

Fire Research Note No.646

SARAN 189083

FIRES IN A LARGE COMPARTMENT CONTAINING STRUCTURAL STEELWORK. DETAILED MEASUREMENTS OF FIRE BEHAVIOUR

by

A.J.M. HESELDEN, P. G. SMITH and C. R. THEOBALD

December, 1966

FIRE RESEARCH STATION

Fire Research Station Borehamwood Hertfordshire Tel. 01.953 6177 <u>.</u>~

٠

F.R. Note No. 646 December, 1966.

FIRES IN A LARGE COMPARTMENT CONTAINING STRUCTURAL STEELWORK. DETAILED MEASUREMENTS OF FIRE BEHAVIOUR

Ъy

A. J. M. Heselden, P. G. Smith and C. R. Theobald

SUMMARY

25 large-scale experimental fires have been carried out recently at the Joint Fire Research Organization in conjunction with the British Iron and Steel Federation. This report describes the measurements made during the fires, excluding measurements of the temperature of the steelwork exposed in the compartment, and gives the results in detail.

Discussion is reserved for later reports.

Crown copyright

This report has not been published and should be considered as confidential advance information. No reference should be made to it in any publication without the written consent of the Director of Fire Research.

MINISTRY OF TECHNOLOGY AND FIRE OFFICES' COMMITTEE JOINT FIRE RESEARCH ORGANIZATION

FIRES IN A LARGE COMPARTMENT CONTAINING STRUCTURAL STEELWORK. DETAILED MEASUREMENTS OF FIRE BEHAVIOUR

Ъy

A. J. M. Heselden, P. G. Smith and C. R. Theobald

1. Introduction.

The tests described in this report were carried out by the Joint Fire Research Organization in conjunction with the British Iron and Steel Federation. Their main purpose was to compare the severity of actual fires with that of the B.S. 476 furnace test by determining the temperatures attained by various steel structural columns and beams, exposed both to fire and to furnace conditions. The experiments, however, provided much information of general importance on large scale fires and various additional measurements were made which are given in the present report. The experiments are particularly valuable because they form a series with systematic and balanced variation of fire load density and ventilation, and some variation in type of fuel and its disposition, and thermal insulation of the walls.

A report¹ has been published giving details of the steel temperature measurements made in some of the tests. The present report gives the measurements made on the fire itself including rates of burning, flame temperatures and rates of heat transfer.

There is little discussion of the results, this is reserved for a second report.

2. Design of programme.

The experiments were carried out in two stages. The first stage consisted of the 12 tests of the balanced incomplete design shown in Table 1, carried out in the date order shown in Table 5. Test C was anomalous and was repeated (Test U). The symmetry of the design of this stage was intended to facilitate statistical analysis of the effect of compartment, fire load density and window opening.

- 1 -

The next stage consisted of 11 tests in one of the fire compartments in which a number of additional variables were introduced (Table 2). It was thought that these experiments should be related to those of the Conseil International du Bâtiment (C.I.B.) International Co-operative Programme² in which data were being obtained on fires in much smaller compartments of various shapes including one similar to that of the present compartment, since if suitable scaling laws could be derived the data would have much wider application. Accordingly, some tests were carried out with variation in the thermal properties of the wall and in the fuel disposition (Tests MNOPQR).

At the lowest fire load density a test (S) was also carried out with the fuel entirely in the form of fibre insulating board, covering most of the walls and ceiling. In tests W and Y the wood fuel was replaced by petrol and kerosene respectively. Test V was made to explore further the effect of small window openings.

÷.

3. Compartment.

Tests were carried out in one or other of two compartments formed by dividing a square building into two compartments measuring internally 7.70 m wide, 3.73 m deep and 2.97 m high, one facing S.E. and the other N.W. Each compartment had two window openings each 3 m wide and 1.8 m high, making a total window opening of half the area of the compartment front wall. A number of tests were carried out with this window area reduced by asbestossteel shutters placed so as to leave openings in the centre of the wall, (See Fig. 1.). The construction of the walls, ceiling and floor has been described elsewhere¹. The conditions under which each test were carried out and the reference number and letter of each test are summarised in Table 2.

4. Details of fuels

4.1. Tests with wood fuel

For most tests the fuel was wood and consisted of sticks of Pinus sylvestris, stored until use under cover. A stick thickness of 4 cm was chosen to give a compromise between the need for a reasonable certainty of fire development and the need to reduce the number of sticks handled to a minimum. There was insufficient space to store all the fuel that was needed for all the tests, and the supplier was asked to set aside the required

- 2 -

quantity and deliver it in two batches. Unfortunately, sticks in the first batch to be delivered measured on average 104 cm x 4.3 cm x 4.6 cm and in the second batch 104 cm x 4.1 cm x 4.1 cm. By the time the second batch was delivered too many tests had been carried out to permit the thinner wood to be mixed with the thicker and it was therefore decided to use the thicker sticks for the 7.5. 15 and 60 kg/m² fire load density tests and a combination of about $\frac{3}{6}$ by weight of thicker sticks (placed at the base of the crib) with $\frac{2}{5}$ of thinner sticks, for all the 30 kg/m² fires. A repeat of one of the 60 kg/m² tests had, however, to be made with mainly thinner sticks. The average density (with equilibrium moisture content) of both batches was 0.54 g/cm². However, the thicker sticks were always placed with the longer side vertical and this was continued throughout the series so that the bulk density and stick spacing of cribs made of both thick and thin wood was almost the same. Further, experiments carried out in an international co-operative programme of experiments on fires in compartments³ suggest that for the conditions of these experiments and a fireload density of at least 15 kg/m² a difference in stick thickness of this magnitude would not affect rate of burning significantly.

Ĵ

The sticks were placed in square cribs, 12 sticks per layer, the lowest layer perpendicular to the window wall. The balanced design of 12 tests . (Table 1) was carried out with 8 cribs 104 cm square covering roughly $\frac{1}{3}$ of the floor area (see Fig. 2), since at the lowest fire load densities if the fuel had been placed evenly over the whole floor area the fire would probably not have spread over all the fuel.

The position of the 8 cribs on the floor was chosen to permit tests to be also made with the fuel placed in 18 similar cribs (see Fig. 2 and Plate I) without having to alter the position of the weighing apparatus. Some cribs had to be cut away slightly to fit round the columns; the wood cut away was added to the top of the cribs.

The wood cribs in the tests shown in Table 1 and tests 0, P, U, V and X were all ignited at the same time by lighting strips of fibre insulation board (1 cm x 1.5 cm x 100 cm) soaked in kerosene placed in each gap of the bottom layer of sticks of each crib.

- 3 -

Tests M, N, Q and R were carried out with 18 cribs covering about $\frac{2}{3}$ of the floor area. In these tests ignition was effected by lighting the row of 6 cribs nearest the window wall by means of kerosene-soaked fibre insulation board strips 1.2 m long inserted into each of the spaces in the lowest layer of sticks. These sticks projected into the front of the second row of cribs so that both the row of cribs nearest the window wall and the front of the second row were ignited. Just before each test the moisture content of the wood fuel was measured with a "moisture in timber" meter, in which the electrical resistance between two pins driven into the wood gave a measure of moisture content.

٦.

The average moisture content of the wood used for the cribs was about 12.5 per cent.

Test X cannot be regarded as an exact replicate of test G since the large amount of unprotected steelwork (all the steelwork was uncovered in this test except columns C21* and C22*) of low thermal resistance and high capacity will have abstracted much more heat from the flames than when most of the steelwork was protected and will therefore give lower flame temperatures than in Test G.

Tests 0, P, Q and R were carried out with the ceiling and walls covered by mineral wool insulation (See Plate II) similar to that used for cladding the steelwork but 2.5 cm thick. Some of the insulation was destroyed in test R and the areas in worst condition were patched with new insulation. The insulation was attached only to the plastered areas of the walls and the concrete ceiling and none of the steelwork was covered by it.

4.2. Test with fibre insulation board lining (S)

Test S was carried out with sheets of fibre insulation board covering most of the ceiling and walls (but not the floor). The board was nailed on to the plastered wall or concrete ceiling surfaces and did not cover up the steel columns embedded in the rear wall. The quantities used are shown in Table 3, the total weight of fibre insulation board used being 198 kg.

 In Test X C21 was covered with asbestos board, and C22 with mineral wool insulation (see Fig. 3). In all other tests C22 was left bare.

- 4 -

The board was lit by kerosene-soaked strips of fibre insulation board, 30 cm wide, placed on the floor, touching the sheets on the walls. Those strips at the back of the compartment were lit first, then quickly those at the side and at the front. Three gallons of kerosene, about 10.6 kg, were used for ignition. The fire load density was 7.5 kg/m².

The mean moisture content of the board was about 13 per cent.

4.3. Tests with liquid fuel (W and Y)

5

Test W was carried out with petrol fuel, a total of 26.3 gal (\sim 88 kg) being used. This has approximately the same potential heat output as an equivalent fire load density of wood fuel in the compartment of 7.5 kg/m², assuming the calorific value of wood to be 0.4 times that of petrol. The petrol was placed in 8 trays as nearly as possible the same size and in the same position as the cribs in the wood fuel tests. There was a small variation in tray size (7 trays were square with sides between 0.75 and 1.0 m, the eighth tray was circular, 0.9 m diam.) since only trays already available were used, but the quantity of petrol placed in each tray was proportional to its area, to give equal burning times, and the largest trays were placed next to the smallest ones. The total exposed area of petrol was 6.33 m² (68 ft²) giving a depth of petrol of 1.89 cm.

The trays contained a depth of several centimetres of water. Just before ignition the petrol was added and the top of the tray was covered with polythene sheeting and secured all round the tray edge. The trays were ignited simultaneously by means of electrical igniters, two to each tray, placed to burn through the plastic sheeting and ignite the petrol underneath.

In test Y, 26.6 gal (\sim 89 kg) of kerosene fuel were placed in the same eight trays used for the petrol fire of test W. Measurements of duration of flaming, height of flames, temperatures of steel columns and some gas temperatures were made but no other thermal measurements were made during this test.

- 5 -

5. Measurements.

The measurements made are listed in Tables 4a, b and c. Further details of some of the measurements are given in the following sections.

t

5.1. Weighing arrangements for cribs.

Usually three or four cribs were weighed in each compartment during a test, except in some of the earlier tests. The positions for weight measurement (Fig. 2) were chosen to give an indication of variation in burning rate from side to side, rear to front and side to centre of compartment. Each weighed crib was placed on a heavy steel platform 107 cm square, insulated on the top and sides with asbestos wood. The platform was supported close to the floor on three legs which in turn rested on three load cells placed at the bottom of 70 cm deep holes in the floor. Each load cell contained four strain gauges, 2 mounted on the inside and 2 on the outside of The gauges were connected as a Wheatstone bridge, the three load a ring. cells being connected in parallel. The power supply and out of balance voltages were carried along mineral-insulated copper cable covered with extra thermal insulation. This ran along the floor to junction boxes in a fourth cavity under the platform from which leads ran through buried conduits to each load cell. The platforms were calibrated before each test by adding and removing known weights.

5.2. Heat flow within and above crib

The heat flow to cold receivers placed both inside and above one of the wood cribs nearest the rear wall was measured. The receivers were attached to the copper pipe shown in Fig. 4 and Plates I and II which passed through the rear wall and was 'stepped' to permit receivers to be mounted horizontally facing upwards at different heights. A high rate of flow of water was maintained through the pipe.

Each receiver (Fig. 5) consisted essentially of a block of nichrome* soldered between the copper pipe and a copper foil lead, the whole assembly forming a thermocouple. A flow of heat through the block gave rise to a temperature difference across the block and therefore an electrical signal from the thermocouple. A guard ring of nichrome protected the sides of

* constantan would have been a better material but was not available.

- 6 -

the block. The narrow gap between guard ring and block was filled with silicate cement and the surface of the block was coated with black paint. The copper foil lead was joined on to a copper wire lead which ran back along the outside of the tube under a layer of asbestos wool insulation. The elements were calibrated at an intensity of about 0.6 cal cm⁻²s⁻¹ by comparison with a J.F.R.O. Moll thermopile⁶ using a Schwank surface combustion gas radiant panel as source.

In view of the principle of operation of the receiver it is likely that its sensitivity does not vary markedly with intensity but this will be checked at a later date.

In view of the close correspondence shown in the higher fire load density tests in Fig. 6 between the heat flux measured by the upper horizontal receiver and the intensity of radiation in the plane of the window opening any change of sensitivity with intensity is unlikely to be large.

5.3. Heat flow to walls and ceiling

7

The rate of flow of heat into the walls was measured from the temperature gradient in the wall at the surface by a method suggested by The gradient was estimated by means of thermocouples Dr. P. H. Thomas. embedded at various depths in blocks of plaster of the same kind as that used to coat the wall. These blocks were let in to the wall plaster. One block was attached to the ceiling. The temperature gradient at the surface was estimated from the slope of a polynomial fitted to the measured The thermal conductivity of the plaster was measured temperatures. separately. Within the precision of measurement the thermal conductivity was found to be independent of temperature and was 0.57×10^{-3} cal cm s degC for mean temperatures of the plaster between 200°C and 900°C. The emissivity of the plaster was also estimated as being about 0.9.

5.4. Heat flow to wall above window (external)

The heat flow to the outside surface of the wall above the west window of each compartment was measured by means of a heat flux meter. This consisted of a circular slab of stainless steel, 6 mm thick with its front face blackened. The rate of flow of heat through the slab was measured by

- 7 -

the difference in temperature between the front and back faces which was found by means of a differential thermocouple. The slab was mounted, with a guard ring to protect its edges, on a thin steel plate attached to the wall. It was calibrated using radiation from a gas-fired radiant panel by comparison with a $J_{\circ}F.R.O.$ Moll thermopile⁶.

1

5.5. Recording instruments

For the first 20 tests most of the electrical outputs from the instruments were connected through switching units to one of 3 amplifiers and 3 pen recorders. Readings over a period of 3 s were obtained every 75 s. Later in the series a data logger was delivered and this was used in tests S, W and V. This instrument scanned the electrical outputs and recorded them in digital form on a punched tape which was later processed by a digital computer.

5.6. Gas composition measurements

For completeness this report also includes measurements of the composition of the gases in the compartment made by the Chemistry and Chemical Engineering Section. In some of the tests gas samples were withdrawn and stored in glass gas pipettes at intervals from two points in the ceiling both 50 cm from the inside of the window wall and 12 cm and 60 cm from the beam B3 or $B6^1$. The samples were subsequently analysed on a dry basis by means of gas chromatography. These results will be analysed in a separate paper.

6. Results

Values of the quantities measured have been calculated at 5 min or shorter intervals over the whole period of flaming combustion, and mean values have been formed from values calculated at more frequent intervals (usually $1\frac{1}{4}$ min) for the period when the weight of fuel was falling from 80 to 30 per cent of its initial weight. This period was chosen because previous experiments with wood cribs in compartments of various scales and shapes have shown that during this period the burning rate is characteristic of the period of flaming combustion since the growth period at the start of the test and the period at the end when much charcoal is burning are largely excluded.

This period has been further sub-divided into an 80/55 and a 55/30 period.

The variation with time of a number of important variables is shown for a few tests in Figures 6a to 6g,

- 8 -

Mean values for 80/30, 80/55 and 55/30 periods are given in Table 5.

The growth at the start of test C was much slower than in other tests which had almost similar conditions (for example test L which had identical cribs of wood but larger windows) although until the fire had grown large enough for the size of window to affect internal conditions appreciably, the rate of growth should have been similar. Further, the temperatures in test C were much higher in the east side of the compartment than in the west, presumably because of the effect of a strong cross wind which could be seen to blow the flame inside the compartment towards the east side. The most likely explanation for the slow initial growth is that the cross wind during ignition retarded the flames from the base of the crib from travelling up higher into the crib. A repeat test (U) was carried out on a much calmer day and gave a more rapid initial growth.

6.1. Flame conditions during tests

Ş

Table 6 describes the appearance of the flames during the tests. One observation which has a bearing on the hazard to the storey above a compartment concerns the effect of wind on the flame emerging from a compartment. With the larger window openings the flame usually only emerged from one or the other opening and with a cross wind there was a clear tendency for the flame to emerge from the opening on the windward side and then to travel upwards diagonally across the building.

6.2. Burning rate and fire duration

6.2.1. Individual cribs

Figure 7 shows the variation of weight with time for one of the weighed cribs. In any one test the maximum variation between the burning rates measured for each weighed crib was not greater than 2 : 1 and the variation of time to end of luminous flaming for the individual cribs was similar.

As well as the variations in burning rate from one side of the compartment to the other caused by a cross wind, the times to the end of luminous flaming show that for the 60 kg/m^2 fire load density tests there was a tendency for cribs to burn faster at the front and centre of the compartment and slower at the sides and back. This was also apparent in the 30 kg/m² fire load density tests with $\frac{1}{4}$ window opening

- 9 -

but not for the $\frac{1}{2}$ window opening or for the lower fire load density tests. This is probably because for large amounts of fuel and small window openings there is a tendency for the window opening to restrict air supply to the fire and for the zone of intense combustion to be set up just inside the window opening, rather than at the fuel. This will be discussed more fully in a later paper. 2

6.2.2. Burning rate of compartment as a whole

For any given test the burning rate for the compartment as a whole was estimated from the weight loss measurements and the observed times at which each crib ceased to flame. The times at which 80, 55 and 30 per cent of the original weight of each weighed crib remained were normalised by dividing by the time at which the crib ceased to flame. These normalised times were reasonably constant for all the weighed cribs. The times at which 80, 55 and 30 per cent of the whole of the fuel in the compartment remained (t_{80} , t_{55} and t_{30}) were assumed to be given by multiplying the normalised times averaged over all the weighed cribs by the mean time for all the cribs to cease flaming. The average burning rates over the 80/30, 80/55 and 55/30 periods could then be found directly.

Where less than three cribs were weighed, normalised times were obtained from a combination of these data with weight measurements in the tests with the most similar ventilation and fire load densities.

The mean burning rates over the 80/55 period were 10 to 30 per cent larger than in the 55/30 period. This effect has been noted before with thick sticks⁷ and is probably due to the insulating effect of a charcoal layer.

The mean burning rate in test S was found approximately by assuming that $\frac{5}{6}$ of the fuel burned between flashover and end of flaming, i.e. between $1\frac{1}{2}$ and $6\frac{1}{2}$ minutes, (see Table 7). This value of $\frac{5}{6}$ is derived from experiments with model corridors lined with fibre insulation board, carried out by P. L. Hinkley⁸. To permit averaging of temperatures etc, the period 2 to 5 minutes was taken as an approximate $\frac{80}{30}$ period.

An estimate of the burning rate of the fuel in test W was found by assuming that the burning rate was constant over the average period of substantial flaming of all the trays (15 s to 4 min 40 s from first ignition). The delay of 15 seconds at the start after the first

- 10 -

ignition was because the polythene sheeting which covered the trays had sunk down and was touching the petrol surface in the centre, so that at first burning could not take place over the whole tray area. Values for t_{80} and t_{30} were also found, with the above assumption.

6.3. Effects of compartment aspect and wind

ş

Before the results of all tests could be directly compared it was necessary to discover whether there were any systematic differences between the results obtained in tests in the North and in the South compartments.

The experimental design had been drawn up with the intention of analysing the results by a variance analysis method⁹, but since the design could not be strictly adhered to the method of analysis had to be altered. There were a few missing values of some variables (for example in tests J and K the radiometers were obstructed at times by spectators and the mean values for radiation intensity are therefore too low) and it was necessary to carry out test U in the south instead of the north compartment, so that the original symmetry was partly upset. However, the results were analysed by multiple regression and indeed this method permitted the dependence on a number of variables including wind speed and direction to be included. The original experimental design, which was only slightly deviated from, gave the benefit of sufficient spread in the values of the important independent variables to permit correlations with the dependent variable to be found. The use of a computer enabled more independent variables to be dealt with than could have reasonably been included by desk machine calculation.

The number of experiments, though large for a large scale test series, was too small to permit variation with many factors to be explored and only those most likely to influence the fires could be included. The dependent variables taken were:-

- 1. Average burning rate over the period when the weight of the fuel was falling from 80 to 30 per cent of its initial weight.
- 2. Average temperature rise above ambient of the gas within the compartment formed by averaging readings from six thermocouples over the 80/30 period.

- 11 -

3. Average temperature rise above ambient of the gases leaving the compartment formed by averaging readings from four thermocouples over the 80/30 period.

ŝ

- 4. Average over the 80/30 period of the intensity of radiation in the plane of the window opening, formed by dividing the readings of the radiometer shielded from flames above the window by its configuration factor with respect to the window opening.
- 5. Equivalent fire duration, i.e. total weight of fuel divided by average burning rate over the 80/30 period.

Logarithmic transformations were made of variables 1, 2, 3 and 4. No transformation of variable 5 was made. Baldwin¹⁰ has found such a logarithmic transformation to be appropriate for burning rate and intensity of radiation in similar experiments on a smaller scale. He found that a wide range of transformations could be used for temperature, including no transformation at all. However, in the present experiments the range of temperature was much larger than in those of his analysis and since the differences in mean temperatures between replicate experiments appeared to be approximately proportional to the temperature, a logarithmic transformation was made, which was within the range of possible transformations found by Baldwin.

No significant variation of rate of burning, equivalent fire duration or either of the temperatures was found with wind speed, wind direction or aspect of the compartment. i.e. whether it faced North or South. No significant variation of rate of burning or either of the temperatures was found with fuel moisture content. The effects of fire load and ventilation were more complicated. A significant variation of rate of burning, equivalent fire duration and the two temperatures with fire load, a (fire load)² term and an interaction term, window area x (fire load)² was found.

It was more difficult to deal with the intensity of radiation in the plane of the window, because in two tests, J and K, the radiometer was obstructed by spectators, giving an imbalance in the experimental design. The intensity of radiation was found to depend on fire load and window

- 12 -

area, but it was not possible to test whether the intensity of radiation also depended on the aspect of the compartment and the wind speed and direction. However, 99 per cent of the variation could be accounted for by fire load, (fire load)², window area and window area x (fire load)² terms. Since radiation intensity must depend on temperature within the compartment and since no difference in the temperatures between fires in the North and South compartments was found, it is unlikely that intensity of radiation could depend on the aspect of the compartment. Similarly, since no effect of wind speed or direction was found on temperature or rate of burning, it is unlikely that radiation intensity could also have been affected.

ŝ

These results do not, of course, imply that a fire in a compartment is always independent of an external wind since these tests were only carried out when the wind speed was low. At higher wind speeds some effect might well be produced and experiments at the J.F.R.O. with fires in small compartments have shown that the rate of burning can be increased by wind speeds of 8 m/s.

Some secondary effects were produced by the wind. It was noticed that when there was a large component of wind velocity parallel to the plane of the window openings more air appeared to be entering one opening than the other and more flame and smoke to be leaving the other opening. For example, with a wind from the west more flame would be emitted from the west than the east window and more air would appear to enter the east than the west window. This is no doubt a consequence of the pressure distribution created around the building by the wind.

With the lower fire loads the circulation produced in the compartment by a cross wind could be seen from the way the flames from each crib were blown by the wind.

There was a tendency for cribs to burn faster on the side in which more air appeared to be entering. This was more pronounced with a $\frac{1}{2}$ than with a $\frac{1}{4}$ window opening.

6.4. Heat transfer to unprotected steel column

The rate of temperature rise of the unprotected steel columns can be used to estimate the rate of heat transfer to the column, provided due allowance is made for heat loss, and this will be compared later with the other measurements of heat transfer rate within the compartment.

- 13 -

6.5. Suction pyrometer readings

Table 8 compares gas temperatures measured with the suction pyrometer at various times during the tests with the temperatures attained by unshielded thermocouples. ĭ

7. Acknowledgements

The tests described in this report were carried out by the Ignition and Growth Section with the assistance of the Structural Fire Protection Section, which was mainly concerned with the measurement of steel temperature. It is a pleasure to record the contribution to the conduct of these experiments and the processing of data from them, of Mr. G. K. Bedford, Mr. N. Darrington, Mr. C. Gilmore, Miss Lynda Griffiths, Mr. M. North, Mr. M. Woolliscroft and Mr. H. G. H. Wraight, and the co-operation of the Structural Fire Protection Section. 'Mr. Bedford measured the thermal conductivity of the wall plaster, described in Section 5.3.

8. References

- (1) BUTCHER, E. G., CHITTY, T. B. and ASHTON, L. A. The temperature attained by steel in building fires. H.M.S.O. London (1966).
- (2) HESELDEN, A. J. M. Determining the fire-resistance requirements for buildings using models (C.I.B. Model Tests). VFDB 2nd International Fire Protection Seminar (1964) Vol.II p.7.
- (3) Results of 1st International C.I.B. Models Programme. To be published.
- (4) McGUIRE, J. H. and WRAIGHT, H. Radiometer for field use. J. Sc. I. 37, p.128 (1960).
- (5) HINKLEY, P. L. and HESELDEN, A. J. M. An improvement to a radiometer for field use. J. Sci. I. 40, p.379 (1963).
- (6) SIMMS, D. L., PICKARD, R. W. and HINKLEY, P. L. Modified Moll thermopiles for measuring thermal radiation of high intensity. J. Sc. I. 39, p.204 (1962).
- (7) WEBSTER, C. T., RAFTERY, MISS M, and SMITH, P. G. The burning of well ventilated compartment fires. Part III. The effect of wood thickness. Department of Scientific and Industrial Research and Fire Offices' Committee Joint Fire Research Organization F.R. Note No.474.
- (8) HINKLEY, P. L. Private communication.
- (9) GAUNT, J. E. Private communication.
- (10) BALDWIN, R. Private communication.

7

Design of first stage of programme The letters in the table are test code letters

Comportment	Ventilation	Fire load density (kg/m ²)				
	(m ²)	7.5	15	30	60	
	5.6	A,B	_	_	C*	
North	11.1	<u> </u>	D	E,F	-	
	5.6	-	G	H,I	-	
South	11.1	J,K	1	-	L	

*Anomalous. Replaced by repeat test (U)

T

•

Complete programme of tests The letters in the table are test code letters

Ventilation	Fuel and	Compartment	Fire load density kg/m ²				
area m ²	layout	lining	7•5	15	30	60	
	Wood 18 oniba	None	-	-	N	-	
	(Approx. § floor covered)	Mineral wool insulation	_	_	R	-	
		None	J	5	F	T	
1 1. 1 ("코 ventilation")	Wood 8 cribs	None	K	<u>ل</u>	Е	ىر	
(2	(Approx. 날 floor covered)	Mineral wool insulation	P	-	-	-	
	Petrol 8 trays	None	₩	_	_	-	
	Kerosene None 8 trays		Y	-	-	-	
	Fibre insulating board		S	-	-	-	
	Wood 18 cribs	None	· _	-	M	_	
5.6 (#1 vortilation)		Mineral wool insulation	-	-	Q	-	
			A	G	H	С	
	Wood	None	B	X	I	U	
	8 cribs	Mineral wool insulation	0		-	-	
2.6 ("1 ventilation")	Wood 8 cribs	None	~	-	-	v	

Position	Area of fibre insulation board		
	<u>m</u> 2	ft ²	
Ceiling	25.9	278	
Rear wall	14.9	160	
Side wall (E)	8.9	96	
Side wall (W)	8.2	88	
Front wall (below window)	4.5	48	
Floor (for ignition)	5.5	59	
Total	67.9	729	

1

- •

Areas of fibre insulation board used in Test ${\bf S}$

<u>Table 4(a)</u>

ī.

.

•

-

. -

• . • •

Measurements made in tests

Variable	Measurement;	Position of measurement	Method or apparatus used		
	Wind speed	$\frac{1}{2}$ m above ground level in open field near compartment	Integrating cup anemometer. Spot readings with vane anemometer before and after test		
Weather conditions	Wind direction	н	Wind vane		
	Air temperature	In shade near compartment	Wet/dry bulb whirling		
	Relative humidity	11	arm hygrometer		
Rate of growth and	Times of various stages of growth and development including flashover		Visual		
duration of fire	Burning rate	Some cribs weighed in most of tests	Platforms supported on load cells. See Section 5.1		
	Height of flame above window opening	_	Visual and by photographs at 5 or 10 s intervals		
Flame height	Height of flame above crib (only for low fire loads when flames from separate cribs did not merge)	All cribs	Visual		

Table 4(b)

2

Measurements made in tests

Variable	Measurement	Position of measurement	Method or apparatus used
		At $\frac{1}{4}$ and $\frac{3}{4}$ of compartment height in centre and on each side (See Fig. 3)	Bare chromel/alumel thermocouples
		8 cm from ceiling	tt
		8 cm from rear wall	n
	Temperatures in flames	8 cm from column C9 or C16	11
Temperature of fire	or hot gases	In effluent gases, two in plane of front of each window opening (See Fig.3)	n
		Above crib at rear of compartment at various heights	Multiple-wall refractory- shield suction pyrometer* (sheathed Pt - Pt 13 per cent Rh thermocouple) and with chromel/alumel thermocouple some 5 cm to one side of shield
	Temperature of inner surface of wall and ceiling	Near centre of rear and W side wall and centre of ceiling	Chromel/alumel thermoccuples embedded in surface
	Temperature of surface of mineral wool insulation on walls and ceiling	H o* -	Ħ
	Temperature of surface of mineral wool insulation on a column	About 90 om from floor on column C9 or C16, facing rear wall	H

*Maximum rate of extraction of gas about 10 g/s

.

....

.

<u>्</u>यः

٦

Table 4(c)

÷

.

•

•--

٢.

177

•

Measurements made in tests

Variable	Measurement	Position of measurement	Method or apparatus used
Heat transfer rate within	Heat flow above and inside crib at rear of compart- ment	To heat flow elements mounted horizontally and vertically at various heights near vertical line through crib centre	Heat flow discs mounted on water-filled copper pipe. See section 5.2
compartment.	Heat flow into walls and ceiling	Near centre of rear and W side wall and centre of ceiling	Plaster heat flow blocks. See section 5.3
	Intensity of radiation from window opening	4-7 m from plane of opening, directly in front of openings	Two radiometers (4,5) one with a shield to cut off radiation from flame above the window
Heat transfer rate outside compartment	Intensity of radiation from flame above crib	Pyrometer sighted on area about 75 cm diameter just above crib at rear of compartment	Total radiation pyrometer (Angle of view 1 in 10). Arsenic trisulphide lens
	Heat flow to wall above window	55 cm above top of W window, 75 cm from the line of the inner edge of the W window	Heat flow block. See section 5.4
Gas composition	Concentration of O2, CO2, CO, H2 and CH4 in gases within compartment	Samples withdrawn from two positions near ceiling. See section 5.5	Analysis by chromatographic apparatus

Index to Table 5

.

٠.

.._.

	Contents	Column number
General		
	Compartment aspect	7
	Date of test	2
	Weather conditions	3 to 7
·	Air temperature	3
	Relative humidity	4
	Wind speed and direction	5 to 7
	Fuel moisture	8
	Unprotected steel members	9
Development of fire		
_	Time for flames to touch ceiling	10
	" " " emerge from window	11
	" " flashover	12
	" to lose various fractional fuel weight	s 13 to 15
	" to peak temperatures	37
	Burning rate	16 to 19
	Flame height	20
	Period of longest flames	21
	Mean duration of flaming	22
	Equivalent fire duration	23
Temperature rise	Compartment gases	
	80/30 mean	32
	80/55 and $55/30$ means	55 and 56
	Peak	36
	Suction pyrometer	Ju 57 and 58
	(Height of suction pyrometer)	
	(Height of crib under suction pyrometer)	39
	Exit gases	0 to 16 and 61 to 62
	80 / 30 maan	دن دن 40 and 01 دن 20
	80/55 and $55/30$ means	40 61 and 62
	Wall and appliance surfaces	7 + 2 50 and 62 + 2 70
	Rain and Centring Surfaces 4	
		4/ to 50
	ours and on the second	
	Surface of mineral wool insulation 5	to 54 and /1 to 78

Heat transfer (external)

Intensity of radiation from window opening	79	to	86
Unshielded radiometer	79	to	81
Shielded radiometer	82	to	84
(Configuration factor)		85	
I _o /Ø		86	
Total radiation pyrometer		87	
Heat flow to wall above window opening	88	to	90
Heat transfer (internal)			
Heat flow to receivers on water-filled tube	91	to	111
Heat flow into walls and ceiling	112	to	123
Composition of compartment gases	124	to	143

1

•

/⊇.₊ -

•;

, -

- 22 -

TABLE 5

-

A key to the experimental conditions is given on page 43.

Notes on Table 5 (see also footnotes)

ł

.

-

4

.

.....

e 5

. -

•

Column	Symbol	Note
6 and subsequent	+	No record is available, or time of event is not well defined.
9	¢ `	In tests M, N, O, P, Q, R, S, U, V, W, X and Y two extra steel columns (C21 and C22) were installed in the South compartment. C21 was covered with 1.8 cm thick asbestos insulating board; C22 was left unprotected in all tests except X in which it was. covered with mineral wool insulation.
10 and subsequen	t –	Event never occurred, or not applicable.
12	(Heading)	'Flashover' is taken here as the time when flames from individual cribs merged together and produced a massive flame occupying a large fraction of the volume of the compartment.
12	(Tests $\hat{\tilde{E}}$ and F)	Flames largely filling rear half of compartment.
12	(Test G)	Flames not fully merged.
16 to 19	(Heading)	Burning rate 80/30, 80/55 and 55/30. These are the mean burning rates over the period when the weight of fuel was falling from 80 to 30, 80 to 55 or 55 to 30 per cent respectively of its initial weight.
22	(Heading)	Mean time of all cribs or liquid fuel trays to cease luminous flaming (i.e. not counting flames of carbon monoxide), defined as the time when flames became less than 15 cm high.
23	(Heading)	Total quantity of fuel 💮 mean burning rate over 80/30 period.
86	¢(Heading)	This has been determined with respect to the inner edge of the window opening; obstructions in the window (e.g. exterior columns and mountings for the sheets used to close part of the window opening) have been taken into account.

	Aspect of comp- artment	Date of test	WEATHER CONDITIONS Average over period of test Air Wind speed temp- Relative verage Vane Cup anemo- oc per cent				Wind direction
	1	2	3	4	5	6	7
N	ស ស	19. 8.65	21	70	3	,∕≉	SW
R		5.10.65	14	90	1	1	Se
J	S	7. 4.65	13	75	1	+	W
K	S	2. 6.65	18	50	2	2.5	NE
D	N	16. 2.65	7	60	2	3	N
F	n	10. 5.65	16	50	2	2	NW
E	N	19. 5.65	11	45	2	2	NNW
L	S	29. 3.65	21.5	25	2	/	SSW
Р	S	20. 9.65	18	60	2	2	₩
W	ទេស	2. 2.66	11	80	2	2	SW
Y		9. 2.66	. /	7	7	/	B
s	S	14.12.65	5	~ 95	1	1	SW
M	S	26. 8.65	15	85	1	2	SW
Q	S	13.10.65	15	60		/	S†
A	n	24. 2.65	4	55	2	+	N.
B	N	3. 3.65	-1	/	1.5	4	SW
G	S	22. 4.65	11	70	3	3	NB
X	S	21. 1.66	1	90	1.5	2.5	NW
H	s	28. 4.65	8	75	1.5	2	ne
I	S	9. 6.65	12	85	2	2	N
C	N	10. 3.65	7	55	3	4	SSE
U	S	3.11.65	7	50	1	1	N RW
0	S	22. 9.65	20	55	1.5	1	WSW
V	S	14. 3.66	9	75	1	0.5	W

*See notes on Table 5

 \sim

1

*During test Q the wind changed direction from SW through S to E.

		Bane stool	DEVELOPMENT OF FIRE					
	Mean moisture content of fuel	members in compart- ment (see reference(1) and	Time for flames to touch ceiling	Time for flames to emerge from window	Time for flash- over*	Time (weight follow of ini	min) for to fall ing perce tial weig	fuel to entages ght
	%	figure 2)	(min)	(min)	(min)	80	55	30
	8	9	10 .	11	12	13	14	15
N R	12 12	C13, C22* C13, C22*	3.5 4	3 4	~ 8 6	10.4 9.2	16.2 13.2	21.3 19.2
J K D	11.5 12 13	C13 C13 C6, C13	_* _ 4			7.6 8.3 7.4	11.8 12.9 11.9	16.6 18.1 17.2
F E L	12 11.5)	C7 C6, C13 C13	5.5 3 3	5.5 7.5 6	4.5* 3.5* ~ 6	8.2 8.3 10.1	12.8 13.3 16.2	19.0 19.6 24.0
P	11.5	C13, C22*	-	-	-	8.1	13.1	18.7
W Y		C13, C22* All except C21*	~ 0.7 1.5	••• 0.7 1.8	~0.7 ~2	~ 1.13 ~ 2	<i>+</i> <i>+</i>	~ 3.33 ~ 7
s	13	C13, C22*	4	1.2	1.5	~ 2	. +	~ 5
M Q	12 13.5	C13, C22* C13, C22*	2.5 <i>f</i>	√ 7.5 4.2	~ 8.7 ~ 5.5	12.0 13.1	17.7 17.9	23.9 23.9
A B G X	12 12 12 ≁	C6, C13 C7, C13 C13 All except 2*	- 6 5.2	- - 9 -	- - 7* -	7.4 6.5 8.2 9.6	12.0 10.6 12.8 15.0	17.3 15.2 18.8 21.8
H I C U	13 12.5 12 11.5	C13 C13 C7, C13 C13, C22*	~ 4 2.2 4.5 3.5	 → 6 → 5.7 8 5.5 	 ✓ 6 9.7 6.2 	9.7 8.1 4 15.8	15.0 13.6 4 24.6	21.3 19.7 4 34.8
0	11	C13, C22*	~	-	-	9.0	14.5	20.7
V	12.5	C13, C22*	2.8	14	~14	24.6	36.8	51.3

. --

 \mathbf{c}^{+}

*See notes on Table 5.

2

TABLE	5(c)

	DEVELOPMENT OF FIRE									
	Mean burning rate 80/30*	Mear	burning (kg/s)	rate	Peak flame height above window++	Period of longest flames (min from ignition)	Mean duration of flaming* (min)	Equiva- lent fire duration*		
	16	17	18	19	20	21	22	23		
N R	40 44	0.67 0.73	0.63	0.71 0.60	2+ 3+	12.5-17.5 6.5-17	45 40	22 20		
J K D	12 11 22	0.20 0.19 0.37	0.22 0.20 0.40	0.19 0.17 0.34	-	4-7 2-5 4	33 36 35	18 19 20		
F E L	400.670.79390.640.73631.051.19	0.58 0.58 0.93	2+ 2+ 3 ¹⁸¹	10-14 10-16 12 . 5-19	44 40 46	22 23 28				
P	10	0.17	0.18	0.16	-	24	31	21		
W Y	20 9	0.33 0.15	<i>+</i> <i>+</i>	<i>+</i> <i>+</i>	5+ 4+	0.75-3 2-5.5	4.7 10	4.4 9.9		
Ś	36	0.60	+	4	4	1.75-5	6.5 ^x	6.1		
M Q	37 : 40	0.61	0.64 0.76	0.59 0.60	3 3	10-17.5 9-13.5	45 46	24 22		
A B G X	11 12.5 21 18	0.18 0.21 0.34 0.30	0.20 0.22 0.39 0.34	0.17 0.20 0.30 0.27	- 08 -	6-10 3-8 9-14 8.5-20	35 31 40 43•5	20 17 21 24		
H I C U	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.58 0.59 / 0.71	3 3 3 3	10-16 9.5-13 15.5-35 11.5-24	48.5 50 62 62	23 23 38 38			
0	9	0.16	0.17	0.15	· _	3.5-7.5	34.5	23		
v	33	0.54	0.60	0.50	2	22-34	95.5	54		

*See notes on Table 5.

++Measured from the top of the window opening.

+Flames emerging from one window only.

Flames emerging continuously from one window and intermittently from the other. Small licks of flame emerging.

xTime to end of all flaming.

- 27 -

TABLE	\$ 5	(d)

				TE	MPERATURI	E RISE			
	The	rmocouple	es in con	partment (gases. 1	Means ove	er 80/30	period. (d	leg C)
		Up	per			Lo			
	West S ₁	Centre Sz	East S5	Mean	West S ₂	Centre S ₄	East 36	Mean	Mean of S ₁ to S6
	24	25	26	27	28	29	30	31	32
N R	755 585	675 695	6 3 0 820	685 700	775 555	685 640	665 840	705 685	690 690
J K D	1 95 180 400	230 230 460	205 235 485	210 215 445	235 180 365	245 250 460	165 240 460	215 225 4 <i>3</i> 0	210 220 440
F E L	715 750 1070	770 750 1045	785 740 1045	760 745 1050	735 635 /	765 660 99 0	735 680 1 070	745 660 10 <i>3</i> 0	750 705 1045
P	280	270	250	265	265	305	220	260	265
W Y	1075 +	1055 +	10 <i>3</i> 5 +	1055 +	835 7	1020 +	630 7	8 <i>3</i> 0 <i>+</i>	940 4 -
S	+	885	825	855	760 °	725	4	745	800
M Q	1005 1055	940 10 <i>3</i> 0	970 1045	970 1045	915 975	865 945	900 - 995	895 970	930 1010
A B G X	280 295 615 570	345 320 665 570	345 320 700 555	3 25 310 660 565	245 260 675 580	295 270 665 555	295 295 675 510	280 275 670 550	300 290 665 555
H I C U	815 1060 1190	1020 1025 1070 +	1045 1050 1045 1120	960 1045 <i>7</i> 1155	1020 1045 <i>f</i> 1170	965 895 ≁ 1030	1020 1025 <i>4</i> 1090	1000 990 1 1095	985 1015 7 1120
0	430	415	380	405	375	370	345	360	385
v	+	1145	1110	1125	950	970	1105	1010	1055

.

.

,

*Single reading.

TABLE 5(e)

	Thermoco	Height of suction	Height of crib				
	7.5 cm below ceiling		Unshielded thermocouple near suction pyrometer	IdedPeak valueTimeoupleof meantootionof S1 to S6peak			under suction pyrometer
	(deg C)	(deg C)	(deg C)	(deg C)	(min)	(cm)	(cm)
	33	3 4 ²	35	36	37	38	39
N R	635 715	/ 850	4 985	755 825	16 9	# 80	21 21
J K D	185 210 445	<i>+</i> <i>+</i> <i>+</i>	290 220 720	255 230 445	4 5 9	50 75 67	13 13 22
f E L	770 775 1040	<i>4</i> <i>4</i> <i>4</i>	980 860 1045	810 745 1070	11 14 14	70 120 115	42 · 42 83
P	275	210	255	290	4	80	13
W Y	880 600	<i>+</i> <i>+</i>	935 /	1045 ≁	2.4 7	<i>†</i> <i>†</i>	-
S	825	+	780	805	2.5	+	0
MQ	980 1065	, ∕ 1010	1040 1035	1005 1070	16 11	≁ 80	21 21
A B G X	310 320 700 570	+ + + 565	≁ 390 865 565	325 325 685 580	6 6 10 14	≠ ≠ 50 50	13 13 22 20
H I C U	1000 1000 1000 1100	1030 1100 + 985	1070 1055 1045 1085	1025 1050 1045 1170	14 12•5 22 27•5	75 145 135 145	42 42 83 81
0	420 400 355		450	5	80	13	
V	1070	970	1110	1100	40	120	81

.

.

.

• •

			Ţ	SMPKRATURE	RISE					
(, <i>.</i>	5	Thermocouple	es in exit g	ases. Mean	ses. Mean over 80/30 period (deg					
		Upper	·		٠	Mean				
	West V₁	Bast NJ	Hean	West V2	East W ₄	Hean	of W ₁ to W ₄			
	40	41	42	43	لملبل	45	46			
N R	640 515	540 635	590 575	600 410	485 540	545 475	565 525			
J K D	205 120 390	145 210 460	175 165 425	160 90 365	100 175 440	1 30 1 30 405	155 145 415			
F B L	650 665 915	680 645 840	665 655 880	575 590 840	620 580 720	595 585 780	630 620 830			
Р	245	215	. 230	215	180	195	215			
ซ Y	1035 7	915 7	975 \$	925 4	670 7	795 /	885 *			
S	825	900	860	810	830	820	840			
в Я	900 880	815 . 970	855 925	865 825	770 9 3 0	820 880	840 900			
A B G X	295 270 565 515	320 260 590 535	305 265 580 525	285 270 370 435	295 170 525 485	290 220 450 460	300 240 520 490			
H I C V	840 830 530 1035	865 885 7 1020	855 860 ¢ 1030	720 640 390 940	770 765 940 945	745 700 4 945	800 780 985			
0	390	370	380	360	<u>34</u> 0	350	365			
۷	935	950	945	825	915	870	905			

- 30 -

F.

TABLE 5(g)

	. <u>, .</u>			TEMPERATURE	RISE							
		Thermocou	ples on su	rfaces. Mean	faces. Mean over 80/30 period (deg C)							
	P	laster bloc	ĴK.	Coiling	Mine	Mineral wool insulation						
	Rear wall	Side wall	Ceiling	(concrete)	Rear wall	Side wall	Ceiling	Column				
	47	48	49	50	51	52	53	54				
N R	605 725	720 585	600 660	625 -	720	650	780	7 920				
J K D	160 150 <i>4</i>	205 1 35 2 90	180 250 380	225 220 310		-		360 305 525				
F E L	630 710	630 690 850	∳ 675 935	690 675 980	-		-	915 930 ≁				
P	185	185 250 235			+	335	335	+				
W Y	835 4	715 +	765 <i>4</i>	700 <i>4</i>	-		- 1	++				
S	545	625	620	785	-	-	-	805				
8 Ø	900 980	825 810	760 925	<i>+</i> -	ī,	- 920	- 975	1020 940				
A B G X	220 1 95 545 450	200 210 660 505	250 245 545 480	200 200 575 530			-	330 345 745				
H I C U	820 990 4 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		975 905 / 1010	 	-		1030 4 4				
0	290	370	320	-	4	+	• 390 •	4				
V	945	875	945	1030	-	-	-	4				

•

.

TABLE 5(h)

•

`**a** ____

۲.

•

•

			<u> </u>	TEMPERAI	TURE RISE				
	· ····································	М	leans over	80/55 and	55/30 peri	ods (deg C)		
	Compartment (Mean of S ₁ to S ₆)		Suction pyrometer		Near, su pyron	action acter	Exit gas (Mean of W ₁ to W ₄)		
	80/55	55/30	80/55	80/55 55/30		55/30	80/55	55/30	
	55	56	57	58	59	60	61	62	
N R	650 720	730 675	, 870	/ 840	4 970	≁ 995	545 490	585 545	
J K D	230 215 450	1 90 220 4 30	+ 150 +	260 <i>f</i> <i>f</i>	410 220 795	165 220 675	165 145 440	1 35 150 400	
F E L	775 710 1045	735 695 1045	1025 + +	+ + +	995 875 990	975 850 1095	635 610 805	625 630 855	
P	280	250	230	190	285	230	230	200	
W Y	<i>+</i> <i>+</i>	+ +	+ +	<i>+</i> <i>+</i>	+ +	4 4	<i>4</i> <i>4</i>	<i>†</i> <i>†</i>	
S	4	+	4	+	+	+	4	4	
M Q	980 1040	885 980	,≁ 1000	, ≁ 1015	11 35 995	945 1070	875 935	800 870	
A B G X	295 295 690 560	2 95 285 6 70 550	4 4 600	4 4 530	у́ 345 840 580	,≁ 415 880 550	305 245 530 500	295 235 510 485	
H I C U	1020 1020 + 1100	955 1010 1140	1045 1095 ¥ 950	1015 1110 1015	1070 1045 <i>4</i> 1025	1045 1060 ¥ 1140	765 765 4 970	820 795 ≁ 1000	
0	405	365	430	370	325	390	385	345	
V	1035	1075	945	990	1065	1150	870	935	

<u> </u>	· · · · · · · · · · · · · · · · · · ·											
				TEMP	ERATURE E	LISE						
	Tł	ermocoup]	es on surf	aces. Mea	ns over 80)/55 and 55	0/30 periods	(deg C)				
	Rear	wall	Side wall		Ceil	ling	Ceiling temperature (concrete)					
	80/55	55/30	80/55	55 /3 0	80/55 55/30		80/55	55/30				
	63	64	65	66	67	68	69	70				
N R	510 745	675 715	585 595	830 575	560 655	625 665	575 -	665 -				
J K D	160 135 +	165 160 +	205 125 280	205 145 300	170 240 370	1 95 260 390	220 210 300	2 <i>3</i> 0 2 <i>3</i> 5 325				
F E L	620 690 7	640 730 1	585 680 845	665 700 855	+ 655 915	+ 690 950	6 90 655 940	695 690 1005				
P	180	195	250	245	220	245	-	_				
W Y	+	<i>+</i> <i>+</i>	<i>+</i> <i>+</i>	<i>+</i> <i>+</i>	<i>+</i> <i>+</i>	+ ♥ +	+ +	<i>†</i> <i>†</i>				
s	7	+	+	+	+	+	+	+				
м В	965 1025	8 <i>3</i> 5 950	760 785	890 830	770 945	750 915	+ -	<i>+</i> -				
A B G X	210 190 535 445	225 200 555 455	1 90 200 6 30 460	205 220 680 545	240 240 535 475	255 250 545 485	185 185 555 530	210 210 595 525				
H I C U	905 1005 / 850	730 975 + +	985 855 / 765	985 880 4	900 915 ≁ 995	910 940 7 7	990 900 ,4 1000	955 915 + +				
0	295	290	380	360	320	325	-	-				
v	990	905	835	905	930	955	1005	1050				

TABLE 5(1)

TABLE 5(j)

		TEMPERATURE RISE											
		Thermocouples on surface of mineral wool insulation. Means over 80/55 and 55/30 periods (deg C)											
Rear wall Side wall Ceiling								umn					
	80/55	55/30	80/55 55/30		80/55	55/30	80/55	55/30					
	71	72	73	74	75	76	77	78					
N R	685 °	- 7 <i>3</i> 0	660	- 645	- 785	- 775	655 940	≁ 910					
J K D				-			410 315 550	315 295 500					
F E L		- - -	- - -	 		- - -	930 920 /	905 935 /					
Ρ	+	+	355	325	335	3440	+	+					
W Y		- /	- -	- 7	- +	- -	<i>+</i> <i>+</i>	<i>†</i> <i>†</i>					
S	-	-	_	-	-		4	4					
M Q	- 7	- +	- 975	- 875	1010	- 945	1080 880	960 985					
A B G X							350 360 740 –	310 335 745 -					
H I C U				- - - -		- - -	+ 1030 + 955	+ 1035 + +					
0	+	+	+	+	405	375	7	+					
v	-	-	-	-	-	-	1020	.+					

. ____

*One reading only

TABLE 5(k)

		Intensi Mean o	Config- uration factor	Total radn. pyro-					
	Unshie 80/30	Unshielded radiometer Shielded radiometer $I_0/9^{66}$ (I_0) 80/30 80/55 55/30 80/30 80/55 55/30 mean							meter 80/30 cal cm ⁻² s ⁻¹
	79	80	81	82	83	84	85	86	87
N R	0.101 0.126	0.091 0.132	0.110 0.122	0.094 0.117	0.078 0.124	0.109 0.113	1.40 1.75	0.067 0.067	1.46 0.99
J K D	0.005+ 0.008+ 0.049	0.CO4+ 0.009+ 0.052	0.007+ 0.007+ 0.046	0.005+ 0.009+ 0.042	0.003+ 0.009+ 0.044	0.007+ 0.008+ 0.040	0.07+ 0.13+ 0.40	0.067 0.067 0.105	0.70 0.50 0.95
F E L	0.186 0.191 0.285	0.194 0.192 0.257	0.182 0.191 0. <i>3</i> 07	0.186 0.184 0.259	0.184 0.180 0.220	0.187 0.187 0.292	1.77 1.75 3.9	0.105 0.105 0.067	2.58 2.18 3.60
P	0.01	0.01	0,01	0.01	0.01	0.01	0.15	0.067	0.55
W Y	+ +	+ +	+ +	++++	+ +	+ +	<i>+</i> <i>+</i>	0.064 -	<i>4</i> <i>4</i>
s	0.12	+	+	0.09	7	4	2.4	0.038	1.46
M Q	0.128 0.137	0.144 0.143	0.113 0.133	0.113 0.124	0.126 0.133	0.100 0.117	2.8 3.3	0.040 0.038	1.66 2.45
A B G X	0.012 0.009 0.036 0.020	0.014 0.009 0.036 0.019	0.012 0.009 0.036 0.021	0.012 0.008 0.031 0.021	0.013 0.007 0.031 0.020	0.011 0.008 0.031 0.022	0.17 0.12 0.77 0.55	0.069 0.069 0.040 0.038	0.18 0.33 1.40 0.76
H I C U	0.166 0.142 0.239 0.194	0.151 0.121 / 0.194	0.181 0.160 194	0.148 0.125 0.186 0.139	0.127 0.105 / 0.121	0.170 0.142 + 0.154	3.7 3.1 2.7 3.7	0.040 0.040 0.069 0.038	3.63 2.72 2.10 2.66
0	0.011	0.012	0.010	0.011	0.012	0.010	0.29	0.038	0.60
v	0.087	0.083	0.091	0.066	0.059	0.072	3.3	0.020	1.62

*See notes on Table 5.

+Radiometers obstructed by spectators.

AThis is virtually the intensity of radiation at the window opening. Ø is the configuration factor (column 86).

TABLE 5(1)

	HEAT TRANSFER (EXTERNAL)									
	Heat flow to wall above window opening. Means over 80/30, 80/55 and 55/30 periods (Cal $cm^{-2}s^{-1}$)									
	80/30 80/55 55/30									
	88	89	90							
N R	~ 0.3 0.28	~ 0.3 0.28	0.29 0.28							
J K D	0.09	0 ₊ 09	0.09							
F E L	0.26 0.25 0.8	0.29 0.25 0.6	0.23 0.24 0.9							
P		·								
₩ Y	<i>‡</i> <i>‡</i>	<i>¥</i> <i>¥</i>	<i>‡</i> <i>‡</i>							
S	. +	+	4							
M Q	~ 0.3 0.4	0.24 0.5	~ 0.3 0.3							
A B G X	0.05 0.03 0.07 0.14	0.04 0.03 0.07 0.17	0.06 0.03 0.07 0.12							
H I C U	0.5 > 0.3 + ~ 0.7	0.6 0.25 1.0	0.4 ≥ 0.37 ≠ ~ 0.4							
0		·								
v										

				HEA	T TRANSFE	R (INTERN	AL)		
	Height		Hea	t flow to	receiver	s on wate	r-filled	tube	
	of crib under tube		Mean he 80/3	at flow (O period	cal cm ⁻² s to receiv	-1) over er:-		Peak heat (cal cm ⁻	flow 2 _s -1)
;	(cm)	A (Hor.)	B (Vert.)	C (Hor.)	D (Hor.)	E (Hor.)	F (Vert.)	A (Hor.)	B (Vert.)
	91	92	93	94	95	96	97	98	99
N R	21 21	0.9 2.2	1.7 3.2	2.3 4.5	1.8 7	1.8 2.5	1.5 1.6	1.1 2.3	1.8 3.7
J K D	13 13 22	0.6 0.4 4	0.4* 0.7 7	0.4 0.5 1	0.4 0.4 4	0.8 0.9 <i>7</i>	1.4* 1.5 7	0.7 0.4 1	0.4* 0.7 +
F E L	42 42 83	2.1 2.1 5.0	1.9 1.9 3.7*	3.5 3.1 3.9	0.5 0.8 1.9	0.6 0.5 1.2	0.5 0.5 1.2*	2.5 2.3 6.3	3.0 2.3 4.4*
P	13	0.2	0.4	0.5	0.5	0.6	1.3	0.3	0.5
W Y	-	2.2 4	3.8 4	5.1 1	3.1 4	2.3 <i>f</i>	1.3 7	3.5 7	4.3 4
S	-	2.3	2.3	2.8	1.9	2.0	1.8	2.7	2.3
M Q	21 21	3.5 3.9	4.5· 4.7	5.6 5.1	3.0 2.9	2.7 2.0	2.6 1.8	4.2 4.3	5.2 5.2
A B G X	13 13 22 20	0.6 1.1 2.1 0.8	0.4 0.7 1.6* 1.3	0.4 0.8 1.8	0.6 0.8 1.9 1.3	0.8 0.9 1.4 1.4	1.1 1.2 1.2* 1.0	0.8 1.3 2.3 0.9	0.7 0.9 1.8* 1.5
H I C U	42 42 83 81	3.7 3.0 1 3.4	3.2* 3.5 4.7	4.5 4.7 ≁ 1.1	1.1 1.1 1.5	0.6 0.4 1 0.4	0.6* 0.7 4 0.5	3.8 3.2 ≁ 4.5	3.4* 3.8 1 5.5
0	13	0.6	0.8	0.9	0.8	0.9	1.3	0.6	0.8
V	81	3.5	4.5	1.8	0.7	0.5	0.5	4.2	5.0
				Height a	bove floo	r (om)			
	Tests C & L	200	200	97	69	54	54	20	00
	Other tests	160	160	57	28	14	14	16	50

__≮

- 2

TABLE 5(m)

^oVertical receivers facing to side of compartment. In all other tests vertical receivers facing to centre of compartment.

		HEAT TRANSFER (INTERNAL)													
				Heat f	low to	receive	erson wa	ater-fi	lled tu	ıbe					
		Mean heat flow (cal cm ⁻² s ⁻¹) over 80/55 and 55/30 periods to receiver:-													
	A I (Hor.) (Ver			B rt.) 155/30	C (Hor.)		D (Hor.) 80/55 155/30		E (Hor.) 80/55/55/30		F (Vert.) 80/55 55/30				
	100	101	102	103	104	105	106	107	108	109	110	111			
N R	0.8 2.2	1.1 2.2	1.4 2.7	2.1 3.7	1.7 4.4	3.0 4.6	1.3 ,4	2.3 7	1.2 2.4	2.4 2.8	1.1 1.5	1.9 1.7			
J K D	0.7 0.4 1	0.5 0.4 /	0.4* 0.7 <i>4</i>	0.4* 0.7 1	0.4 0.5 <i>4</i>	0.3 0.5 <i>4</i>	0.4 0.4 1	0.3 0.4 4	0.9 0.9 4	0.6 0.8 4	1.6* 1.5 7	1.2* 1.4 1			
F E L	2.0 1.8 4.5	2.3 2.3 5.3	2.0 1.7 3.5*	1.8 2.0 3.8*	3.6 3.2 3.7	3.4 3.0 4.0	0.5 0.6 1.6	0.6 0.9 2.1	0.6 0.5 1.2	0.7 0.6 1.2	0.5 0.5 1.1*	0.6 0.5 1.2*			
Ρ	0.2	0.2	0.4	0.4	0.5	0.5	0.4	0.5	0.7	0.6	1.4	1.2			
W Y	+ +	<i>+</i> <i>+</i>	<i>†</i> <i>†</i>	+ +	<i>+</i> <i>+</i>	<i>+</i> <i>+</i>	<i>†</i> <i>†</i>	+ +	+ +	+ +	<i>+</i> <i>+</i>	+ +			
S	+	4	4	+	4	+	+	+	7	+	+	+			
M Q	4.1 4.1	2.8 3.7	5.1 4.9	3.9 4.6	6.4 4.2	4.7 6.0	3.4 2.2	2.7 3.6	2.5 1.5	2.9 2.4	2.3 1.3	2.9 2.2			
A B G X	0.7 1.2 1.9 0.8	0.5 1.0 2.2 0.8	0.5 0.8 1.6* 1.2	0.4 0.6 1.6* 1.4	0.4 0.8 4 1.8	0.4 0.7 4 1.8	0.6 0.8 1.9 1.3	0.5 0.7 2.0 1.3	0.8 0.9 1.3 1.3	0.8 0.9 1.5 1.5	1.0 1.3 1.1* 0.9	1.1 1.1 1.4* 1.0			
H I C U	3.8 2.8 4 2.8	3.6 3.2 4 3.9	3.3* 3.3 4 4.0	3.2* 3.7 4 5.2	5.1 4.6 7 1.0	4.2 4.9 1.2	1.1 1.1 ≁ 0.5	1.2 1.2 7 0.6	0.5 0.4 4 0.4	0.6 0.5 4 0.5	0.6* 0.6 <i>4</i> 0.5	0.6* 0.9 4 0.6			
0	0.6	0.5	0.8	0.8	0.9	0.8	0.8	0.7	0.9	0.8	1.3	1.4			
V	3.0	3.9	4.0	4.9	1.1	2.3	0.6	0.8	0.4	0.6	0.5	0.6			

'**•**

TABLE 5(n)

*Vertical receivers facing to side of compartment. In all other tests vertical receivers facing to centre of compartment.

<u>TABLE 5(0</u>)

			HEAT TRANSP	FER (INTERNAL)		•		
			Heat flow into	walls and ceil	ing			
	Mear	heat flow (ca over 80/30 peri plaster block	$l cm^{-2}s^{-1}$ lod to in:-	Peak heat flow (cal cm ⁻² s ⁻¹) to plaster block in:-				
	Rear wall	Side Wall	Ceiling	Rear Side wall wall				
	112	113	114	115	116	117		
N R	0.23 0.22	0.31 0.19	0.25 0.15	0.40 0.58	0.52 0.59	0.31 0.47		
J K D	0.08 0.07 <i>4</i>	0.12 0.06 0.15	0.11 0.11 +	0.10 0.10 4	0.16 0.08 0.17	0.12 0.15 /		
F E L	∳ 0.27 ≁	0.24 0.28 /	4 0.23 0.36	0.40 0.38 0.89	0.45 0.43 1	4 0.48 0.98		
P	0.05	0.09	0.08	0.08	0.15	0.10		
W Y	0.80 <i>4</i>	0.49 /	0.74 4	0.96 <i>4</i>	0.55 +	0.83 <i>4</i>		
S	0.50	0.42	0.61	0.53	0.47	0.61		
M Q	0.18 0.19	0.27 <i>4</i>	0.26 0.16	0.53 0.53	0.42 0.59	0.39 0.39		
A B G X	0.10 0.09 0.27 0.19	+ + 0.34 0.15	4 0.10 0.27 0.20	0.12 0.12 0.39 0.27	+ + 0.44 0.19	, 4 0.16 0.42 0.28		
H I C U	0.28 0.33 + +	0.32 <i>4</i> <i>4</i> <i>4</i> <i>4</i>	0.36 0.40 4 4	0.61 0.49 0.52 0.57	0.53 0.64 0.33 0.56	0.54 0.53 0.48 0.46		
0	0.08	0.11	0.09	0.14	0.34	0.18		
V	+	0.09	+	0.83	0.18	0.49		

TABLE	5(p)

• •

•

• b. _____

....

.

. `

. т

	HEAT TRANSFER (INTERNAL)											
		I	leat flow into v	valls and ceilin	g							
	Mean heat flow (cal $cm^{-2}s^{-1}$) over 80/55 and 55/30 periods to plaster blocks in:-											
	Rear wall Side wall Ceiling											
ļ	80/55	55/30	80/55	55/30	80/55	55/30						
	118	119	120	121	122.	123						
N R	0.25 0.26	0.20 0.19	0.31 0.22	0.31 0.17	0.26 0.16	0.24 0.15						
J K D	0.09 0.08 /	0.07 0.09 <i>4</i>	0.15 0.06 0.16	0.10 0.06 0.13	0.11 0.11 7	0.11 0.10 7						
F E L	0.39 0.29 /	4 0.25 4	0.26 0.30 /	0.21 0.26 \$,≁ 0.26 0.46	,4 0.21 0.26						
P	0.05	0.05	0.12	0.08	0.08	0.08						
W Y	4 4	<i>†</i> <i>†</i>	<i>†</i> <i>†</i>	<i>†</i> . <i>†</i>	<i>+</i> <i>+</i>	<i>‡</i> <i>‡</i>						
s	4	4	4	4	4	+						
M Q	0.24 0.23	0.12 0.15	0.28 <i>4</i>	0.26 <i>+</i>	0.30 0.18	0,21 0,14						
A B G X	0.10 0.10 0.32 0.23	0.09 0.09 0.22 0.15	<i>+</i> <i>+</i> 0.40 0.16	/ / 0.28 0.13	/ 0.11 0.34 0.23	,4 0.09 0.22 0.17						
H I C U	0.38 0.39 <i>4</i> <i>4</i>	0.15 0.27 <i>+</i> <i>+</i>	0.38 0.30 + +	0.24 <i>f</i> <i>f</i>	0.41 0.45 <i>f</i> <i>f</i>	0.29 0.36 4						
0	0.09	0.06	0.13	0.09	0.10	0.08						
V	+	4	0.12	0.07	+	4						

. .

		COMPOSITION OF COMPARTMENT GASES Percentage by volume (dry basis)												
		0ху	gen		Carbon dioxide				Carbon monoxide					
	Mean over 80/30 Minimum period		mum	Mean over 80/30 Maximum period			Mean 80/ per:	over 30 iod	Maximum					
	B*	₩*	в	W	В	W	B W		В	W	В	W		
	124	125	126	127	128	129	130	1 31	1 32	133	134	1 35		
N R														
J K D														
F E L	6	6.5	3.5	5.5	15.5	15	19.5	17.5	0.1	0.1	0.3	0.3		
Р			[•			
W Y														
S	7	13	+	7	+	7	+	13	+	1	4	2		
Ø														
A B G X	7	18	+	17	+	3.5	7	4•5	7	0	4	0		
H I C U	7.5 7.5 3.5 6.5	8 6.5 5 3	5 6.5 2.5 3.5	7 4 3 2.5	14 14.5 16.5 13	13.5 14 15.5 17.5	16.5 15.5 18 16	14 15.5 17.5 20	<0.1 ≁ 4 2.5	0.3 0.6 3 5	0.1 0 4.5 3.5	0.5 0.9 4.5 5		
0														
V	5	1.6	0.4	1.5	15.5	18.5	19.2	19.5	1.5	2	3.5	3.5		

TABLE 5(q)

*B = Sampling point 12 cm from beam *W = Sampling point 60 cm from beam

<u>TABLE 5(r</u>)

		COMPOSITION OF COMPARTMENT GASES Percentage by volume (dry basis)												
		Hyd	rogen		Methane									
	Mear 80/30	n over period	Max	imum	Mear 80/30	over period	Maximum							
	В	W	В	W	В	B W		W						
	1 36	137	1 38	1 39	140	141	142	143						
N R														
J K D														
F E L	0	0	0	0	O	ο	0 . 1	0.1						
Р														
W Y		:												
S	+	0.9	+	1.7	+ .	0.3	+	0.6						
M Q														
A B G X	+	0	+	0	+	0	4	0						
H I C U	0 0 3 2	0 0 1.5 1.5	0 0 4.5 3.5	0 0 3 3•5	0 0 0.8 0.3	0 0 0.7 0.2	0 0 1.0 0.6	0.1 0.2 1.0 0.7						
0			· · · · · · · · · · · · · · · · · · ·											
V	0.2	1.2	0.6	2.5	0.2	0.3	0.8	0.6						

-

Ø,

KEY TO EXPERIMENTAL CONDITIONS

Test code	Fire load load donsity (wood equivalent) (kg/m ²) (kg)		Compartment lining	Fuol	Ventilation opening area (m ²)
N 14 R 18	30 30	872 872	None Mineral wool	18 wood cribs	
J 7 K 12 D 2	7.5 7.5 15	218 218 436	None		
F 10 E 11 L 6	30 30 60	872 872 1744	NONA	8 wood cribs	11.1
P 16	7.5	218	Mineral wool		
₩ 23 ¥ 24	7.5 7.5	218 218	Nong	Potrol Kerosene	
S 21	7.5	218	Fibro insula	tion board	
번 15 Q 19	30 30	872 872	None Mineral wool	18 wood oribs	
A 3 B 4 G 8 X 22	7.5 7.5 15 15	218 218 436 436	Nono		5.6
H 9 I 13 C 5 U 20	30 30 60 60	872 872 1744 1744		8 wood cribs	
0 17	7.5	218	Minoral wool		
₩ 25	60	1744	Nong		2.6

٩

<u>Table 6</u>

Flame conditions during the tests

Fire load density kg/m ²	Fuel	Window opening	Test	Approximate period of largest flames min	' Flame conditions during period of largest flames				
		1	A B	6 - 10 3 - 8					
	0 . 1		0	$3\frac{1}{2} - 7\frac{1}{2}$	Flames from each crib separated. Flame height 1-1-1 m				
	8 wood cribs		J	4 - 7	above floor.				
7.5		$\frac{1}{2}$	K P	2 - 5 2 - 4					
	Fibre insulation board lining	¼ S 1 ³ / ₄ − 5			Massive merged flame in compartment flowing out of one or other or both window openings to a height usually of 1-3m above the top of the opening. At $4\frac{1}{2}$ min a burst of flame at least 4 m above the top of the opening was produced.				
	Petrol	trol $\frac{1}{2}$		$\frac{3}{4} - 3$	Massive merged flame in compartment flowing out of west window (and not east) to a height of about 3 m above the top of window opening. A height of 4-5 m was reached for a short period at $1\frac{1}{2}$ min.				
	Kerosen6	rosene $\frac{1}{2}$		2 - 5 1	Massive merged flame in compartment flowing out of east window (and not west) to a height of 2-4 m above the top of the window opening.				
			G	9 - 14 .	Some merging between flames from cribs. Flames from side and rear cribs reaching ceiling. Small flames occasionally licking out of window.				
15	8 wood cribs		x	8 <u>1</u> - 20	Little merging between flames from cribs. Flame height up to $2-2\frac{1}{2}$ m above floor.				
	8 wood cribs	1 2	D	_	Some merging between flames from cribs. Flames from rear cribs just reaching ceiling. No flame emerging from window.				

.

•

1 ¹

3

7

i 🐐

٩

•

1 **5**

đ

.

Table 6 (cont'd)

Fire load density kg/m ²	Fuel	₩indow opening	Test	Approximate period of largest flames min	Flame conditions during period of largest flames			
	8 wood cribs	1 4	H I	10 - 16 9½ - 13	Massive merged flame in compartment, flowing out of both window openings to a height of 1-3 m above the top of the			
[М	$10 - 17\frac{1}{2}$	window opening.			
30	18 wood cribs	1 4	Q	9 - 13 ¹ /2	As tests H, I and M but flames reaching a height of 2 above the top of both window openings.			
	8 wood cribs	<u>1</u> 2	F E	10 - 14 10 - 16	Massive merged flame in compartment flowing out of one other (but usually not both) window openings to a heigh			
	18 wood cribs	. ,	N	$12\frac{1}{2} - 17\frac{1}{2}$	of 1-2 m above the top of the window opening.			
		95 <u>1</u> 2	R	6 <u>1</u> - 17	As tests F, E and N but flames reaching a height of $1-3$ m above the top of one window opening.			
		1 8	v	22 - 34	Large flames inside compartment confined to region near window. Flame emerging from both window openings to heights of $1\frac{1}{2}-2$ m above the top of the window opening.			
60	8 wood cribs	4	C $15\frac{1}{2} - 35$ U $11\frac{1}{2} - 24$		Massive merged flame in compartment flowing out of both window openings to heights of 2-3 m above top of window opening			
		1/2	L	12 1 - 19	Massive merged flame in compartment flowing continuously out of the east window opening and intermittently out of the west window opening to a height of 2-3 m above the top of the window opening.			

•

- 45 1

•

.

.

.....

ين م - ب

> **م**ر 1-1

**i**⊊=

. .

.

Observations during test S

Time first i min	from ignition s	Observation
· 1	8	Ceiling ignited.
1	13	Flames out of window.
1	33	Flashover.
2	45	Flames dying down.
3	30	Flames still thinning.
4 ·	00 ·	Fire increasing in intensity.
4	15	Sudden increase in flaming.
4	45 .	Small pieces of fibre insulation board lining falling.
5	00	Dying down.
5	30	Flaming only in very small areas.
6	15	Most of remains of fuel still in position and glowing. A few flashes of flame round the edges of the sheets.

R

Ł.,

i

ц.,-

.'

Temperature rises recorded by suction pyrometer and unshielded thermocouples

		Thermocouples in gases Wall or ceiling surface								
Test	Time from ignition (min)	Suction pyrometer	Unshielded thermo- couple near suction pyrometer	Mean of upper and lower unshielded thermo- couples on east side (S5 and S6)	Mean of all 6 internal un s hielded thermo- couples (S ₁ to S ₆)	Rear wall	Side wall	Ceiling (Surface of plaster block)	Height of suction pyrometer above top of crib (cm)	
R	10 15 20 25 30 35	1 025 885 5 30 2 35 4 75	1 055 1 020 795 580 460 320	905 805 725 555 430 355	800 660 605 475 375 305			840 760 735 620 540 490	60	
J	12 . 5 15	415 170	295 120	190 130	225 175 .	170 160	215 200	190 195	35	
к	10 12.5	197 140	245 235	240 215	220 215	1 35 1 45	1 30 1 30	245 255	60	
D	7•5 10	915 940	815 780	485 470	· 450 445				·~~ 40	
F	10 15	1 025 1 025	1 045 965	800 765	785 745	61 0 650	595 665	+ +	30	
E	10.5 19.2	1070 885	855 815	740 625	730 640	680 700	605 625	640 675	80	

- 47 -

L	13	830	965	1030	1030	610	855	905	30
Р	10 15 20 25 30	195 275 110 60 30	220 295 170 120 100	235 260 195 165 125	290 270 220 170 140		-	335 340 325 300 270	65
Q	10 15 20 25 30 35	1 025 980 1115 740 440 95	930 980 1135 940 720 555	990 985 1 060 9 35 750 600	1 040 1 030 1 01 0 870 700 575		1 070 990 890 815 685 665	1 035 1 005 965 905 785 655	60
G	10 12.5	860 920	840 890	700 680	685 670	545 545	625 680	535 530	30
x	10 15 20 25 30	650 575 525 340 225	625 580 650 415 330	490 555 515 460 400	535 575 545 470 400	405 445 450 410 380	390 540 550 480 430	430 480 485 445 420	30
н	10 15 20 25 3 0	935 1115 935 740 375	1 070 1 070 990 720 530	1 025 1 050 990 795 645	1 000 1 01 0 925 755 61 0	945 810 720 710 750	965 1010 980 810 670	885 930 905 775 670	35
I	10 15 20 25 30 35 40	1105 1170 1025 675 530 400 225	1045 1110 930 755 625 485 390	1 025 1 065 980 790 630 515 41 0	1010 1035 950 780 630 510 -430				1 00

Table 8 (cont'd)

t

۰.

, 🍝 🖓 🚱

с	18₅5 20 30	940 1010 1010	915 1045 1135	1 02 0 1 02 0 1 095	885 1 01 0 920	830 895 7	540 645 /	+ + +	. 50
υ	10 15 20 25 30 40 50 60	840 840 1025 \$ 1070 640 360 385	855 965 1095 1150 1175 965 720 520	925 990 1075 1115 1135 970 765 565	965 1040 1095 1145 1140 955 725 545	825 800 4 4 4 4 4	710 870 4 4 4 4	780 855 990 4 4 4 4	65
0	10 15 20 25 30	485 425 330 205 85	475 400 390 260 195	380 345 330 265 215	415 375 350 270 215	-		40 5 385 365 325 280	65
v	10 20 30 40 50 60 70 80 90	660 775 905 1110 770 715 475 430 215	825 905 1010 1230 1025 960 790 745 520	840 970 1075 1155 1060 990 865 745 605	820 765 920 1040 1060 1000 900 735 605	820 985 980 ↓ 820 770 725 655 575	530 700 850 890 915 970 820 705 625	695 870 925 955 940 930 865 775 660	40

ж

.

.

. . .

- 1-9 -

- **7** -

VENTILATION OPENINGS USED IN TEST SERIES FIG.1.

PLAN

Hatched areas indicate position of cribs in tests using 8 cribs Dotted lines indicate positions of extra cribs in tests using 18 cribs W indicates crib on weighing platform

FIG.2. ARRANGEMENT OF CRIBS AND STEELWORK

PLAN(INTERNAL)

- W_1 to W_4 Thermocouples in plane of ventilation opening In test V they were at the same height but were moved to one side to bring them into the centre of the ventilation openings
- S_1 to S_6 Thermocouples suspended within compartment
- FIG. 3. POSITIONING OF THERMOCOUPLES WITHIN COMPARTMENT

1/7441 F.R. 646

FIG. 4. STEPPED PIPE SHOWING POSITIONS OF HEAT-FLUX RECEIVERS

•

FIG. 5. SCHEMATIC DIAGRAM OF RECEIVER MEASURING HEAT FLOW TO WATER-FILLED TUBE

· .

r •

FIG.6a. SELECTED DATA FOR TEST K (7.5kg/m², ¹/₂WINDOW)

FIG.6b. SELECTED DATA FOR TEST L (60kg/m², ¹/₂WINDOW)

<u></u>,

FIG.6d. SELECTED DATA FOR TEST G (15 kg/m², ¹/4WINDOW)

FIG.6e. SELECTED DATA FOR TEST I (30kg/m², 4WINDOW)

FIG.6f. SELECTED DATA FOR TEST U (60kg/m², ¹/₄ WINDOW)

FIG.6g. SELECTED DATA FOR TEST V (60kg/m², ¹/₆WINDOW)

FIG. 7. VARIATION WITH TIME OF WEIGHT OF ONE CRIB (TEST F)

SOUTH COMPARTMENT BEFORE TEST R (Fire Load Density 30 kg/m^2)

Note: (1) Mineral Fibre insulation on walls (Tests O, P, Q, R)
(2) Layout of 18 cribs (Tests M, N, Q, R.)

PLATE I

• 3

NORTH COMPARTMENT BEFORE TEST F (Fire Load Density 30 kg/m^2)

- 1. Weighing platform
- Strips for igniting fire load
 Thermocouples for measuring gas temperature

3,

- 4. Suction pyrometer
- 5. Pipe with heat flow receivers
 6. Protected steelwork

PLATE II

0

ų

·

5

2----

•