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SUMMARY

This paper discusses the possibili~ of applying the statistical theory

of extreme values to data on monetary losses due to large fires in buildings •

The theory is surveyed in order to impart the necessary background picture.

With the logarithm of loss as the variate, an initial distribution of the

exponential type is assumed. Hence use of the first asymptotic distribution

of largest values is illustrated. Extreme order statistics other than the

largest are also discussed. Uses of these statistics are briefly outlined.

Suggestions for further research are also made.
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F.R. Note ·No.837.

SOME POSSIBLE APPLICATIONS OF TliE THEORY OF EXTREME VALUES
FOR THE ANALYSIS OF FIRE LOSS DATA

by

G. Ramachandran

INTRODUCTION

Large fire losses are of economic importance as their total cost is over

60 per cent of the total cost in all fires. However, they represent only one

per cent (overall) of the total number of fires. But these values .. are at .the

upper tail of the fire loss distribution and hence, in the statistical· sense,

have to be regarded as extreme (largest) values.

The olqest problems connected with extreme values arise from floods. An

inundation happens when water flows where it ought not to flow. Floods. destroy

life and property. Hence engineers are confronted with the need to forecast

floods in order to tackle flood control problems. Floods are defined as the

largest daily discharges of a stream during a year. The smallest daily discharges

are droughts, a study of which is of essential value in treating problems

arising from stream pollution, sewage disposal and water supply.

Although the theory is comparatively recent, it has a~ted the attention

of scientists working in different fields. Comparable meteorological phenomena

are the extreme pressures, temperatures, rainfalls etc. Other examples occur

in fracturing of metals, textiles and other materials (breaking strength) under

applied force, which are problems arising from materials testing and. qu~lity,

. control. Gusts are the largest strengths of wind and gust..loads play an

important role in aeronautics. An example in the actuarial field is 'oldest

ages', i.e. the longest duration of life. The extreme span of human life is

linked to the study of extremes. Recently Epstein1 considered bacterial

extinction time as an extreme value phenomenon. Once it is recognised that

these phenomena are of a statistical nature, it is possible to obtain solutions

.to some of the problems connected with them by applying the asymptotic theory

of extreme values. The most comprehensive treatise26n the subject is the book

by Gumbe12 This book also contains a discussion of applications and a

bibliography of papers on the subject. The latest work on the subject appears

·to be the thesis of Harris3.



Fire in a particular bUilding is a rare event. However, in a group of

identical risks fires are frequent. If a fire spreads beyond the material or

'room of origin it might cause widespread destruction. In the monetary sense a

loss of £10,000 or more may be of economic importance. Such a phenomenon is

similar to floods in rivers. The largest loss in a year may be regarded as

equivalent to an annual 'flood'. The statistical problems being similar to

those of flood cor-trol, the feasibility of applying the theory of extreme values

to large fire losses is eXamined in this paper.

THE VARIABLE

The variable (x) considered is the direct monetary loss to a building and

its contents due to fire. The values available are preliminary estimates made

by the British Insurance Association. It is not possible to include

consequential losses (due to loss of production etc) as estimates for such

losses are not available.

The operational variable is the logarithm of x and is designated by z.

If a minimum loss of one pound is assumed, the variable z is non negative.

(One could always consider the variable x1 = x + 1 which does not alter the

picture materially especially when dealing with large values of x).

Theoretically the maximum loss that could occur in a building is the total

value at risk in that building. However, there is a finite non-vanishing

probability that fire could spread beyond the building of origin. Also, in a

group of buildings, the vable of the costliest building could be high. In these

circumstances the variable z could assume values extending to infinity.

Estimates of fire losses rounded to the nearest ten pounds (or even to the

nearest thousand pounds in the case of large fires) would suffice for practical

purposes. Theoretically, however, the damage could assume all values in terms

of infinitesimal units. Hence the variate x or z is conceptually of a

continuous nature.

THE INITIAL DISTRIBUTION

In order to apply extreme value theory it is essential to identify the

nature of the initial or parent distribution. This is the distribution of the

probabilities with which the cumulative monetary damage reaches various amounts

in a single fire. Probability distributions which have been suggested are the

pareto and the logarithmic normal. In a recent paper4 the author discussed the

possible relevance of distributions with an increasing failure rate and of
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mixtures of such distributions. For the variable x he suggested a distribution

of the form

the density fUnction being

The density function of z is of the form

·"

if z = k log x.

The function

• . . . .. (4)

",

(where - P(-z.) = f(z.) ) is known as failure rate 0 r hazard func tion. This is

the conditional probability of extinction in the interval (1, ':L.+d.sJ .given

that the fire has survived till the value z has been reached. In..theiearly .

stages of growth, fire has a greater tendency to spread so that r( z ). is

decreasing. However, for large values of z , f.(z) is likely to be increasing

due to the commencement of fire fighting and the exhaustion of natural forces

contributing to fire spread. The structure of expression (4) could be generalised

so that ft- (a ) is a p:>lynomial in z or an exponential function.

Application of L'Hopital's rule gives the critical quotient ~ (z) as

- 3 -



. •..•.• (7)

wi th ~ [(2.) z: 0 Hence according to Gumbel's terminology f~ is a

distribution of the exponential type and belongs to the 'first' class. The

probabili ty density converges towards zero for Z-7 otJ faster t.han· an

exponential distribution. Therefore all moments exist for this distribution

(expression (3». For the application of extreme value theory it would suffice

to note that the probability distribution of z is of exponential type; the

.va.luea of the parameters 0< f and ~' are not required. The well known

distributions logistic , gamma, chisquare, normal and log normal all belong to

this type, but pareto does not. The distri~ution (3) is for all risks taken
, ,

. together. However it is reasonable to assume that the distribution for any

industry is of exponential type though with different values of the parameters.

ORDER STATISTICS

Consider the variable z , The cumulative distribution function F (:zl)
denotes the probability that the loss is less than or equal to z. It is given

by F(;l-.) = 1- cp(Zjwhere it is assumed that

-Z- {o<.!-T-(!JI -z-)
9 (?-J :=. e

the corresponding density function f ('Z-J being expresaion (3). The function ..

9'(2}~~the survivo! function giving the probability that the loss is greater

than z , In reliability theory 1J (z) is lmown as the r~liability function.

Now consider independent random samples z1' z2' z3' •..•••. zn drawn

from the population with distribution function f:(z..). Rearranging them in

increasing order of their magnitudes we may write

. . . . .• (8)

These are known as order statistics wher~ z (1) is the smallest and z (n) the

largest. A collection of useful papers' on order statistics and their applications

is contained in the book edited by Sarhan and Greenberg5.

The mt h (m = 1, 2, ••...• n) among n observations taken in increasing

order, viz. Z(m) has the probability density functio~ ~h(Zm) which depends

upon the initial density f (z), the sample size n and the order m. The

value of f')'y (zm:) is given by

rvv-I ."')t,-'M-

~~,..) = (~_:: (......I)! [ F(';z.)J pCZr f (~)

- 4 -
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The generating function of the mt h order statistics can be written

as an integral which will facilitate the calculation of mean, yariance and;

higher moments of these statistics. However, for most of the iilltial '.' "

distributions the integration 'is difficult. The book by Sarhan' and Greenberg'

contains tables of expected values and standard deviations of order statistics

from populations which .are normal, exponential, gamma and rectangular •. The

tables give the. values for a small. number n of sample sizes. ·Calculation of

moments of order statistics for the distribution fn(Zm) is equally difficult .

. The median .~ of the mt h value is the solution of

where ~ is given by
).r.v-I ~-M

)0 F 'C/- F) . dF ;'.

It F.~-'(, _ Fr:M-e{ P
. . • • •. (10)

and can be obtained from Pearson's tables of the Incomplete Beta Function;

Evidently the median depends upon the initial distribution. The mode ~: is

obtained from the logarithm of the distribution ~n(zm) as the solution'of

.~ . .f
F

DISTRIBUTION OF EXTREMES

............ (11 )

" In the previous section we have defined z (m) (m = ·1, 2, .'........ n). 'as

order statistics given by an arrangement in increasing magnitudes of n .

independent observations. The first Z(1) is the smallest and the last· Zen)

the largest one. Both are called extremes. ·In this paper we are concerned

only wi.th the largest z(n)' If:U such samples each of size n are drawn a

.distribution of largest values is obtained). The probability (f5n (.zri.) for

'z to be the largest value isn

...... (12)

with the derivative

'>1-",,:1

n [ 1= (z~)J i ~~) .
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as the density f uncbd.on of the largest value. Expression (13) which could' also

be obtained from (9) by letting m"= n, is known as the exact distribution of

the extreme. The expected value and variance of zn for a few initial."·

distributions have already been studied and tabulated for different sample

sizes n •.

If n is large, expression (12) tends to an asymptotic 'probability $ (z)

of the largest value Z = zn' For intial distributions of the exponential type,

as proved by Gumbel and others, 2f5' (a) is of the form

tp (2-) -

-,

-.

where

. • . . .. (15)

is called the reduced variate. In (15), bn is defined as the solution of

1-...1­
J'\.'

and is referred to as the I characteristic largest value I. In n observations

the expected number of values equal to or larger than bn is unity. For n = 2

the characteristic largest va~ue is equal to the initial ~edian, for n = 4 to

the upper quartile, for n = 10 to the upper decile of th~'initial distribution

and so forth. For large samples the calculation may be simplified if an

asymptotic expression for the probability f= (z) exists, as assumed in our case,

to be given by
.:

-z. (0< '+/?/z)
I-e . • • • .• (1'7)

The value of bn is 'obtained by solving

f @W) = f-~ ~ (oI.'+f?/~)
I-e

extracting the positive root of bn•

- 6 -
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The parameter an in (15) is defined as

. . . . •• (19)

mentioned ~ (z) is the failure or hazard rate. The function

also called 'the force of mortalit.Y' in actuarial statistics and

·-

As already

fl(z) ,is

'intensity function' in extreme value theory. The parameter

of the intensity function at the characteristic largest value

is the value

,: "

"

APPLICATION OF THE LARGEST VALOE

Extreme value theory is concerned with the analysis of largest (or

smallest) values from samples of a large number n of observations'.' If a

month is chosen as the period of observation the sample size n would be small

as only a few fires happen in a month in'a particular risk catego~. Hence a

year is preferable . We also require a large number N of sample s of n . values

from which we can obtain the N extreme values. In other words we require

data on ~xtreme values (largest losses) for a number of years. Loss figures

are available for a number of years for fires costing £20,000 or more.

Another assumption in the theory is that the sample size n is constant.

We might'perhaps assume constancy in cases where the variation in the value of,

n is negligible. But even this assumption is difficult to make in our case

as the frequency of fires increases considerably over a period of time. Due to

this, the analysis may later require sli~t modification. But this aspect will

be examined in a subsequent stUdy.

In the table below, the number of fires in buildings engaged in the

manufacture of textiles during fhe period 1947 to 1967 is shown under coL (2).

In col.(3) the largest of the losses that occurred during each year is ~ven..

The loss figures corrected for inflation (with 1947 a~ the base year) are· given

in col.(4). Such a correction is necessary as the theory requires that the

influence, of time on the parameters has been taken into account or eliminated.,
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Table 1

Number of fires and the largest losses in the textile industry

Year Number of Observed la~est Corrected l,r~est

fires loss (X,,) loss (.%'"
(£'000) (£'000)

(1 ). (2) (3) (4)

j 1947
,

465 460 460
I,

324i 1948 478 350

1 1949 512 210 189

! 1950 574 350 307

i 1951 728 550 440

!1952 568 1000 ! 735 I,
11953

I
725 460 329

1
1954 662 150 105

1955 740 320 215
I
! 1956 716 250 160
I 645 400 247i 1957

1958 560 340 I 205

1959 872 570 .339
1960 760 269 159

I
1961 696 310 177I, 1962 724 532 291

1963 790 493 265

I 1964 998 392 204

1
1965 . 964 1912 951

1
1966 1050 445 212

1967 982 1033 470

The first step in the analysis is to test the goodness of fit of the

extreme value distribution given by (14) to the logarithms of the corrected

losses given in Table 1. In order to do this we have to estimate the

parameters an and bn so that we could form the reduced values y using

expression (15). This is possible if the initial distribution and its parameters

are known so that the parametric values an and bn could be obtained from

their definitions in expressions (19) and (16). This is not possible at present

as figures are not available for fires costing less than £10,000.

- 8 -
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However, since we have reason to believe"that the initial distribution is

of the exponential type, 'we may" estimate the pa~ameters ~ ~nd bn from

the N (= 21) observed largest-values alone. Gumbel has given a method based

on order statistics. Kimball has done considerable· work on the estimation of

these parameters by the method of maximum likelihood. Gumbel: has also

suggested a general method which is discussed below.

The parameters an and bn acquire a special si'gnificance if only the

observed extremes are used to estimate them. The parameter bn becomes the

model largest value and 1/an which is proportional to the standard d~viation

of extremes becomes asymptotically the rate of increase of ·the most probable

largest value with the natural logarithm of the number of samples N•

Now consider the· N observed (corrected) extreme values Z(m)(m = 1 ,

2, ••••• N) ordered in increasing magnitude. The empirical value of the

cumulative relative frequency of Z(m) is

",
• • • • •• (20)

The reason for ~ing N + instead of N as the denominator in (20) has been

explained by Gumbel. We may observe f:r;-om (14) that

The values of y for different cumulative relative frequencies .N: 1 are

given in Table 2 of 'Probability Tables for the analysis of extreme value data'

published by the National Bureau of Standards6 • .These values of the reduced

variate y are r~produced in col.5 of Table 2 together with the rank, the

corresponding observations Z(m) and the cumulative relative frequenc~es.

- 9 -



Table 2

Largest values and reduced variates

Largest loss
Transformed

Cumulative
ReducedRank (corrected) relative

£'000 value
freJuency variate

(m) (x' ) (z = logA X
,

) ( N+1) (y)

(1) (2) (3) (4) ( ~) ,
- .. - ..

1 I 105 4.654 0.0455 71 .125
2 159 5.069 0.0909 -0.874
3 . 160 5.075 0.1364 -0.691
4 177 5.176 0.1818 -:-0.533
5 189( 5.242 0.2273 -0.394

\

6 l'\ .
5.318 0.2727 -0.261.204

i
I 7 205 5~323 0.3182 -0.136

I 8 212

I
5.357 0.3636 -0.011

9 I 215 5.371 0.4091 0.112
10 I 247 I 5.509 0.4545 0.239
11 265

,
5.580 0.5000 0.367(

I
12 291 I 5.673 0~5455 0.502
13 307 I 5.727 0.5909 0:643I
14 324 i 5,.781 . 0.6364 0.793

I

15 329 :
5.796 , 0.6818 ' 0..960i

16 339 . 5.826 0.7273 1.143
17 I 440 6.087 0.7727 1.357
18 460 I 6.131 0.8182 1.605
19 470 6.153 0.8636 1.923
20 735 6.600 0.9091 2.350
21 951 6.858 0.9545 3.078

If the theory is t~e the observed values z should lie scattered about

the straight line

<,

- 10 -
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which is merely another form of expressio? (15). The correlation coefficient
~ - I 1 •

between z and y is as high as 0.99. The method of least squares gave tl¥
best theoretical straight line as

. . .
:z -=- J: sec ~ O-/r-76 f ••...•• (;23)

.', .

is the modal (annual) largest loss at .194.7J?r~ce~.," :

It will be a useful study to compare the

square method with those by other methods ~~~
,'. \'.....

Hence bn = 5.384 or £219,000

The value of 1/an is ~:476.

estimates obtained by the least

maximum likelihood.

If the observations follow each other in time, if the sample size is

constant, and further if the distance between consecutive large va'luesTs .

approximately constant (1 year in our case) then the function ';'

l ••••••

.., ,r··

.~ .

called I the return period I gives the average number of observations' neceaaary .

to obtain the value equal to or larger than z. For large ,values of z ·the

return pe rdode converge towards e..'t. 'The straight line .(23) may be used'.t·o

determine ~h~ most' probable largest loss corresponding to a given return period.

For example, for T = 26, expression (24)' gives 'P{ z) ~ ~~ ., o~ 96 arid:'

we have the theoretical value y
,.. '

from which using (23) we obtain the corresponding value of z as 6.907. This

is the size of the largest loss in logarithmic terms or one million pounds (at

1947 prices) we may expect in the textile industry within the next (26 - 21) or

5 years (before 1973). This estimate is based on the current trend. Only

drastic changes in fire protection and'fire fighting methods could alter this
., ..

picture.

Inversely we may estimate the return period of a largest loss of given

size against which we require fire protection. For example, if we want to protect

a building (engaged in the textile trade) against a loss of .£1 ,500,000 (at 1947,

prices), z being 7.314 the return period could be estimated as 59 years, so

,that this degree of protection would suffice for the next (59-21) or 38 years.

The loss mentioned in the first example may serve as a guide for the

allocation of fin~cial resources for any activity requiring planning for a

- 11 -



relatively short period. In the same way, the loss mentioned in the second

example may be used for defining a level of justifiable expendature on fire

protection measures in a factory building to be constructed or additional

measures required for a building already in existence. A word of caution is,
necessary before the figures quoted above are used. The figures are

applicable only to buildings with values at risk at least as high as the

figures themselves. If adjustments were made for the regression of loss on

value density and other factors, the appropriate loss figures could be

estimated for a building. of particular characteristics.

TEE mt h EXT~

· . . • .. (25)

It is true that one has to be prepared for the worst viz. the :largest

,loss. But the cost involved in providing such a high degree of protection

would be enormous. The question therefore arises as to whether it would not

be better to protect against the loss next to the largest. Extending this

argument further, we may like to think in terms of a few top large values.

Let the observations be arranged in descending order zm (m =' 1, •..• r)

where m = 1 is the largest. These observations corres~ond to the

observations Zen)' Z(n-1)' •••• zen _ r + 1) in the ascending order
arrangement in expression (8). : The exact· distribution of the mt h extreme from

top ~or (n - m + 1)th fr~m bottom] ',from (9) is

. h,-h'v 'rrv-I

. h,! [F(2-Jl [C(Jf2-JJ I~)»-»! (11,- J'Y'I)! f j

If we define two parameters am and bm as the solutions of

F~~) ==
.

1- .!YX

~
-

~'l'Y

~. ~. fl\(t-~)
· • • . •. (26)--

extreme valueof the mt hthe asymptotic density function ~m(Z)

has been provecr:to be

where the reduced .mt h largest value Ym is defined as

• ....•. (28)

- 12 -



For the largest value m = 1,

rx., (2:-) -

'JL, (z) is given by

-Y. -ecq,
a.. e (II

I
• • . • •• (29 >..

• . . . .. (30)

which is the derivative of the asymptotic distribution funqtion in express~on

(14). The dist~~~tion function (probabilit,y) corresponding to (27) is

2-

;;n (2.) ~ f ~(2-) d. 2-
l"'rv _tb

The asymptotic probability in expression (30) could be rewritten as ,' ..

r ?P/w{cJ.rw) ~t (1¥ve't)""-'ex~ (-lYve't) M e(j~I r~)
" .:;.t:JD .

If we introduce

the probability leads to the incomplete Gamma function

••••.• (31)·'
'.1.

. .~.

... ';.' . .' (~2)
. ,
" ,

l'. •

.. . . .• (33) ,

The successive probabilities for the mt h extreme can be expressed by: the' ,

probabi~ity of the largest value. Integrati9n of (32) by parts leads, after, ..

reversing ~he. order of summation to

. . l\Av ~-~. '1.9- -~'cJlW

if1W~"') ~ Cf5,~) ~o 1'v>~! .

Reduced values Ym obtained from (32) are given in Table'4.of'the'Probability

Tables of .the National Bureau of Standards6 for a few s~lected probability .poInts

and for the top 15 extremes. But the spacing of the probabilities is wide: and:.

varying making interpolation for the require~ values a ~ifficult task; Once we
. ~, . . '

,obtain the values of the reduced variate Ym for th~ probabilit,y po~nts ~~~r

col.(4)' of Table 2, we could fit straight ~ines si~ilar to (23) for the i;~~~s~,
. ' .' '.. ; ...

value. Thus we could e~timate the parameters am. z:.nd bm for, say", the to~ "

ten values. If these straight lines fit the data w~ll, we could combine the
, of'"

information on the top ten largest values and improve our decisions.

~ .", ~. . ' ,

- 13 -



DISCUSSION

Solutions to problems in fire protection economics depend upon the

structure·of the probability distribution of fire lqss. Available data suggest

a distribution of the form in expression (2) or its counterpart in expression (3).

If sufficient data become available it will be·possible to estimate the values of

the parameters ()l~'and (!J for each group of buildings with similar fire risks.

These parametric values could serve as indices of fire risks for purposes of

planning fire protection and fire fighting strategies on a national scale.

The values will also be useful in forecasting the expected total lqss in a

particular area during a given planning period. Assume, for example, that the

expected number of fires could be estimated for a period in the given area. If ~

the losses (on a log scale) are Z(m) (m = 1, 2, •••• n), using expression (9)

it is possible to estimate the expected value and standard deviation of the sum

Sh:: l.. 2.., It may be preferable to obtain the parametric values for an
'YJt~'

individual area baaed on past experience.

At present, loss data are available only for fires costing £10;000 or more,

though for a minority group, viz. sprinklered buildings, the information is

available for the lower ranges.

However it is an accepted fact that (in repeated sampling) large or extreme

values have their own distributions with three types of asymptotic forms

depending on three types of initial distributions. The asymptotic distribution,

for initial distributions of the exponential type (as assumed in our case), is

known as the first asymptotic distribution of largest (smallest) values. The

asymptotic. distributions of extreme values are highly skewed and.non-normal.

In his book Gumbel has published a table giving the expected value, standard

deviation and co.efficients of skewness and kurtosis for the top ten reduced

extremes. (It is possible to extend this table to the top 30 or 40 largest

values) ;.

It is apparent that the averages of extremes are also non-normal. Hence

the usual tests of significance based on the normal theory are nqt applicable to

such averages. The same difficulty arises in the case of analysis of variance

or regression problems with extreme value data perhaps introducing

heteposcedasticity in the error variance. Statistical inference based on

extreme values thus requires the application of the theory of non-normal

distributions which unfortunately appears to be still in its early stages of

development.

- 14 -
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The extreme value theory may also be helpful in constructing approximate

estimates of the parameters in expression (3) which would otherwise reqUire

. the collection of data on smaller fires. For, if we are able to obtain the

reduced values corresponding to probability points not widely spaced for, the,

say, top 20,or 30 extremes, we could estimate the parameters am and bm' for

these extremes as in the case of the largest value. With these values it may

be possible to estimate the parameters 01 and (3 in the initial density

function )f(z). Incidentally, the h~thesis regarding ~(z) i.e. increasing

failure rate function, could be proved or rejected for a particular group ,of

buildings. An investigation on the above lines appears to be worthwhile and

usefuL

CONCLUSION

At present for a majority of cases figures for monetary damages are
.,

'available only'for fires costing £10,000 or more. For answering questions in

the fields of fire protection economics, one is forced to work wi th o'~y these';'

.figur~s which are inadequate in the statistical sense but of considerable

economic importance. It may be some time before figures for smaller losses

become available to ,this Organization. '

In these circumstances special tools are necessary for analysing' the data

on large fires. The obvious technique to be used is the statistical theory of

extreme values. In this paper the possibility of applying this theory has'

been investigated.

From data available the probability distribution of fire loss appears to

be of the,exponential typ~. Large losses are extreme observations from" this

distribution. The theory was applied to the largest losses in the textile

industry during the 21 years from 1947 to 1967. The logarithm of these figures

after correcting for inflation fitted well with the first asymptotic

distribution of largest values. Based on this relationship it appears that the

modal largest loss in the textile industry was of the order of £219;000. 'Also""

the expected largest loss in the next five years is about one million pounds.

Lastly, if it is p.Ianned to protect the building against a loss of £1 .5 million

this should be sUfficient for the next 38 years. This means" that; during the

next 38 years, only one fire would be expected to have a loss equal to or

larger than £1.5M. When the theory.is sufficiently developed it should be

possible to show that the maximum expected loss could be held to a lower level,.

say .. £O.5M if certain fire protection measures are adopted. We could then

combine the expected reduction in loss of £1M with fire frequency and compare

the expected benefit with the expenditure on fire protection. The theory thus
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enables us to define an acceptable level of loss, i.e. to ensure that the'

probability of any loss in excess of this level being acceptably small. Only

for purposes of illustration certain levels and the associated periods have

been used in this paper. The actual period of planning would depend upon· the

expected life of the building, the changes which might take place in the

occupancy of the premises and the expected useful life of the protection

itself. The life of an industrial building has been estimated to be about

40 years.

The figures quoted above are all at 1947 prices and are based on current

trends. But drastic changes in the fire protection measures or in the trade

carried on in the building could alter the picture. The figures are also

applicable only to fairly large buildings with values at risk at least equal

to the expected large losses. For smaller bUildings with lesser values at

risk adjustments are necessary. The regression between loss and value at risk

would yield such adjustment factors.

Planning fire protection measures on the basis of the largest value may

not be economically feasible. Hence we may have to use the mean, median or

other suitable statistics of a few extremes at the top. But this involves

research into statistical methods specially suited to handle extremes.

Extremes are not normally distributed; neither therefore are statistics

derived from them. Research in this direction is likely to yield results

useful for practical purposes.
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