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SUMMARY

Measurements of the maximum temperature increase in self-heating solids
under substantially sub-critical conditions provide useful estimates of rates
of heat generation at different temperatures. The purpose of this paper is to
calculate theoretically the extent to which these estimates are affected by
consumptibn of reactant during self-heating.

It is confirmed that the effect of reactant consumption in this region is
considerably less than its effect on the critical condition for thermal
explosion. For systems having a heat of reaction high enough to permit sharply
defined thermal explosion, the effect of reactant consumption on substantially

sub-critical self-heating can be to reduce the maximum temperature by less than
10 per cent. .
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LIST OF SYMBOLS

Pre-exponential factor of Arrhenius equation

NaE

dimensionless adiabatic temperature rise (equation (9))
specific heat

activation energy

surface heat transfer coefficient (convection + radiation)

0, 1, 2 respectively feor infinite plane slab, infinite cylinder
and sphere

rate constant

thermal conductivity

order of reaction

1 + 9; = constant

heat of reaction per unit mass

semi-thickness of slab, radius of cylinder or sphere

absolute temperature, subscripts o and A refer respectively
t0 centre and ambient

time
dimensionless surface heat transfer coefficient (equation (5))
dimensionless effective heat transfer coefficient
.6(3+.1)
dimensionless self-heating parameter (equation (4))

dimensionless temperature increase above ambient
Subscript o refers to centre of body, 8 to surface

small constant value of Oo

density

dimensionless time (equation (8))
residual fraction of reactant 1 =2 w>0

dimensionless distance from centre of slab, infinite cylinder
or sphere. .
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INTRODUCTION o L _ .
The effect of reactant consumpfienuehsthe eriéicei coﬂditiee for thermal
explosion, and on immediately sub-critical temperature. maxlma, ig now well
establlshed1 -3* .- For realistic cases, reactant” consumption can increase the
value of the critical exp1051on parameter, and estimates of rates of heat
evolution based on-experimental thermal exp1031on data, by a factor” of up to " :
about 2; beyond this, sharply deflned exp1051on,‘or ignition, tends to disappear.
A etudy of eubetantlally sub-érltlcal temperature maxima in practical cases
of self—heatlng and ignition can provmde a check on the applicability of the
simple thermal exp1051on model and, in particular, yield information on- : 'S
subgidiary self—heatlng react10ns4. Furthermore, it has beep_suecessﬂully-s*:%ﬂ~
exploited as a calorimetric method, for slow self-heating, by Waelker and his
assoc1ate55' . So far, however, it appears -that. no numerical estimates have
been publlshed of the effect of reactant eonsumptlon on the temperature increase
in this substantially sub-critical region. In view of the practical usefulness
of this region, such estimates are desirable; angeare the-objective of this
raper. These estimates require no more than an extension of existing procedures
for near-critical eelf-heatlng, w1th considerable 51mp11flcat10n made possible

by the smallness of the temperature 1ncreasee 1nvolved

N . , N
Reference 1 compares analytical results; recent numerical results are

given in references 2 and 3. References to earlier work will be found = ...

in these.




THEORETICAL .

The case t0 be discussed is self-heating in a so0lid of finite thermal
cohductivity with heat losa by convection and radiaticn to surroundings at
constant temperature., It will be assumed that heat is generated by a reaction
which is of order .n . and whose rate varies with temperafure-iﬁ'aécordance with
the Arrhenius equation. It will be convenient to work in terms of the usual
dimensionless quantities of current thermal explosion theory (see list of
symbols and below). ,

It is convenient, first, to state the result for small steady-state
temperature increases due to self-heating when reactant consumption can be
neglected (zero order reaction) . o

-For this case, and the boundary condition

"t oo, )

4,.

it can be shown’ that the cenfral temperature increase is given by

Coeleenn ot L : : O‘
e s 8 e % o

where j =0, ' or 2 respectively for a plane slab, infinite cylinder or

ot

sphere and, as-usual, -

E

> (r-m) e 03)

] ) .
. A '2 'E/RTA
S- -E. ..r 8 4Ae o g
RTA2 K ce.(4)

- O = ihr/K T (5) ‘

*
A number of theoretical relationships are available for this case,
differing principally in the degree of approximation applied to the

Arrhenius relationship4-9. .
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Equation (2) is based

on Benson s assumpt10n7 of a reactlon rate

-+

independent of- temperature over. a small range ‘of temperature and glves values

of 8
o

slightly higher than

Chambré's more accurate analy31s1o employing i,

Frank-Kamenetskii's exponential approximation to the Arrhenius relationship.

By inspection (Fig.2 of ref.4), the error in .0;.glven by equation (2) is

sbout

15 per cent when 0 = 0.4 and about 5 per cent when e =0.2.

412 ©

Using the "effectlve transfer” apprOxlmatlon -for.:the’ conductlon term

and the linear approximation for the egppnentlal, e (c.f. Wilson ), the

equations governing self-heating for a reaction of order n with respect to

the fraction of residual reactant, w, are

where

(see

p=c

this simplification, -a simple solution is readlly,obtalneyle‘for-theVédéefdfﬁﬁﬁif

a first order reamction,«:(n-=.1), as .follows.,wc . "0 in77: fowowentoi @)t e

w=1

where

L
i

d.e
—2
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o
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R
7
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Qrin Cce o Doatoonen D sl vumnaied
= % w (1 + Oo) - ﬂgo \. .(‘6) - o
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'r..-RTA2-’ ST f" _.c.;, 2 A ’~ :‘j;.f?i:'; stk

is the ieffective heat transfer coefflc1ent and"has tot be evaluated

below).

For 9 <& 1, (as is appropriate here) it is.pdssible 'to wrlte AF G’

onstent,uwhene,.ed_ls

Integration of equation (7), with n ‘= 1, for the infitial ‘condition -+

assigned.a small ‘constant value . 9 U31ng

when ¥ = 0O,- -and substitution into equation' (6) ‘gives =<'~ 7 I i

. 0

T

This may be integfated (initiel condition 60 = 0 when “F = 0) to give

)
1]
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8, can be shown to have & maximum value, 9y .. .. When F= T

where
q-h _ ﬂ’(gg - 1) _ -logy~ Ba ... '. - .....(‘I‘-2Z)
Substitution of equation (12) into equation (11) gives
. . BB S
O max .= B(3a) = a7 on(13)
O, nay Should converge to the value of 8 giveﬁ by equation (25:as .é .

becomes large and reactant consumption can be neglected. When B-¥»ca,

equation (13} gives

')

, , e
8 -1 _ S» Q. f A S - ¢
Here, 90'~m a.x. I‘becomes the steady state temp:erafure increase obtained by
putting B =00, 7 =00 in equation (11).
Identifyiﬁé',oé with @ -, the effective heat tremsfer coefficient,
/3 can be evaluated by comparing equation (14) with equation (2)

(which does not involve approximation of the conduction term4). We then have

- Taﬁﬁ)':ig"fx o L5)

Using equation (14) to define a , and treating this as constent,
-8, pay Des been calculated as a function of B from equation (13) 'and is
shown in Fig.1 for € max = 0-2 8t B =o0 (this corresponds to a

temperature increase of about 5°C for some realistic values of E and TA'
equation (3)). The value of ® is o0.98.

It can be shown by differentiation of equation (13) that the relative
error in 00 nax due to a pfssible relative error, A 9:)/9; , in G; arising
from the assumption that Oo is constant for all values of B, is of the
order .. -(0;)2 D 9:)/9; for Ba 3> 1. For the example plotted in Fig.i,

it is of the order - =0.04 AQ?O; and may be neglected.

-4-



The cdrresponding relationship for ’?ﬁ , the time to the maximum’

temperature increase, is .shown in Fig.2. .This involves explicit evaluation of

ﬂ?{_ (see equation-{12) );. curves are shown for o =@ - and a(‘: 1.
The lower value of ¢ necessarily implies a lower value of S for 9 =0, 2,
namely S = 0,33, The fraction of reactant consumed in reaching the maximum-

temperature, calculated by inserting ’T&llnto the integrated rate equation,
is shown in Fig.3; it is independent of o . '
For a second order reaction (n = 2) integration of equation (7) and

substitution into equation {6) gives

%—;‘:, = P (v +’—];LS— T e -ﬁ’eo ...(16)
This equation has a solution in terms of the exponentla.l 1ntegra1 but the,_
pmaximum value of & cannot be located without con51derable c0mputat10n._
Therefore, this has been done by direct 1ntegrat10n of the equatlon on a desk A
electronic caleulator using a Runge - Kutta procedure w1th an 1ntegrat10n -
interval of 0.01 (a check with an 1nterval of 0.005 conflrmed that 0. 01 Was
generally adequate), e " being located from the results by mspectlon.

O max
Go max for the second order reaction, obtained in this way, is plotted in
Flg.1 for the same value of f»ﬁ}//? as for the first order reactlon.'
Putting . dOo/d’r = 0 in equation (16) and rearranging, the loci of

maxima of 90 are given by

A7)

—p—-— = g—pg 7+ " B ) X ""(17)- !

/3’ 9o nsx

" Here, as for the first order reaction, the group ;)3/??’ is taken as.

constant (c.f. _eciuatioﬁ,‘(M)) ‘and is independent of o¢ . Since, from .
.equ'ati('m -(’17) _ (P S//j’)eo max- is defined by the product ﬂ")" . for ..
any'g;ven value of B, it follows that & (B) is independent of o{ but
that the corresponding values of T , 7~ ,,¥i1l depend on [o%4 (c.f.equation
(15)) - a8 in the case of the first order reaction. Values of ’r for the -
seconq(reactlon, identified by inspection from the numerical integration of ... .
equation (16) for & =00 , have been plotted in Fig.2 for & = o0 and .
o =1 uéing equation (17). The reﬁcta.nt consumption J;.s shown in Fig.3.

A further reaction type of common interest is a first order autocatalytic

reaction for which the rate may be expressed in the form
d w

ai = k(wo +w) (1 -w), W & 1 = constant ...(18)

- h -




For this type, it may be concluded from the quasi—stationary model of
13

Merzhanov and Dubovitskii that the maximum temperature rise in sub—critieal'
self-heating will always 'be close to the value expected for the maximum rate -
(given approximately by k/4). Any discrepancy must be less than that'for'e o
simple first order reaction. ' o -
DISCUSSION

Effective orders of reaction in the range 0 to 2 may be expected to-cover’

a wide range of practical cases of self-heating in solids. In this range; the
effect of reactant consumption on the maximum temperature increase in bodies” at-
ambient temperatures considerably below critical values is relatively small.
'For example, the results in Fig.1 show that, for a first order reaction, the
temperature maximum in a gsphere, at an ambient temperature corresponding to

S; ~ 1, is only 10 per cent below the value expected for a zero order .reaction
(B =o0) when B is as low as 8. At this value of B, the "critical" value of .

S? for thermal exp1051on in a sphere is about 2.7 times the wvalue expected
for a zero order reactlon, i.e. about 9. Tor a reaction doubling in rate for a .
temperature J.ncrease of . 10 C, the value 8 1, thus corresponds to an ambient -
temperature about 30 C_below "crltlcal". At this level of B, the temperature
maxiﬁuﬁ for‘a second order reaction is about 15 per cent below the value
expected for a zero order reactlon. ) )

At values of B as low as 8, however, "crltlcal" or sharply defined,
explosion behaviour does not occur. For thls3, B has to be greater than about
14. Even at this level, ignition is not, theoretically really sharply defined3
although, in practice, it may be sufficiently 304. At these higher levels of
B it may be concluded that sub-~critical seif—heating behaviour and critical
ignition behaviour will be reasonably consistent on the basis of a model which
ignores reactant consumption. It may then be found that estimates of rates of
heat generation based on self-heating data are up to abbgt twice the estimatesl
from critical ignition data. Where ﬁﬁch'larger discrepancies are enéountered
an explanation other than neglect of reactant consumptlon must be eought, e, g.
the presence of subsidiary exothermic reactlons4

The amount of reactant consumed in attaining these small maxlmum
temperatures is small. Expllcltly, at a value of”S g1v1ng a maximum temperature_
increase, 00 max’ of 0.2 when B = o5 , the reactant consumptron does not
exceed 10 per cent until B is below 7 for a first order reaction and below

5 for a second order reaction.
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