 605	4 234	3 162	3 888	3 469	29 745	3 884
Feb.	1 907	2 762	1 821	2 502	2 191	2 581	3 109	2 473	4 354	6 189	2 142	32 031	3 219
March	1 737	2 715	2 125	2 185	5 166	2 873	1 190	3 167	1 91.7	7 575	4 070	34 720	6 1 <u>37</u>
April	1 705	1 251	2 043	1 326	2 144	2 962	3 380	1 457	1 747	2 207	3 656	23 878	3 111
May	2 <u>53</u> 6	1 391.	2 506	1 453	1 605	2 545	3 795	1 951	5 104	3 368	3 619	29 873	7 705
June	1 161	2 095	1 462	2 020	3 373	1 608	3 24 9	1 106	5 085	<u> </u>	3 463	28 273	. 6 766
July	1 912	1 474	2 528	1 482	1 386	1 824	1 562	829	1 870	1 316	2 317	18 500	3 320
August	1 217	1 046	2 5 ⁸ 1	3 959	1 516	1 <u>39</u> 1	982	2 369	4 145	1 965	3 471	24 642	2 428
Sept.	1 761	3 009	1 335	864	2 874	2 918	2 357	1 781	5 5 <u>3</u> 3	2 283	2 062	26 777.	4 662
Oct.	3 177	1 404	2 881	2 368	1 374	1 57.9	1 <u>33</u> 6	1 530	6 416	4 563	3 803	30, 431	5 312
Nov.	2 467	1 205	1 564	1 776	2 659	2 429	1 924	2`036	2 098	2 657	2 444	23 259	4 793
Dec.	2 013	3 335	2 283	2 845	1 552	2 676	1 360	1 212	2 748	4 112	2 954	27 090	4 250
Total	23 148	24 230	25 135	26 183	27 695	27 411	25 849	24 145	44 179	43 774	37 470	329 219	55 587

Table 6

Monthly cost of fires in U.K. divided by the fire incidence in buildings in England and Wales (\pounds)

.

100

.

.

	1 951	• 1 952	1 95 3	1 954	1 955	1 956	1957	1,958	1 959	1 9 60	1 961	Total (1951 -1961)	1 962
Jan.	431	634	506	650	409	503	. 395	945	585	752	612	6 422	666
Feb.	633	766	504	551	. 570	432	.971	635	. 983	1 282	479	7 806	550
March	518	778	520	612	1 1 00	674	<u>37</u> 0	636	467	1 559	734	. 7968	928
April	472	399	595	362	617	759	855	322	. 453	459	859	6`152	597
May	831	471	771	444	548	649	956	545	1 1 00	744	695	7 754	1 555
June	397	797	580	849	1 240	5 51	753	401	1 246	817	707	. 8 338	1 272
July	, 688	482	1 023	621	420	682 [.]	526	303	. 458	· 352	497	6 052	733
Aug.	, <u>5</u> 20	394	1 039	1 749	464	575	325	866	1 058	535	821	8 346	578
Sept.	764	1 033	555	342	. 964	1 180	828	588	1 208	619	484	8 565	1 064
Oct.	1 026	433	954	821	370	444	397	414	1 331	1 050	747	· 7987	1 035
Nov.	868	286	484	530	719	582	452	503	460	582	429	5 895	885
Dec.	572	743	647	757	386	679	292	277	597	808	454	6-212-	<u>`</u> 646
Total	7 720	7 2 <u>1</u> 6	8 1 78	8 288	7 807	7710	7 120	6 435	9 946	9 559	7 518	∖87 497	10 509

.

				-							
1 	1 951	1952	1,953	1954	1 955	1956	1 95 7	1 9 58	1 959	1 960	1961
Jan.	43₅6	48.4	43.4	48.3	47•3	49.6	52.4	54.8	52.2	56.2	56.4
Feb.	42.7	48.8	46.3	45.5	50 <u>.</u> 8	50.1	52 . 8	54.3	55.9	' 55•4	61.2
March	49.0	47.0	53.9	5 <u>1 </u> 0	53.5	57.0	55•5	56.9	58.1	59•4	64.4
April	50 . 7	50 . 0	60.0	58.8	58.9	58.1	61 .8	64.1	60 . 8	63.9	62.6
May	52.6	. 52 .4	54.9	55.3	59.4	62.8	62.4	63.4	65.9	65.6	67.1
June	53-8	54.5	51 •4	54.5	58.4	57.5	64.6	58 . 1	65.6	67.2	65.6
July	51 .6	56.2	52 ₂2	50.8	57.3	54•1	56.5	58 . 2	65.5	61.3	68.0
August	50.3	52.5	55.5	50.4	59.3	54.7	58.2	57•7	65.0	65.1	68.6
Sept.	51 •7	53.4	55.7	54.0	58.3	54.5	58.2	60 . 5	69•4	62.4	65.2
Oct.	49.9	49.8	49.8	53•4	55.5	58.3	59•9	59•3	66.3	62.0	64.6
Nov.	44.03	45.9	50.9	47.1	52.3	57.6	57.8	59•1	60,9	58.1	59.4
Dec.	44.0	41 .8	47.6	48.7	50.8	52.5	54.1	52.3	54.3	55.8	54.8

The percentage of fires in buildings extinguished by hose reel jets, power pumps and hydrants in England and Wales

Table 7

·

1

...

٠

.

,

۰.

٠

.'

۰.

o

Appendix

.

.

Analyses of variance, covariance and regressions of the fire spread index upon sunshine, vapour pressure and rainfall

		Anal	ysis of Variance		```
Source of variation	Degrees of		SQUARE	S	
		Sunshime (x_1)	Vapour Pressure (x_2)	Rainfall (x ₃)	Fire spread index (z
Between years Between months Residual	10 11 110	1 3•9535 433•4509 78•2704	151.93 14 380.41 1 172.40	28.039 59.112 184.319	2 935 104 1 539 826 569 031
Total	1 31	525.6748	15 704.74	271.470	. 5 043.961

	Analysis of Covariance											
Source of variation	Degrees of freedom	Degrees of SUM OF PRODUCTS										
		x and z	x_2 and z	x ₃ and z	x_1 and x_2	x_1 and x_3	x ₂ and x ₃					
Between years Between months Residual	10 11 110	42 •1 02 744 •545 1 08 •024	400.892 3 228.455 - 57.868	- 7.310 - 137-717 - 155.075	3.891 3 1 686.7915 - 56.631 3	- 12.7055 - 93.7625 - 49.8044	+ 137.3800					
Total	1 31	894.671	3 571 •479	- 300+1 02	1 634.0515	- 156.2724	+ 165,4982					

	Single	regressions			
Source of variation	Degrees of	SUM OF SQUARE		S	
	freedom	z on x 1	z on x ₂	z on x ₃	
Due to regression Residual	1 1 09	1 49 • 088 41 9 • 943	2.856 566.175	1 30•471 438•560	
Total*	110	569.031	569.031	569.031	

.

Double regression							
Source of variation	Degrees of freedom	Sum of Squares z on x ₁ and x ₃					
Regression on x_1 alone Extra due to x_3	1	149.088 48.840					
Regression on x ₁ and x ₃ Residual	2 1 08	1 97 • 928 371 •1 03					
Total*	110	569.031					

. .

.

٠

4

* Residual sum of squares of fire frequencies from above analysis of variance

Comparison of the regressions of the fire spread index and fire incidence upon sunshine and rainfall

٠

Regression of fire incidence upon sunshine and rainfall

1

- ----

Regression of the fire spread index upon sunshine and rainfall

,

•

، بالم ماجود م

	Degrees of	Sum of squares			Degrees of	Sum of squares]
Source of variation	freedom	\mathbf{z}_1 on \mathbf{x}_1 and \mathbf{x}_3			froodom	\mathbf{z}_2 on \mathbf{x}_1 and \mathbf{x}_3	$r_1 = 0.55$
Regression on \mathbf{x} alone Extra due to \mathbf{x}_{3}^{1}	1	149.088 48.840	$r_{3.1} = -0.34$ $R_{1.3} = 0.59$	Regression on \mathbf{x}_1 alone Extra due to \mathbf{x}_3	1	6,736,325 i,881,195	$r_{3.1} = -0.3$ $R_{1.3} = 0.6$
Regression on x ₁ and x ₃ Residual	2 1 08	1 97 . 928 371 . 103		Regression on \mathbf{x}_1 and \mathbf{x}_3 Residual	2 1 08	8,617,520 13,846,826	
Total	110	569.031		Total	110	22,464,346	1

Correlation coefficients obtained from single regressions

	Sunshine	Vapour Pressure	Rainfall
Incidence	055	- 0.51	- 0.49
Spread	051	*	- 0.48

* not significantly different from zero

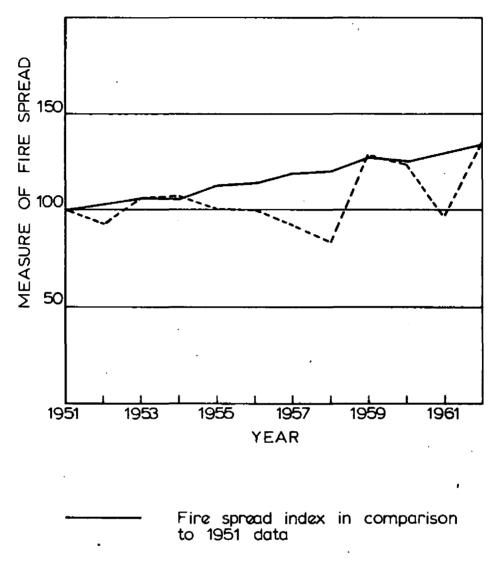
Analyses of variance, covariance and regression of the average cost of fire estimate upon sunshine

Source of variation	Degrees of	Sum of squares	Sum of products	
Source of Variation	freedom	Cost of fire	Cost and sunshine	
Between years Between months Residual	10 11 110	881 614.9 1 086 846. 1 7 493 91 3.3	1 517.265 8 170.333 - 1 455.363	
Total	1 31	9 462 374.3	8 232.235	

Source of variation	Degrees of freedom	Sum of squares	/ Mean square	Variance Ratio
Due to regression Residual	1 1 09	27 061 .1 7 466 852 .2	27 061 .1 68 503.2	0.4
Total	. 110	7 493 91 3.3		

Courses of maniation	Degrees of	MEAN SQUARE					
Source of variation	freedom	Fire incidence	Fire spread index	Average cost of fire estimate	Sunshine	Vapour pressure	Rainfall
Between years Between months Residual	10 11 110	4 634 11022 3 047 150.9 204 221.3	293 •51 0 1 39 •984 5 •1 73	88 161 •5 98 804 •2 68 126 •5	1 • 39535 39 • 40463 0 • 71155	15,193 1307,31 10,6582	2.8039 5.37382 1.67563

Testing the significance of the between years and between months variations


	Degrees of		TIO				
Source of variation	freedom	Fire Fire spread		Average cost of fire estimate	Sunshine	Vapour pressure	Rainfall
Between years Between months	10 11	22.7 14.9	56∝7 27•1	1 .29 1 .45	1 •96 5 •54	1•43 122•66	1 .67 3.21

Analysis of Variance of 'average cost of fire estimate', 1951-1962

Source of variation	Degrees of freedom	Sum of squares	Mean square	Variance ratio
Between years Between months Residual	11 11 121	1 380 176.9 1 343 102.6 8 309 293.1	125 470.6 122 100.2 68 671.8	1.83 1.78
Total	143	11 032 572.6		-

Alser

---- Average cost of fire estimate

FIG. 1. FIRE SPREAD 1951-1962 COMPARISON OF YEARLY DATA RELATED TO 1951 (=100) BETWEEN TWO MEASURES OF AVERAGE SIZE OF FIRE IN BUILDINGS IN ENGLAND AND WALES

5127 F.R. 528

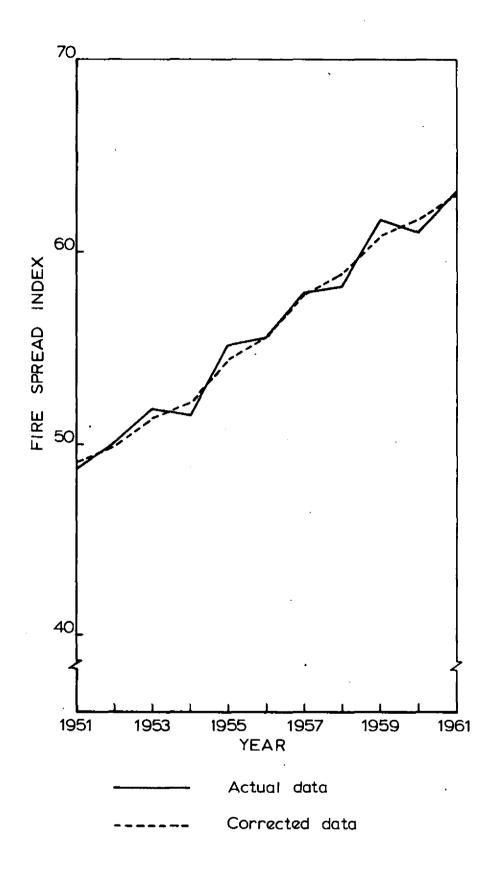
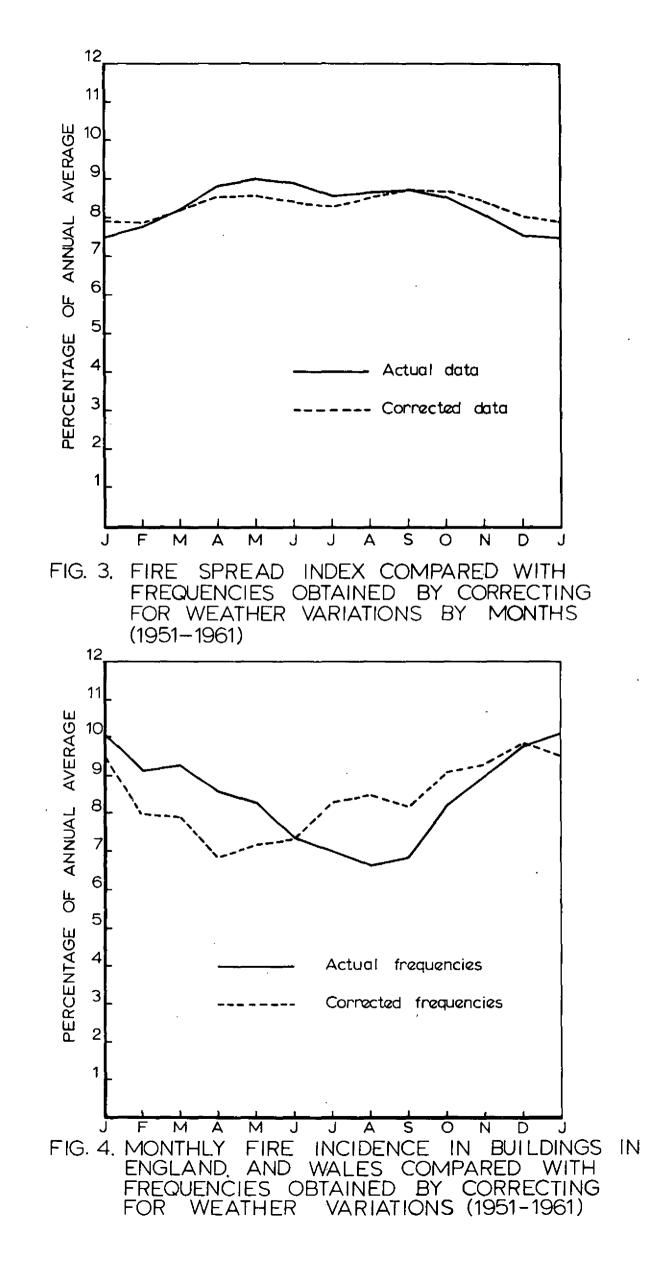



FIG. 2. FIRE SPREAD INDEX COMPARED WITH FREQUENCIES OBTAINED BY CORRECTING FOR WEATHER VARIATIONS (1951–1961)

1/5128 F.R. 528.

1 SIL9 F.R. SIB

•

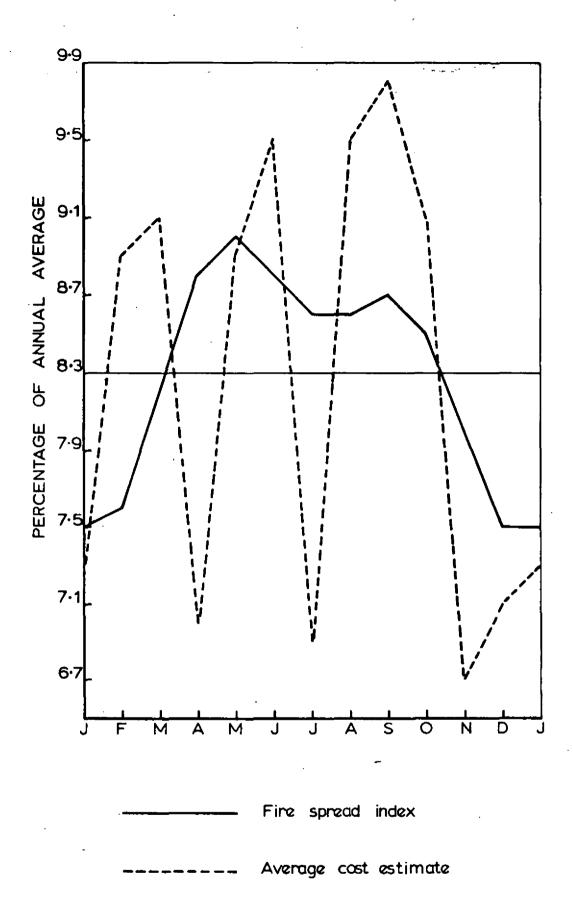


FIG. 5. COMPARISON OF MONTHLY VARIATIONS SPREAD INDEX AND AVERAGE IN FIRE COST ESTIMATE (TOTAL FOR ALL MONTHS = 100)