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SUMMARY -

In a previous paper the author illustrated the use of the theory of extreme
values for analysing the largest losses due to fires in buildings. In this
paper the theory is extended so as tec cover the top 17 extreme losses in the
textile industry. A few statistical problems concerning these extremes and
their averages are discussed. Using the estimated values of the parameters of
these extreme value diatributions a method for assessing the total loss in
smaller fires in a given year is alsco illustrated. This method could also be
used to estimate the expected loss in a particular building of known value at
risk. Problems for further research have also been suggested.

Conceptually, the intensity function of the probability distribution of
fire loss is 'U' shaped. But, neglecting the infant and early stages of growth
of fire this function increases exponentially. In 1967, there were about 105
fires in the textile indugtries with individual losses in the range between
£55 ard £10,000. The overall average loss in these fires was about £2,200. In
the same year and in the same industry sprinkiered buildings had an average
loss of £1,600 for a comparable loss range. Hence in non-sprinklered buildings
the average loss was about £2,800 indicating = saving of £1,200 per fire due
.to sprinklers in the range considered.

It is extremely unlikely that the total loss in all smaller fires (costing

less than £10,000) in the textile industries in 1967 was more than £300,000.
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INTRODUCTION

In many technological problems interest centres around a statistical
assessment of the life characteristics of the material under investigation,
One such problem is the phenomenon of the spread of fire, statistical
treatment of which has been receiving atfention only in recent times. A
deeper understanding of the life of a fire under given conditions would provide
a sound technical bagis for plamning fire fighting and fire protection

gtrategy.

Essentially there are three ways in which the life of a fire could be
expressed. PFirst we could consider the physical extent of spread in terms of
the area or volume destroyed. Sercondly, the duration of burming in time units,
which is useful in certain problems, especially those concerning fire brigade
operations, Thirdly, the extent of financial damage, which plays a vital role
in the ecconomics of fire protection measures. The analysis in this paper
relates only to the third aspect, viz. financial loss. Using suitably
determined conversion factors it should be possible to translate the monetary
values intc equivalent wvalues in time or physical damage, but this problem is

one for later study.

A statigtical assessment of the financial damage in a fire implies a study
of the probability distribution of fire loss. This is the distribution of the
probabilities with which the cumulative monetary damage in a fire reaches
various amounts. The structure of this distribution is not likely to change
from one set of conditions %to another; but the values of the parameters would

vary. The values of the parameters would thus serve as indices of fire risks.

If loss figures were available for all fires it would be possible to
establish the structure and parametric values of the probability distribution
fairly precisely. But at present loss data are available only for fires
costing £10,000 or more. Hence the available observations are large or exireme
values at the tail end of a given parent distribution. Repeated sets of

extreme values are produced from year to year under different conditions. One



is therefore faced with something like the traditional experimental design
and analysis situation with the difference that the data are known to be

gets of extreme values from an unknown distribution. The relevant theory for
tackling such data is the extreme value theory.

In a previous paper1

the author reviewed the extreme value theory with
special reference to financial losses due to fires in buildings. It has been
assumed that the probability distribution in a fire, i.e., the parent
distribution, is of the exponential type if the logarifhm of loss is
considered as the operational variable. Using the appropriate asymptotic
distribution the largest losses in the textile industry in the United Kihgdom
during the period 1947 to 1967 have been analysed. In this paper the

extension of the theory to cover the top 17 extremes is discussed.
THE DATA

The data used in this paper relate to large losses that occurred in the
textile industry in the United Kingdom during the 21 year period from 1947 to.
1967. The top 17 of these losses arranged in decreasing order of magnitude
for each year are given in Table 1, Appendix 1. These were preliminary
estimates furnished to the British Insurance Association and published in the

"Mimes',

With the aid of the index numbers for retail prices a correction for
inflation has been made to the observed loss figures and the corrected figures

are shown in Table 2.

In the previous paper1

it was explained in detail that the logarithm of
loss follows a probability law of the exponential type. Hence in the actual
analysis we have to consider the logarithms of corrected losses and these are

given in Table 3,
THE REDUCED EXTREMES

.Consider the variable 72 which is the logarithm of the observed loss
corrected for inflation. This has a probability distribution f:’(21) the
structure of which is assumed %o remain the same over the years. The fire
losses in a2 given year constitute a sample of observations from F: (ZL). Let
these losses be Z,, Z, ..... 2., with W denoting the sample size, i.e.
number of fires in the year. If these K observations are rearranged in
decreasing order of magnitude, let <y be the largest and Zy,) the
smallest. Also let ZQ%n) be the m' observation from top. '
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‘Over the years, :%hij has a probability distribution the structure of
which depends upon the rank M , the parent distribution F:(:Z) and the
sample size Wl . But if FT(ZL) is of exponential type, YU is large and M
is small in comparison with 1 . The asymptotic density function ’}LhJ ym)
of the mth extreme from top is

-
’}Lhméj”L) = f;?%ﬂj?

where the reduced m'? large value yvn is defined as

MYy —ME
/ ™ (1)

Y = Lyyn (E%ﬁn)"—é%nwv,) | (2)

The parameters and ffym n in (2) are the solutioms of

a‘h’\?l

-—
———

tmn = L £ (i) (@)

{
where —F (z) (: F(Z}) is the density function of 2. .

le [ — JZL and | t3)

The distribution function correspondlng to the density function (1) is

Eiign_(ffnﬂ) - ,f ik;hwcjfn)

.which could be rewritten as an incomplete gamma function

o2 m—-{ ~-U y
@n(%m} = w e du S, (5)

by introducing the transformation

Wy, = mej‘(jm (6)

In the application of the classical theory of extreme values it is
assumed that the sample size Y1  is constant. This assumption is not

satisfied in the example considered as the frequency of fires, though large,

1

has varied considerably from year to year . This variation would be expected

to affect the values of the extreme value parameters C%h?l and mn as
they are functions of YL . This éspect of the problem has been investigated in

detail in Appendix 2. 1t appears that the following model would suffice for all
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practical purposes:

{
o Ymy
’Z(m;j :‘ﬁ*mn( -f-—ZL—‘L’

(7)
MY]'
where
f . . (n \
%mj — fjmJ -+ '&)3 J/Vl,) (8)
W, = number of fires in 1947
Ylj = number of fires in the it year
’G-myz' = +the characteristic mth large value for samples of
size Y, as defined by expression (3) with VL. =",
amnl = the failure rate of parent distribution (at 'gkmn, ) as
defined by expression (4) with L = T,
Zﬂ‘ﬂ)j = the n™® large value from top as observed in the jth
year, and
tjm J = the reduced nth large value corresponding to Z(~m ) J
calculated on the assumption that the samples have the
constant size of W,
The vélueg of Z(M}J‘ for M = 1 to 17 are contained in Table 3,.

Appendix 1. If each of the 17 sets (of 21 values) of Z(m)\]. is arranged

in increasing order of magnitude let RMJ be the rank of Z(:m”

ranks are shown in Table 4.

frequency of Z(am) J is

—_— Rm g
D, (Ztm; ) = =727
m ™) N+
where N = 21. Since cumulative frequencies are preserved under
transformations

@‘m(zﬁ”’”i‘) = @m (3”’“}) - @m (u'mj)

where

m—l

Y .

—

a""'J = me me

The

The empirical value of the cumulative relative

(9)

(10)

(11)



The values of um‘ (m=1, .... 17; J =1, .... 21) corresponding to
the cumulative frequencies (9) were calculated from tables of incomplete
gamma functions. Then using (11) the values of ym J were obtained and are

given in Table 5,

The correction term log( n'f./n, } for (jmJ is independent of M .
These correction terms are shown in Table 6. Using these values the
corrected reduced variates y‘MJ have been calculated using (8) and are
ghown in Table 7.

EXTREME VALUE PARAMETERS

The next step in the problem is to estimate the extreme value parameters
amn,' and 6’0’\71,, .- This can be achieved by fitting the straight line (7)
. ¢ . - . ]
to the variables Zénjj and me () =1, .... 21) using the method of
least squares. The values of the parameters thus obtained are given in Table 8,
[— 2—

Al iven in the b i b :

80 given 1n_ table arc-e the me:-alzj Z(m/ and variance "g@,yz_ o] zm\}J )
and the mean y'm and variance -§,., y of y'm f

Fitting the straight line (7) involves a residual error €m j - The
expected value of emi may be assumed to be zero while the variance of émJ

is equal to
2 2 o
RSm = Sz ([ — ) (12)

vhere 77.7\,1 is the correlation coefficient between Zén)J and HfmJ

The values of flm are also given i£ Table 8. Since a high correlation has
been observed in all the ecases, Rsm is negligible in magnitude. The
high correlation also strengthens the hypothesis that the logarithm of fire
loss follows a probability law of the exponential typs.

In the example under congideration the number of observations (years) Y
for each extreme is 21. For large values of N , the sample moments gm
and «SZ; of the reduced extreme Ehnj tend to limiting or population
values '7'7“ and a‘;"y respectively. The derivation of these limiting

values is shown in Appendix 3 together with a tabulation for ™M =1 to 40,
A

2—
In the same way, ZG*\)J has a limiting mean Zm and variance o”mz .
Using the sample estimates of a‘MYLL and_’mn, ,
A }/ rp
oy ™ + )
Z, = mn, -+ L and (13)

ny
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2-

7 " © 2 z :
o’m:éﬁ;—m) Ty + T T &u(tm,'h)]

(14)
In (13), 7? is the mean (population) value of the correction factor

. ny |

kl = &a’(‘,/na‘) (15)

an estimate of which is furnished by the sample value

P (16)

2,
Also in (14) sample estimates of G;, and Col (yknj ’PJ ) are furnished
by

a——

bj —

1] {\I\Z

o ! M >
/SF, = 7\7—7 Jé((h‘“"f’j) and (17)

. N —_ -
Cov (gmj ,b3) = <17 [fiz i by =V Yo | (e

In {13) and (14) population moments are available only for j%nJ i.e.
y’TVI and (’m since the probability distribution of me only is known.
For the remaining parameters due to bi only sample estimates can be inserted.
By studying the trend in the frequency of fires it may be possible to obtain
better estimates of 7% , 0’2— and (U ( 5Hn FJ . However, using
available estimates, the values of I£ and crﬂ— have been calculated and
given in the last two columns of Table 8. These figures are improvements over

the corresponding values Z;“ and <S m2 (Table 8) which are purely sample
estimates.

AVERAGES CF EXTREMES

Consider the ob’s\erved extremes %'V‘)J (m=1, .... 17) of the jth year.

The expected value 2> = of Z(rn)j ;:; given by (13), If

= ‘:—'—22 . (19)

f’T)J 17 ™M= O"UJ



the average Zl?,J for a year has a probability distribution for different

values of J . Hence over the years, _2"_, . itself has the expected value

N MG
2q = E(2m) |
= l é E(Z—(m)'l )

-

(7

1“\7\

fl

3
N

The variance of ZI'T\( is given by
¥

_O_’_'L 17
Mz T g Vet £ 26wy
Mo
RS (21)

2- .
The variance of %'m}' is O—MZ_- given by (14). Tor a given J (year)
the covariance of two extreme order statistics 2 and Zé‘n}J , from

(7), is given by

(foU(%e- % ) — (ov (3 )

)/ ™) 2 7 tjm

d N J d dzn, 7,
It may be easily verified that

CoV (Elzj ) %ﬂj)

= éu(yeJ‘,(jMJ) * éu(jﬂi)t’j) + GU@"’J’ PJ) +O;Z

(22)

In Appendix 4 it has been proved that if y > e , with the order counted from
the top, the covariance of ‘-fel and y"’\J is equal to the variance 0"2'

m
of Ej‘h‘\l tabulated in Appendix 3. 3

2
Using the estimated values of Zp, 0pp 2 , den )am n, @ond the
/

covariances it was found that

2!,7 = 3.9904 and (23)
B '

a — 0.1645

17z



Hence over the years, the averages of the top 17 losses in the textile
industry were fluctuating around a value of 3.9904 (£54,100) with a
standard error of 0.4056 (£1,500) both at 1947 prices.

There are two unsolved problems concerning an average of large order
statistics. Firstly, we require the confidence limits for the average.
These could be obtained either from the probability distribution of the
average or by using the standard 't' value corrected for skewness and kurtosis

as indicated by Gayenz.

Both these methods are being attempted. Secondly,
a test has to be devised for judging the significanqeoaf the difference
btween two averages of extremes., This problem would arise when we wish to
compare, say, the textile industry with another industry in terms of the

averages, A solution to this problem is also being attempted.
RETURN PERIOD

In the previous paper1 the usefulness of the 'return period' was
jllustrated with reference to the largest value (m= 1). This concept may be
generalised with some modification. If the n™®  large observations follow. -
each other in time, if the sample size is constant, and further if the |
distance between consecutive mtP large values is approximately constant

(1 year in our case) then the function

: -
T Conp) = [ 1 =T, (2np)| | (25)

defined as the 'return period for the nth large value', gives the average

th

number of years necessary to obtain an m value larger than z;nilp

Now consider the 29 year period from 1947 to 1975. For T = 29
. . 28
expression (25) gives a%w(f;vvlk)_ 25 = 0.966. The reduced values
9mn)1P ( =1, .... 17) corresponding to the above cumulative probability,
obtained via incomplete gamma functions, are given in Table 9, If fthe sample
size (number of fires) is constant at the value Y1, of the base year 1947,

then only one of the nth  values will exceed

2‘m/1,(> = ’{;‘mn, -+ K‘E (26)
ny .

in the course of 29 years from 1947. Since the sample size is increasing this
will actually occur in a period much shorter than 29 years, or more than once

in 29 years. But we are interested in a value of Z 4%: which will be

-8 -



exceeded only once before 1975. This has to be higher than the value given
by (26). The following method of calculation may be adopted.

If it is assumed that the number of fires increases at a rate '/
rer annum the freguency ny in the jth year is given approximately by

J-
o= (t+n) (27)
where Ny is the number of fires in the base year (1947). Fitting (27) to
the data for the textile industries for the period 1947 to 1967 the value of
7l appears to be 0.038. Since N = 465, about 1310 fires are likely to
occur in the textile industries in the year 1975 ( 3 = 29). From the
straight line (7)

J 97nfqb‘1L/’6136

since log (,nﬂ—?/n,) has the value 1.036. The probability of log (hj/m)
being less than 1.0%6 is almost unity. Hence the probability of the observed
loss being less than Eliw}l* during the period 1947 to 1975 is 0.966. The
probability of exceeding :1¢w is 0.034 or one in 29, i.e. once before

f
1976. The values of erﬂﬂ4, are also given in Table 9.

If we take the m™ 1loss from top in the textile industries every year
before 1976 and correct for inflation (at 1947 values) only one of them is
likely to exceed :2;“
based on the current trend. During the course of the period up to 1970 none

given in Table 9. The estimates in Table 9 are

of the actual losses exceeded thﬂ values, except the 4th and 5th extremes
of 1969. Hence the excesses are likely to happen during the 5 year period

1971 to 1975. If they do not actually happen then it would appear that
improved fire protection and fire fighting methods in textile industry fires
were having an effect. Fire prevention activities would also have played some
part in keeping the number of fires below the levels forecast in (27) thus
reducing the values of log ‘“i/ﬁqi) . On the other hand if more than one
mth  10ss were to exceed :wafw? during 1971 to 1975 then there would be
reason to doubt that fire fighting, fire prevention and fire protection

methods are coping with the situation.

The forecast figures given in Table 9 are for the entire population of

textile industry buildings. By doing further research it would be possible to

-9 -



forecast :ZTWJNF values separately for, say, sprinklered and non—sprinilefég
buildings. From such an analysis it would be possible to estimate the saving
due to sprinklers in extreme (very large) losses. The estimate could be

used as a guide for assessing the economic value of sprinkler protection in

buildings where such large losses are likely to occur.
THE PARENT DISTRIBUTION

Consider the parameter CITﬂTh for the u'! extreme from a sample of
size Y\, . From (3) and (4)

iy = £ (boony) /1 —F (biun,)
= h(bwn,) , (29). -

The function h-@*) gives the conditional prebability of extinction of the
fire in the interval Oi, LL‘FC(un) given that it has survived till the value
(L has been reached. It denotes the ratio of the probability of extinetion.
to the probability of survival or spread at the point W . This function is
known as the 'intensity function' in extreme value theory, 'hazard' or
ffailure rate! in reliability theory and 'force of moritality' in actuarial

statistics. The parameter & is the value of the intensity function of-

mry
the parent distribution F:CQJ at the characteristiz large wvalue {;hnr%e
A congtant value of Cz%nf\/ for varying ™ is an indication that the

parent distribution is a simple exponential distribution, i.e.

—]L(z) = a(:-az oL

.—az.

F@ = | —e

However, according to Table 8 Cﬁywqr decreases for increasing ™ or
increases with increasing 2 , indicating an increasing failure rate. The
increasing trend for M = 14 %o 17 is likely to be due to random
fluctuations. In earlier papers1’3 the author discussed the possible
relevance of distributions with an increasing failure rate for describing the
probability distribution of fire loss. If a fire has been burning for a long
time it is likely that fire fighting will have commenced meanwhile. Some
items (e.g. oxygen, Tuel) contributing to fire spread may alsoc be getting
exhausted. Given these factors the probability of extinction would increase at
a rate higher than that of the probability of spread so that h_04) (ﬁoq, }lc;))
would increase for large values of LL(bQ,:L) .

- 10 -



- During the period immedialely following the ignition of the first
material involved the failure rate is likely to be high. Such a phenomenon
is known -as 'infant mortality' in the analysis of life test data.concerning,
say, electric bulbs. It arises when the failure rate is relatively high in
the early period of life. This phenomenon has also been observed in the
case af a human life, It should be true in the case of fire. A high rate
in the ‘'infant' stage may be attributed to the presence in the room of
origin of materials which 'fail' to continue to burn after ignition or to
which fire fails to spread. It may be of interest to note in this
connection that in 1967, out of a total number of 982 fires attended by fire
brigades in buildings concerned with textile ménufacture, 524 fires were

confined to exterior components, appliances and common service spaces4.

In the early stages of growth after the infant,stage, a fire has a
greater tendency to. spread somtﬁat ,ﬁL(UJ .tends to decrease. Thereafter,
after remaining constant_for a short period, lL@A} will eventually
inerease till the fire become extinct. Of course, a fire cannot burn for
ever. There is no peszibility of checking the above assumptions regarding
the infant and early stages of growth since data are not available for small

losses.

vGCnceptually, therefore, &LG%) is a 'U' sghaped curve. If, however, we
disregard the infant mortality and early growth periods, for the remaining
long range of the variable we may assume that ﬁL(" increases
exponentially so that
A+ pU
hw) = e , (30)
Consider now the year 1967. There were 982 fires (ﬁqj) in textile
industries in that year against TLI (= 465) fires in 1947. Using the

correction formulae

%m (:.&Mw—f ! X%}(WV%)

J Aany

the values of 1§7an' for 1967 have been calculated and given in Table 10.

These values are logarithms of characteristic values in units of one pound.
A constant value £.908 (1oge 1000) was added to ’6317L, as it was originally
egtimated in units of £1,000. Such a change implies only a change of origin

in the straight line {7) without affecting the slope of the line, i.e. Léinrl .
T
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The estimated values of ClQTL, are also reproduced in Table 10.

.Using the fact that Czajm‘ = &L-(ﬂ%Q?LL) » the exponential function
in (30) was fitted to the data in Table 10. The following results were
obtainedl

H
3

0( - - 4L'C)gfl5’ and
B = 0-3837 G

with a high correlation (0.9586). As explained earlier the function (30)

could be expected to give reasonably good estimates of the failure rate for
-the major portion of the range of the fire loss variabdble Z- excluding small
values. In this connection it has to be mentioned that small claims are
generally disallowed by an insurance firm as 'deductiblesg'; the insured
himself having to bear a certain minimum loss. 1In 1967 the smallest loss in
textile factories provided with sprinklers was £5. (For sprinklered

buildings loss figures for fires costing less than £10,000 are a.vailable)n
Hence it is reasonable to assume a minimum value of £25 (X ) or 3.213 ( % ).

for Z at 1947 values. At 1967 values the minimum loss would ke £55.

Acceptance of the values in (31) with 25 = 3.219 provides a few
interesting results. PFirst consider the function
z-
—-i} e AP
) . F(zj = € (32)
where F:CQJ is the cumulative distribution function (expression 2,
Appendix 2). The function (32) gives the probability of exceeding the value 2.
given that the loss is greater than Z, . A loss of £10,000 in 1967
corresponds to a loss of £4,500 at 1947 values. Hence if 2%? is 4,500 with
the corresponding value ZC = 8.4, the probability of loss exceeding Zé
as given by (32) is 0.385. In 1967 there were 65 large fires costing
£10,000 ¢r more. Hence in that year thers were ahbout 170 fires in textile
industries each coé&ting £55 or more, out of which about 105 were smaller fires
costing less than £10,000 individually. According to the data furnished by
the Fire Protection Association, there were 59 smaller fires in 1967 in
textile buildings provided with sprinklers. An equal numbef of smaller fires
in non-sprinklered buildings could have occurred since about 50 per cent of the

textile industry is sprinklered. Also in 1967, out of a total of 982 fires
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attended by fire brigades in this industry, only 194 fires spread beyond the -

room of origin4.

The exponential function (30) with the values of the parameters given
by (31) has another practical use. With the aid of this function it is
possible to obtain an approximate estimate of the average loss in smaller
fires in the range less than £10,000. (At present losses in smaller fires
are not available for non-sprinklered buildings). The method of egtimation
ig"described in detail in Appendix 5. Accordingly the average loss im

smaller fires in 1967 is given by

— ) , . /o
%, =(ed)Pe (bmt) PC+5) o
where (X and 53 are given by (31) and

K = = 59.3

3 - OH_[-”?/ =1.104 (% =8.4)
o+ 2
-¢ 7

{
C = 1.908
T—:- a.
c g

!
f S5 lhys
(,e = e : = 0.046
e e ’Sz/ﬂds
(o]
]:aefgé Pas

[’ (1 + %; ) = 3.32 approximately.

0.1514 (2, = 3.219)

i

s
I

= 0.0001 (zegligitle) amnd

Inserting the above values in (33) the estimated value of :ﬁe (for all
buildings) appears to be of the order of £1,000 at 1947 values or about
£2,200 a2t 1967 values. In 1967 the average loss in smaller fires in
sprinklered buildings engaged in the textils trade was about £j,600. Hernce
in non-sprinklered buildings the average loss was about £2,800 indicating a
saving of about £1,200 per fire due to sprinklers in the range considered.
Following the method described in Appendix 5 the standard deviation is about
£1,100 at 1947 values or about £2,400 at 1967 values.,
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With an average loss of £2,200 the total loss in about 105 fires in
the range £55 to £10,000 appears to be of the order of £23%1,000 with a
standard error of about £24,000 (Appendix 5). Besides these there were about
812 smaller fires attended by fire brigades most of which were likely to
have been confined to the room of origin, with an average loss of, séy, £50.
Also it was likely that a number of small fires extinguished by sprinklers
and other meéns were neither atiended by the fire brigades, nor reported to
the organigation. The total losses in all these fires would have been only
marginal. Adding all the above losses it is extremely unlikely that the total
loss in all smaller fires in the textile industries in 1967 was more than
£300,000.

DISCUSSION

As in other fields, a major task in fire protfection economics is to
evaluate the expected extent of damage in a given building or group of
buildings. For this purpose it is necessary to find an expression defining
the probability distribution of fire loss in the given risk., Estimation of
the parametric values of this distribution would be reasonably easy if loss
figures were available for the entire range. But at present, for a majerity

of fires, figures are available only for fires costing £]10,000 or more.

Hence the precise structure of the parent probability distribution of
fire loas is not known, though the logarithm of loss appeara to belong to an
exponential family. Available observations are located at the upper tail of
thia disfribution. Therefore the treatment of the loss data has to rely om
the techniques of extreme value theory. 4n application of this theory has
been illustrated in this paper with the aid of data on the top 17 losses each
year in the textile industry during the period 1947 to 1967. A few practiecal
results have been obtained., Problems for further research have also bean
indicated.

The parts played by mean, standard deviation and standardised or reduced.
variable-mean

" standard deviation
Ay, 8nd Y4, respectively in the theory concerning the m

varisble (i.e ) in classical theory are taken up by-&%m ,

th oxtreme. In
repeated sampling over, say, years, unlike normal theory, the expected value of
S@n is not zero and its variance not unity. The moments of the error Y, |
depend upon the rank ) from fop. For different Yv 1in the same sample
(year) the errors are not independent and hence have covariances. The errors
are not normally distributed but tend to normality as "™  increases, i.e. ag

the centre of the parent distribution is approached. Considered individually
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the extremes are not difficult to handle. But complications arise when they

are to be used as a collection of extreme order statistics,

But extremes are useful. Their economic importance lies in the fact
that more than 50 per cent of the total loss is in large fires. By studying
their extreme value distributions over a period of years it is possible to
get some idea of the parent distribution from which they arise. As seen in
this paper the extreme value parameters Clnmﬂ. are the values of the intensity
" While Qyyn
could be assumed to be a constant (as a first approximation), {;hwn increases

function A,GA] at the characteristic large values é

with years. The unknown location parameter of the parent distribution-is
linked with the values of 45TnYL for varying 7 ; - hence, -this parameter also
increases over time Que to inflation and the increasing number of fires. Such
ideas of shifts in the parametric wvalues denoting the changing trend in the
parent distribution were expressed in a recent conference of the International

Reinsurance Qfficeg? Associatian.

The parameters Czrn71 and Ang?\ together describe the shape of the
intensity curve LL(@&) and hence, with sufficient accuracy, the parent
.distribution in the region of the extremes considered. Projection of this
curve below the smallest exireme (largest m ) considered is difficult., At
this stage only conjectures are possible since data are not available for

smaller losses.

Conceptually k-@*) will be roughly 'U' shaped due to infant mortality
and decreasing failure rate for small values of W anpd increasing failure
rate for large values. However, ignoring the infant and early stages which are

.not of economic importance, j(u) will be an increasing function. Under this
aggumption and with the aid of the estimated values of the extreme value
parameters, a méthod for estimating the expected loss in smaller fires has been
described in detail in this paper, and applied to 1967 lcsses for purposes of

illustration.

The above mentioned method could also be used to estimate the expected
loss in a given building in the textile industry with a given monetary value v
at risk. Using expression (i7), Appendix 5 the following results were obtained
for a few magnitudes of UV~ for the year 1967.
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Value at risk (V) Expected loss ( E-L- ) 1E§§e;zigo
1_947 values | . 1967 values | 1947 values | 1967 values (‘ E. L-}
(£) (£) (£) (£) v 7
1,000 2,200 320 700 0.320
5 ;000 11,000 1,100 2,420 0.220
10,000 [ 22,000 1,830 4,030 0.183
50,000 .110,000 5,480 12,060 0.110
1007000 220,000 7,840 17,250 0.078
500, 000 1,100,000 12,270 26,990 0.025
1,000,000 |.2,200,000 12,920 28,420 0,013

From the above table it appears that the expected loss does not increase
linearly with V" . The proportionate damage (loss ratio) decreases perhaps
exponentially, with increaéing value at risk. As expressed in an earlier note ,
this apparent paradox may be due to the fact that a fire in a large building is
more likely than one in a single room or a small building to be discovered and
extinguished before involving the whole building. The proportion destroyed in
a small building would therefore be expected to be greater than the

proportion destroyed in a large building.

As explained in Appendix 5 the standard error of the total loss in fires
in a group of independent buildings is equal to the standard dewviation of the
individual loss for the group multiplied by J?{ where YU is the number of
fires in the group and period considered. The greater the value of ¥ the
better will be the prediction for the total loss. That is to say that the
egtimated value of the total loss for a large group will have a small
coefficient of variation and hence be more reliable than the estimated total
loss for a smaller group with a larger coefficient of variation. The number of
fires in a group depends upon the number of buildings in the group. It is not
claimed that studies of this nature could help an insurance firm to decide the
number of policies it could accept from a particular range of values at risk or
sums assured. The studies, as such, are also not likely to be useful for
tackling reinsurance problems. However, it should be mentioned that attempts
to apply extreme value theory for reinsurance strategies have been made by

8 9

Beard7, Hooge™ and Jung-”.

The method of egtimating the expected loss and standard error for a given

range described in this paper may require refinement in the light of further
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research, and the availability of additional information. Confidence limits
are needed for the expected loss. At any rate extreme value theory appears

to have practical applications in the field of fire loss.
CONCLUSIONS

Extreme value.distributions of exponential type parents fitted well with
the top 17 observed fire losses in the textile industry during the period
from 1947 to 1967. A high correlation between observed and theoretical values
.was obtained for each extreme. This strengthens the agsumption that the
parent probability distribution of fire loas bélongs to the exponential
family if the logarithm of loss is considered as the operational variable

after applying the necessary correction for inflation.

.In the textile industry the top 17 losses over a period of years had an
expected value of 3.9904 (£54,100) with a standard error of 0.4056 {£1,500)
both at 1947 prices. In the calculation of these estimates the non-normality
of the extremes and the dependence between them have been taken into

consideration.

The frequency of fires in the textile industry increases at a rate of
3.8 per cent per annum. About 1,310 fires are likely to occur in this industry
in 1975.

4 ‘'return period' analysis yielded certain forecast values (Table g) at
1947 prices for the top 17 extremes. If we take the nth 1osses from top
that actually occur in the textile industry every year before 1976 and corrsct
them for inflation (to 1947 values) only one is likely to exceed the
corresponding forecast value. The forecast figures are based on the current
trend; omly drastic changes in fire fighting and fire protection methods cr
the industrial processes would be likely to alter this picture for better or

worse.

A 'U' shaped model for the intensity function of the parent probability
distribution of fire loss appears to be physically relevant. This function
appears 1to increase exponentially in the range excluding the infant and early

stages of fire growth,.

With the aid of the estimated values of the parameters of the extreme
value distributions it ié possible to estimate the values of two parameters
describing the parent distribution. These results indicate that, in 1967,
there were about 170 fires in the textile industries each costing £55 or more

of which about 105 were smaller fires costing less than £10,000 individually.
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4 method for estimating the expected loss in smallér fires has been
described in this paper. Féllowing this method it appears thaf, in‘1967, at
1967 values, the average loss in the textile industry in the ranée £55 to ‘
£10,000 was about £2,200. In the same year and industry and for the same
range the known average loss in sprinklered buildings was £1,600. These
figures gave an average loss of about £2,800 in non-sprinklered buildings
indicating an average saving of about £1,200 per fire due to sprinklers in

the given range of smaller losses.

It appears that, in 1967, the total loss in all smaller fires in the
textile industries was not more than £300,000., In the same year and industry,
65 large fires each costing £10,000 or,hgre caused' a total loss of £4,55 million.
Thus large fires. appear to have accounted for nearly 94 per cent of the total

loss in the industry.

The expected losses due to fire have heen estimated for a few values at
risk in buildings engaged in the textile trade. It appears that the

proportionate damage (loss ratio) decreases with increasing value at risk.-

.For a given or acceptable level of the coefficient of variation of the
total loss for a group of buildings it is possible to determine the
corresponding number of fires (and buildings) for a particular range of value
at risk. These studies, as such, are not likely to help:é&n insurance firm to
decide the maximum number of policies it could accept from a particular range .
of sumg assured. It is also not claimed at this stage that the studies would

be useful for tackling reinsurance problems.
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T Fire'lqssgsrinfthe"textile”industry“" T

APPENDIX 1

Table 1

(£'000)

Extremes|1947(194811949(1950(1951| 1952|1953 [1954 (1955119561957} 1958} 1959|1960 [1961{ 1962 [1963 | 1962 1965|1966 {1967
1 4601 3501 210) 350] 550/1000| 460| 150) 320| 250| 400{ 340| 570 269| 310| 532{ 493| 392)1912| 445|1033
2 270 | 200 | 150| 300| 350| 450} 320§ 150| 230; 180| 350| 200| 363| 140| 200| 250| 450} 325|1002| 400| 300
3 198 191 | 140| 173| 130| 250| 285| 90| 200| 150} 125| 200| 250{ 110| 175] 165| 450| 300| 635 309{ 290
4 1901 1451 135| 115 75(.150} 275| 75{ 190 145| 100| 150] 241| 80| 142| 155 286| 290| s02! 275 286
5 135105120} 110 70| 125| 176| 65| 160| 125| 80| 140| 200| 55] 100| 110]| 175| 245| 445| 257! 280
6 751100 ] 100] 100} 70| 90) 150f 50| 110} 100| 75| 120| 18] s0| 97| 110] 167 225| 370] 230} 268
7 45(100) 86| 100| 65| 80| 86| 25| 100| 90} 45| 112|170 50| 92| 82| 165| 191| 200| 205| 203
8 30| 65| 60| 80| 56| 65| 85| 20| 100 90| 35| 110| 120| 48| 79| 77| 126|180 275} 172 192
9 271 46| 55| 75f 50) 60| 80| 20 100| 75| 32{ 75| 100| 45| 75{ 72| 126] 170( 200] 143| 114
10 20| 32| 35| 75| 50| 60| 60| 15{100| 75| B0| 72| 80| 44| s2| 65! 115|151 200 1421 112
11 71 311 25] 74] 49 59| 58| 11| 80| 74| 29} 69{ 75| 40| 50| 64| 90| 144] 199] 110] 109
12 15| 22| 24| 65| 40| 50| 50| 10| 70| 60| 25| 53| 71| 34| 46| 63| 64| 129/ 185] 108| 95
13 | 14| 18} 21| 60| 35! 401 494 "9 50| 50| 24] 50| 60} 31| 35| 60| 60| 120| 180] 100| 90
14 131 16 20| 59 34 35 45| 9| 49{ 49| s20: 49| 55 28| 33| 45| s2{:88}120| 90| &5
15 131 131 19| 50| 30| 30} 45| o¢| 49| 42| 20| 46| 46| 28| 30| 45| s0| 87105 77| 85
16 ] 1| 15] 404 25) 28| 40| o 45 40| 20| 44| 43| 25| 23| 44| s0!l 81| 82| 75| 82
17 1010 15| 36| 25 28} 35| 9% 40| 35| 20| 43} 38| 25| 22| 40| 40| 67| T} 75! 75




‘Table 2

Fire losses corrected for inflation (1947 values)

(£'000)

Extremes {1947[1948{1949{1950 [1951 {1952 |1953 {1954 (1955 [1956 {1957 [1958 [1959 [1960 [1961 |1962 {1963 [1964 [1965 |1966 1967
1 460| 324| 189( 307| 440| 735 | 329 105 | 215 | 160 | 247 | 204 { 339 | 159 | 177 | 291 | 265| 204 | 951 | 212 470
2 270| 185| 135| 263 | 280 | 331 | 229| 105 [ 154|115 | 216 | 120 | 216 | 83| 114 | 137 | 242 169] 499 190{ 136
3 198| 177| 126| 152 | 104 | 184 204| 63| 134] 96| 77 {120 149 65| 100| 90| 242] 156| 316] 147 132
4 1901 132| 122} 101| 60| 110|196 52| 128]| 931 62 90|143] 47| 81| 85| 154{ 151 250 131 1%0
5 135] 97| 108| 96| 56| 92|126| 45|107| 80| 49| 84| 119]| 33| 57| 60| 94| 128] 221 122| 127
6 75] 93| 90| 88| 56| 66| 107| 35| 74| 64| 46| 72} 112| 30| 55! 60| 90 117] 184! 110 122
7 as| 93| 77| 88| 52| 59| 61| 17| 67| 58| 28| 67101 0| 53| 45| 89| 99| 144| 98| 92
8 30| 601 54| 70} 45| 48| 61| 14| 67| 58| 22| 66| 71| 28| 45| 42| 68| 94| 137| 82| 87
9 27| 43| so| 66 40| 44| 57| 14| 67| 48| 20| 45| 60| 27{ 43| 39| 68{ 89| 100 68| 52
10 20| 30} 32| 66| 40, 44| 43) 10| 67| 48| 19| 43| 48] 26 30| 36| 62| 79| 100| 68} 51
11 171 29| 23| 65| 391 43| 41 8| 54| 47| 18] 41| 45{ 24| 29§ 35| 48| 75| 99| 52| 51
12 151 20| 22| 57| 32| 37| 36 T 47| 38| 15t 321 42| 20| 26t 34| 34| 67| 92 51 43
13 14| 171 19| 53| 28| 29| 35| 6| 34| 32| 15| 30| 36| 18| 20| 335} 32| 63| 90| 48| 41
14 130 15| 18| 52| 27| 26 32| 6| 33| 31| 12| 30| 33§ 17| 19| 25| 28| 46| 60| a3| =9
15 131 12| 17| 441} 24§ 22| 32 6 33| 27| 12| 28| 27 T1 17| 25| 271 45) B2 37| 39
16 11| 10| 14| 35| 20| 20| 29 6f 30| 26| 12| 26| 26| 15| 13} 24| 27| 42 41| 36| 37
17 10| 9 14| 32| 20| 20} 25| 6| 27] 22| 12| 26| 23| 15] 13| 22| 22| 35| 35{ 36| 34




Table 3

Logarithms of extremes

Extremes 1947 1948 | 1949 | 1950 | 1951 | 1952 | 1953 | 1954 | 1955 | 1956 [ 1957
1 6.131 15.781 | 5.242 | 5.727 |6.087 | 6.600 |[5.796 {4.654 |5.371 | 5.075 | 5.509
2 5.598 | 5.220 | 4.905 | 5.572 | 5.635 [ 5.802 | 5.434 | 4.654 |5.037 | 4.745 | 5.380
3 5.288 | 5.176 [ 4,836 | 5.024 [4.644 |5.215 | 5.318 |4.143 |4.898 { 4.564 | 4.344
4 5.247 [ 4.883 | 4.804 | 4.615 | 4,094 | 4.700 |5.278 |3.951 [4.852 | 4.533 | 4.127
5 4.905 | 4.575 | 4.682 | 4.564 14.025 | 4.522 | 4.836 |3.807 ]4.673 }4.382 | 3.892
6 4.317 | 4.533 | 4.500 | 4.477 | 4.025 [ 4.190 | 4.673 {3.555 [4.304 [4.159] 3.829
7 | 3-807 | 4.535 | 4.344 | 4.477 [3.951 [4.078 | 4.111 |2.833 [4.205 | 4.060 | 3.332
8 3.401 [4.094 [ 3.989 | 4.249 |3.829 | 3.871 |4.111 {2.639 [4.205 |4.060 | 3.091
9 5.332 |5.761 [ 3.912 [4.190 [3.689 |3.784 |4.043 (2.639 [4.205 |3.871 | 2.996

10 2.996 ) 3.434 | 3.466 | 4.190 | 3.689 | 3.807 |3.761 |2.303 |4.205 | 3.871 | 2.944
11 2,833 | 3.401 [3.135 [ 4.174 |3.664 [3.761 |3.738 |2.079 |3.989 | 3.850 | 2.890
12 2.708 |2.996 | 3.091 | 4.043 [3.497 | 3.611 |3.584 [1.946 (3.850 [3.638 | 2.773
13 2.639 [2.833 [2.944 [ 3.970 |3.332 [3.367 |3.555 {1.792 |3.526 |3.466 | 2.708
14 12.565 | 2.708 | 2,890 | 3.951 |3.296 |3.258 |3.466 |1.792 [3.497 |3.434 | 2.485
15 2.565 2,485 [ 2.833 | 3.784 13.178 [3.091 13.466 |1.792 [3.497 |3.296 | 2.485
16 2,398 2.303 | 2.639 | 3.555 [2.996 [2.996 |3.367 [1.792 {3.401 [3.258 | 2.485
17 2,303 |2.197 | 2,639 | 3.466 |2.996 13.045 |3.219 [1.792 |3.296 |3.091 | 2.485




_gz_

Pable 3 {cont'd)

Extremes 1958 | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967
1 5.318 | 5.826 | 5.069 |5.176 |5.673 |5.580 |5.323 |6.858 |5.357 | 6.153
2 4.788 |5.375 | 4.419 | 4.736 |[4.920 |5.489 | 5.1%0 |6.213 | 5.247 | 4.913
3 4.788 | 5.004 | 4.174 | 4.605 |4.500 |5.489 | 5.050 |5.756 |4.990 | 4.883
4 4,500 | 4.963 | 3.850 | 4.394 | 4.44% | 5.037 | 5.017 | 5.52t | 4.875 | 4.868
5 4.431 | 4,779 | 3.497 |4.043 | 4.094 |4.543 |4.852 |5.398 | 4.804 | 4.844
6 4.277 | 4.719 | 3.401 | 4.007 | 4.094 | 4.511 | 4.762 |5.215 | 4.700 | 4.804
7 4.220 | 4.615 | 3.401 |3.970 | 3.829 |4.489 |4.595 |4.970 |4.585 | 4.522
8 4.190 |4.263 | 3.332 | 3.807 | 3.738 |.4.220 | 4.543 | 4.920 |4.407 | 4.466
9 3.807 | 4.094 | 3.296 |3.738 |3.664 |4.220 |4.489 [4.605 |4.234 | 3.951

10 3,784 | 3.892 | 3.2558 | 3.401 | 3.584 |4.127 |a.382 |4.605 [4.220 |3.932
11 3,714 | 3.807 | 3.178 | 3.367 | 3.555 |3.871 |4.317 | 4.595 |3.951 | 3.932
12 5.466 | 3.738 | 3.045 [3.258 | 3.555 |3.526 |.4.205 |4.522 |3.951 | 3.761
13 3.401 | 3.584 | 2.890 |2.996 | 3.497 |3.434 |4.143 |4:500 |3.871 | 3.714
14 3.401 | 3.526 | 2.833 |2.944 | 3.219 [3.332 | 3.829 {4.094 |3.761 | 3.664
15 5.332 | 3.296 | 2.833 | 2,833 | 3.219 |3.206 | 3.807 |3.951 |3.611 | 3.664
16 3.258 | 3.258 | 2.708 | 2.565 | 3.178 | 3.296 |3.738 | 3.714 |3.584 | 3.611
17 3.258 | 3.135 | 2.708 | 2.565 | 3.091 |3.091 |3.555 | 3.555 |3.584 | 3.526




Table 4

Ranks of extremes

1950

Extremes {1947 [1948 [1949 1951 (1952|1953 [1954 [1955 [1956 [1957 [1958 1959|1960 |1963 |1962 |1963 |1964 | 1965 | 1966|1967
1 {18 |1a| 5|13 io 5| 1| o 3l10]| 6f16| 2] aji2l1i| 7|20] 8.9
2 || 11| 6|1 192015 | 2| 9| a|ta| 5|13 1| 3] 8|16]|10]21 |12] 7
3 18 |16 | 914 7117 |19] 1 |11 | 5] 3] 8[13]| 2| 6| 412015121 12|10
4 19 {15 | 137 9| 3 [10 |20} 2 12| 8| 4| 7 [16 [ + | 5| 6118 |17 |21.pa44| 13
5 |20f12]14a || a| of1r| 2{13] 7| 3| 8|15| 1] 5| 6|10}19]21 [16]18
6 |1 lisiisl12l 5t st 210 7| 3 9ts| 11 4] 6141192101720
7 4117113 |14 ] 6] 9|10 1 {11 ] 8| 2f12]20]| 3 7] 5|15 |19 |21 |18]16
8 al11 | ofl1e| 7| 8|12 1t [1a)10f 213 [17| 3| 6] 515|200 |21 |18]19
9 |:4] 81216 6| 914 1 17|11} 2[10}15| 3| 7] 5|18 |20 |21 [19]13
10 5| 6] 7|17 | 9f12a|10] 1 18|13 2|11t |14 ]| 4| 5| 8|16 |20 |21 ]19]15
1 2| 7| al19 | 9fta|1 | 1|18 )1a]| 3[10[13| 5|6 [-8[15 20|21 |17 |6
12 ol 4| 619] 91312 1|17 14| 3| 815 | 5| 7141 {10 2021t |18 ] 16
13 o 4y 619 8| 9l1s | 1 {1at12) 3 {1016l 5| 7113111 2021 |187]17
14 3| 4| 6|20 |10} 9 14| 1t [15[13]|.2|12[16 | 5| 7 |18 |11 |19 |21 {18 |17
15 4| 30 7|19 9| 8|15 t |61 ] 2|14|13] 5} 6110|1220 ;21 |17]18 |
16 50 2| 6 [17] 9| 8|15 -1 1611 4|13 [12] 7| 5|10 |14 |21 20 |18 |19
17 5| 2] 6 {17] 8. 9 1|16 10] 415|137 | 5|1 |e]|20]|19]a |18

14
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Table 5

Reduced extremes (jhnj ) - uncorrected

Ramk C;ﬂ:;i:izs .Ex#remes (m)
(O Cdmed | 1 2 3 4 5 6 7 8 9

1 0.0455 [-1.125]-0.884|-0.760|-0.681[~0.619|-0.574|-0.538|-0.509]-0.483
2 0.0809 -0.874-0.695[-0.598|-0.537 -0.489| -0.454|-0.426|-0.402 -0.383
3 0.1364 -0.691{-0.559|-0.485]|-0.438|-0.398]|-0.370{-0.347|-0.%329|-0.312
4 0.1818  [-0.5331-0.445|-0.389(-0.351|-0.324|-0.300|-0.283[~0.267|-0.254
5 00,2273 ~0.394 |-0.345 {20,307 |-0.281 | -0.256 -0.241[-0.227|-0.216]-0.205
6 0.2727 [-0.261[-0.253}-0.229|-0.213|-0.197}-0.185 -0.175{-0.1671-0.160
T 0.3182 =0.1361-0.165(-0.158(-0.152{-0.143[-0.135|-0,129|-0.123 -0.118
8 0.3636 -0.0111-0.078]|-0.087|-0.091 {-0.089| -0,085|-0.0821-0.080|-0.078
9 0.4091 0.112| 0.006|-0.020(-0.0%1 -0.036(-0.038 —09039 -0.039|-0.039
10 0.4545 0.239| 0.092| 0.047]| 0.028| 0.016| 0.010| 0.005{ 0.002[-0.001
11 0.5000 0.367| 0.177] 0.115] 0.086|' 0.068] 0.057| 0.048| 0.042| 0.037
12 0.5455 0.502] 0.244| 0,185 0.146| 00,1221 0.105] 0.094| 0.084| 0.077
13 0.5909 0.643 | 0.356| 0.258 0,207 0.176| 0.154} 0.138 6.126 g.116
14 0.6364 0.793| 0.451| 0.333| 0.271| 0.233| 0.205} 0.185| 0.170| 0.157
15 0.6818 0.960| 0.556| 0.415] 0.340| 0.294| 0.260| 0.236| 0.217 0.202
16 0.7273 1.143] 0.669| 0.503| 0.415| 0.360| 0.318] 0.290| 0.267| 0.249
17 0.7727 1.357] 0.799| 0.603| 0.500]| 0.434| 0.385| 0.351| 0.3%324| 0.302
18 0.8182 1.605| 0.962| 0.716] 0.594| 0.518]| 0.461| 0.419] 0.%87| 0.359
19 | 0.8636 1.923] 1.132| 0.859| 0.708 0;619 0.553( 0.503| 0.470| 0.433
20 0.9091 2.350| 1.372{ 1.043| 0.863| 0.756| 0.668| 0.610| 0.564( 0.523
21 0.9545 3.078| 1.774| 1.334| 1.102| 0.972| 0.856| 0.781| 0.715| 0.671
Cont'd .vca.

- 25 -




Table 5 (contt'd)

Rank | Cumulative Extremes (m.)
frequency

()] (D | 10 11 12 3 14 5.l 16 | a7
1 0.0455 | -0.462 | 0.437 | -0.428 | -0.412 | =6.399 | —0.387 | -0.377 | -0.367 |
2 0.0909 | -0.365| -0.351 | -0.338 | -0.327 | -0.316 | -0.307 | -0.297 | -0.290
3 0.1364 | -0.299 | -0.288 | -0.277 | -0.268 | -0.259 | -0.251 | -0.243 | -0.238
4 0.1818 | -0.244 | -0.234 | -0.226 | -0.218 | -0.212 | -0.206 |--0.201 | ~0.195
5 0.2273 | -0.197 | -0.190 | -0.183 | -0,177 | -0.172 | =0.167 | =0.163 { =0.158
6 0.2727 | -0.153} -0.150 | -0.144 | <0.139 | -0.135 | =0.131 | -0.128 | -0.127
7 0.3182 | -0.114 | -0.111 | -0.108 | -0.104 | -0.101 | ~0.099 | -0.097 | -0.094
8 0.3636 | ~0.076 | ~0.074 | -0.072 | -0.070 | -0.072 | -0.067 | -0.066 | -0.064
9 0.4091 -0.039 | -0.039 | -0.039 | -0.038 { -0.038 | -0.037 | -0.037 | -0.036
10 0.4545 | -0.002 | -0.004 | ~0.005 | -0.006 | -0.006 | -0.007 | -0.007 | -0.008
11 0.5000 0.033 | 0.030| 0.028| 0.026| 0.024| 0.022| 0.021| 0.020
12 0.5455 0.071 | 0.066| 0.062| 0.058| 0.055]| 0.053| 0.051| 0.048
13 0.5909 0.108| 0.102| 0.096]| 0.091| 0.087] 0.083| 0.080| 0.077
14 0.6364 0.148 | 0.139| 0.131{ 0.125| 0.120| 0.114 |- 0.110| 0.106
15 0.6818 0.190} 0.179] 0.169{ 0.161| 0.154| 0.148| 0.143| 0.138
16 0.7273 0.235| 0.221| 0.209| o0.200| 0.19t| o.184| 0.177] 0.171
17 0.7727 0.283| 0.269| 0.255| 0.244| 0.233| 0.225| 0.216 | 0.209
18 0.8182 0.333| 0.321| 0.305| 0.289| 0.280| 0.268 0.259 | 0.250
19 0.8636 0.407| 0.38 | 0.367| 0.350| 0.336| 0.323| 0.312| 0.302
20 0,9091 0.494 | 0.468| 0.445| 0.426| 0.407| 0.391| 0.378| 0.368
21 0.9545 0.626 | 0.598| 0.568| 0.541| 0,520 0.501| 0.482

0.465
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Correction due to fire freguency

Table 6

Serial No. Number of fires Correction
(£ Year (ng) 108 ("{/n,)
1 1947 465 0.000
2 1948 478 0.028
3 1949 512 0.097
4 1950 574 0.211"
5 1951 728 0.449
6 1952 568 0.201
7 1953 725 0.445
8 1954 662 0.354
9 1955 740 0.465
10 1956 716 0.432
11 1957 645 0.%28
12 1958 560 - 0.186
13 1959 872 0.629
14 1960 760 0.492
15 1961 696 0.404
16 1962 724 0.443
17 1963 790 0.530
18 1964 998 0.764
19 1965 964 0.730
20 1966 1050 0.815
21 1967 982 0.748
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Table 7

Reduced extremes - corrected

Extremes | 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
1 1.605 | 0.821 | -0.207 | o0.85¢ | 1.806 | 2.551 | 1.405 | -0.771 | 0.577 | -0.259 | o0.567
2 0.962 0.205 | -0.156 1.010° | 1.581 1.573 1.001 | =0.3%41 0.471 . | ~0.013 1.080
3 0.716 0.531 0.077 0.544 | 0.291 0.804 1.304 | ~0.406 0.580 0.125 [ =0.157
4 0.708 0.368 0.183 0.180 0.011 0.229 1.308 -0.183 0,611 0.341 -0.023
5 0.756 0.150 0.330 0.279 0.125 0.165 0.879 -0.135 0.641 0.289 -0.070
6 - 0.057 0.288 0.251 0.316 0.208 0.116 0,763 | =0.100 " | 0.475 0.297 | -0.042
7 - | -0.283 04379 0.235 0.396 0.274 0.162 0.450 | -0.184 0.234 0.350 | -0.098
8 -0.267 0.070 0.058 0.478 0.326 0.121 0.529 -0.155 0.635 0.434 -0.074
9 -0.254 | -0.050 0.174 0.460 0,289 0.162 0.602 | -0.129 | 0.767 0.469 | -0.055
10 -0.299 0.251 ~0.017 0.494 0.410 0.272 0.443 -0.108 - 0.804 . 0.540 | -0.037
1 -0.351 | -0.083 | -0.137 0.597 0.410 0.267 0.216 | -0.083 0.186 0.571 0.040
12 =0.338 -0.198 =0.047 0.578 0.147 0.297 0.507 -0.074 | 0.720 .0.563 0.051
13 -0.327 | -0.190 | -0.042 0.561 0.379 0.163 0.606 | -0.058 0.590 0.490 0.060
14 -0.259 | -0.184 | -0.038 0.618 0.443 0.163 0.565 | -0.045 | 0.619 0.519 0.012
15 -0.206 | -0.223 0.305 0.534 0.412 0.134 0.593 | -0.033 | 0.649 0.552 0.021
16 -0.243 -0.269 -0.031 0.427 0.164 0,383‘ 0.588 ~0.023 0.642 0.453 0.127
17 -0.238 ~0.262 -0.030 0.420 0.385 0.165 |- 0.636 -0.424 0.133

0,551

=0.013 -
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Table 7 {(Cont'd)

Reduced éxtremes - corrected

Extreme 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
1 0.503 1,772 | -0.382 | -0.129 0.945 0.897 0.050 3,808 0.804 2.671
2 -0,159 0.684 | -0.392 | -0.155 0.365 1.199 0.856 2.504 1.059 0.583
3 0.099 0.887 | -0.106 0.175 0.054 1.573 | 1.179 2.064 1,000 0.795
4 0.034 1.044 | -0.189 0.123 0.23%0 1.124 1,264 1.832 1.086 0.955
5 0.097 0.923 | -0.127 0.148 0.246 0.546 1.383 1.702 1.175 1.266
6 0.148 1.090 | -0.082 0.104 0.258 0.735 | "1.317 1.586 1,200 1.416
7 0.559 1.239 0.145 0.275 0.216 0.766 1.267 1.511 1.234 1.038
8 0.312 0.953 0.163 0.237 0.227 0.747 1.328 1.445 1.202 1.218
9 0.185 0.831 0.180 0.286 0.238 0.889 1.287 | 1.401 1.248 0.864

10 0.219 0.777 0.248 | -0.169 0.3%67 0.763 1,258 1.356 1.222 0.938
11 0.441 0.731 1 0.302 0.254 0.369 0.709 1,232 1.328 1.084 0.969
12 0.377 0.798 0.309 0.296 0.558 0,438 1.209 1.298 1.120 0.957

1% 0.180 0.829 0.315 0.300 0.534 0.556 1.190 1.271 1.104 0.992
14 0.241 0.820 0.320 0.303 1.095 0.554 1,100 1.250 1.095 0.981

15 0.300 0.515 | -0.070 0.361 0.436 | .0.682 1.155 1.231 1,040 1.016
16 0.709 |  0.237 0.395 0.241 0.436 0,640 1.246 1.108 1.074 |  1.060
17 0.324 0.706 0.398 0.246 | ~0.013 0.578 1.132 1.032 1.280 0.998
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Table B

Results
— 2. - _ - 2 — 2 A 2
Eﬁl"‘te)me Lnm, ’é’m n| Zm | Smz | Ym ’s'mfj 7";"" ’g'mfi " Zm | Tz | T
1 2.247 | 5.214 | 5.634 | 0.278 | 0.526 | 1.203 | 0.943 | 1.300 | 5.656 | 0.345 |.0.961
2 1.785 | 4.829 | 5.201 0.193 0.246 | 0.489 | 0.663 | 0.543 | 5.214 | 0.221 0.945
3 1.626 | 4.534 | 4.880 | 0.174 | 0.161 0.305 | 0.578 | 0.383 | 4.899 | 0.179 | G.912
4. 1.460 | 4.327 | 4.693 | 0.196 | 0.118 | 0,221 0.535 | 0.324 | 4.702 | C.18&1 0.880
5 1.387 | 4.113 | 4.483 | 0.202 | 0,096 | 0.175 | 0.513 | 0.282 | 4.488 | 0.171 0.853
6 1.424 | 3.988 | 4.336 | 0.187 | 0.079 | 0.142 | 0.496 | 0.280 | 4.341 | 0.157 | 0.857
7 1,239 | 3.749 | 4.145 | 0.255 | 0.067 | 0.121 | 0.484 | 0.255 | 4,145 | 0.188 | 0.807
8 1.163 | 3,564 | 3.975 | 0.271 0.059 | 0.105 | 0.476 | 0.253 | 3.977 | 0,208 | 0.830
9 1.212 | 3.448 | 3.859 | 0.224 | 0.052 | 0.093 | 0.469 | 0.230 }| 3.839 | 0.174 | 0.837
10 1.034 | 3.259 | 3.728 | 0.291 [-0.047 | 0.083 | 0.464 | 0.226 | 3.711 | 0.232 | 0.853
11 0.973 3.137 3.610 | 0.318 | 0.043 | 0.075 | 0.460 | 0.211 3.613 | 0.244 | 0.838
12 0.925 | 2.972 | 3.465 | 0.328 | 0.039 | 0.069 | 0.456 | 0.206 '| 3.468 .| 0.262 103857
13 0.886 | 2.832 | 3.341.( 0.35! | 0.036 | 0.064 | 0,453 | 0.201 | 3.347 | 0:277 | 0.853
14 0.924 | 2.749 | 3.235 | 0.304 | 0.033 | 0.059 | 0.450 | 0.187 | 3.239 | 0.236 | 0.847
15 0.937 | 2.680 | 3.158 | 0.283 | 0.031 0.055. 1 0.448 | 0.182 | 3,161 0;223 0.856
16 0.950 | 2.583 | 3.052 | 0.282 | 0.029 | 0.052 | 0.446 | 0.186 | 3.055 | 0.221 | 0.857
117 1,002 | 2.537 | 2.981 | 0.247 | 0.027 | 0.049 | 0.444 | 0.180 | 2.983 | 0.191 [ 0.851
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Taple 10

Characteristic large values for 1967

(At 1947 values)

s | e |

() (‘%,q,nj ) i
1 12.455 2.2417

2 12.156 1.785

3 11.902 1.626

4 11.747 1.460

5 11.560 1.387
o6 11.421 1.424
T 11.261 1.239
8 11.115 1.163

9 10.973 1.212
10 10.890 1.034
11 10.814 0.973
12 10.689 0.925
13 10.584 0.886
14 10.467 0.924
15 10.386 0.937
16 10.278 0.950
17 10.192 1.002
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AFPPENDIX 2
CORRECTION FOR VARIATION IN SAMPLE SIZE

INTRODUCTION

Extreme value theory is concerned with the distributions of extreme order
stétistics in repeated samples from a given parent distribution. The classical
theory assumes that the sample sizes are maintained at a constaﬁt value. . This
is to ensure that the parametric wvalues of fhe:distribdtions of extremes remain
constant during the process of sampling. However, there may be practical:
situations where the sizes of the samples vary considerably. In the case of
fire losses, for example, the frequency of fires in a year increases significantly
over a period of time. In such cases the classical theory needs to be modified.

This aspect of the problem is examined in the succeeding sections.

THE FAILURE RATE FUNCTION N

By definition

F(’fﬁhn) = | — It (1)

"

f
where FiEZJ is the parent distribution function and U, ., the characteristic J2
large value from top in samples of sgize VI from f%ﬁg)o Also by definition

—-fh(a)da.
F: GZJ - { —€ ° (2)

where LLGA) is the failure rate function. From (1} and (2),

M) = [ hiode
P = /QO:T<317671> (3)

{h
Also according to fundamental results, ifZ;l is the observed /L large value
ni .
J

in the j sample of sizely , we have

—a (zjle —_ f»ﬂw)

Fun) = | — ¢ (4)

where

Xnyp, = }L(’@/Lw) | (5)



Approximations (1) and (4) which are true for exponential type distributions
have been obtained under the assumption that L'Hopital's rule is applicable for
large values of 2. According to this rule the critical quotient Q(ﬁ) given by

h(2)
@Cz_} = — /C?.)/,f(z) (6)

(2_) tends to unity for large 2. For large 2 the density of probability
‘F(Z‘) becomes very small and the same holds for the probability i F(:.}}'
of a value exceeding Z. If the variate is unlimited the derivative _\c (“z)

also converges towards zero. From (6) we may write

_ & {
Mo = e ~— T @/t o

In 7) _F(ZJ is the derivative of ,.'C(z) and --F(Z) the derivative of {! F(’-)}

By taking further derivatives we may extend (7) to write that, for large Z,

L) ~ *L—U {6 ~—f"%
%’Cz) 1"

We have, from (7),

- 4le F'e )
,'\, (z) = ey {‘_’ F(%}J

‘lﬁ ,(z) IS aSes (1&(‘7—) )

= Sl—FE}
But from (B),
2
ey ~ — (e
[— FC/

t
Hence k (2,) tends to zero for Z - In the same way

L =) = (i@— (75@

= a( f%@(ﬂv@/ + () }
(=)
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! / f I(IZJ +=) j
- &) > L g—‘

&
+ & A A @

(f {
The above expression for Au (Z) tends to zero since }U (Z) does so and

from (8) £fl_@_ ’F/C‘Z} ) 2

O —

f& =)
In the same way it can be shown that all the derivatives of A, (2) tend to

zero for large 2. The asymptotic distribution of extreme values for the

exponential family has also been derived under the condition that

Lion ‘ l*"f:(z))

z > dz' ’F@‘)

= O

-
—
—

s dz \ R

The above mentioned property of.the derivatives of A/(éJ is 'implied din the
asymptotic probability of 27'm given by (4) with the density function given
by expression (1) in the text. '

Hence the failure rate function of the parent distribution could be
regarded as a constant in the vicinity of any characteristic large value tn
provided /1. is small compared with large . and 2~ . ©Small deviations in the
value of 2. aroundufgzh’do not appear to produce any significant changes in
the value Of'clqyb' However, for /1. = 1,2,~~the sequenceCLQJL may assume
any pattern depending upon the parent since the characteristic large values
need not be sufficiently close to each other. In,the case of a parent of
simple exponential form (ie with density f4_éjrt where M is a constant) the
failure ratec%QYL is equal to the constant f{ for all -.
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MODIFIED MODEL "
Let ’gjLnrJ be the characteristic. J1- large value from top in samples of
size Wy from F(®) . In the neighbourhood of Ly we have

H ('{r/LWJ)——- H @Aw) L
- éé‘/nvi _ le) H‘(,(;,lw) _}—(ém’ '2’:‘22 ) H @)m) g
= @}LY\Q — ’&*)Lw) "L ('(*)u\) +<6’1M;’6'Aw)L ’1/! @An) P

From (3), the left hand side of the above equaticn is equal to log (h’l/-n,) .

It has also been proved in the previous section that the derivatives of [,\,(z)

are of negligible magnitudes in the vicinity of (é)uv Hence

’{fn, i — ’é;LVV + 'Eii;;: 45&3 (3»{/€V:> (9)

In an investigation to be undertaken separately it is hoped to evaluate by
numerical methods the errors in adopting the first approximation given by (9)

for different distributions of exzponential type.

We have, y
p— . AN
Zng = Tan; + Tond

where &i is the reduced value. Hence using (9)

: Yo n,
ézszwj = boan, + :;f;;j’4695f(ih3”£¢) + Clzzni'
Jang ’&’ff (NJ/W)

Z (10)

since a)mﬁ'is equal to the constant value a)UL for wvalues of 'G)?,ng in the
heighbourhood of "G/LYL- The random variable tff'l'\{] is independent of the sample
size 'Y\/J provided it is large. Its value corresponding to Z,u\:]‘ may be obtained

by treating )  as constant for the samples.
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APPENDIX 3
POPULATION VALUES OF REDUCED EXTREMES

The reduced ith large order statistic from top is

X .th . s 4. .th
where A¢ 1is the observed i large order statistic, ug the characteristic i
extreme and G{L‘ the value at u, of the intensity function of the parent

. distribution, It is known that the moment generating function éfc- () of

¥; is given by

ét_(@ = Cep(c'—*f)/[ﬁ@) (2)

Using the Weistrass form of [’ (x) we can write
(2 2]

. R s /
dog G (& = C’{D —l—égi—-s‘zja} +k£_‘£‘(5%'—§e,a> (

3)

where )0 is Euler's constant and

— ‘
0 ¢ '
- s (k) amd s = 5 (k)
= 2 L
S’f( nol ( e 'k»‘c =t (4)
with S’R;l = (0 Using Bernoulli numbers the approximate value of 32 is
1.6449. From €3) and (4) we have

—f

FGe) = » +{ojc: —-)2_2:_, (/)

and
2.
f(_: = variance of y. (5)
1
c—f
= 1.6449 ——— 2 (’/Q-z—)
A=t

With the aid of the expression (5) » the expected value and variance of the

top 40 large order statistics have been obtained and tabulated below
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Extremes (yi)

Order
(i) Expected value Variance
(672)
1 0.5772 1.6449
2 0.2704 0.6449
3 0.1758 0.3949
4 0.1302 0.2838
5 0.1033 0,2213
6 0.0857 0.1813
7 0.0731 0.1535
8 0.0637 0.1331
9 0.0565 01175
10 0.0508 0.1051
1 0.0461 0.0951
12 0.0422 0.0869
13 00,0390 0.0799
14 0.0362 0.0740
15 0.0337 0.0689
16 0.0316 0.0645
17 0,0297 0.0606
18 0.0280 0.0571
19 0.0265 00540
20 0.0252 0.0512
21 0.0240 0.0487
22 0.0228 0.0465
23 0.0219 0.0444
24 0.0210 0.0425
25 0.0201 0,0408
26 0.0193 0.0392
27 0.0186 0.0377
28 0,0179 0.0363
29 0.0173 0.0351
30 0.0167 0.,0339
3 0.0162 0.0327
32 0.0156 0.0317
33 0.0151 0.0307
34 0.0147 0.0298
%5 0.0143 0.0289
36 00,0138 0.0281
37 0.0134 0.0273
38 0.0131 0.0266
39 0.0128 0.0259
40 0.0125 0.0252
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APPENDIX 4

COVARIANCE OF LARGE ORDER STATISTICS
FROM EXPONENTIAL TYPE DISTRIBUTIONS

It is necessary to recall first the notation and some of the fundamental
results already obtained, We may assume, for the sake of simplicity, that the
population under consideration has the distribution function (X)) with
density function‘F (X ) which is continuous. Consider the elements of a random
sample of size Y\ drawn from the population which are mutusally random variables.

Rearranging them in decreasing order of their magnitudes we may write

X DXp DXy ~omm e DXy (1)

If N such samples of size ¥l are drawn from the same parent

distribution F (X), the i'" order statistics X, will have a probability

distribution with a density function given by
o . e

W (7:)dx, = r@ [F(x(ﬂ [1— F(%c)] 2 )dlor; (2)

We can now define two parameters O((; and ({; with reference to the

ith extreme from top as the solutions of

Rl) = 1 —(&) and 2

% = Cw/c‘)_’r(n(ai) (4)

Following Gumbel1 we may expand F () for large values of X about the
characteristic ith largest value LLt » If F () 1is of the exponential

type we may write approximately, for large @ .

F[Z(;) = | —-——é%) I g (5)
flg = bg) ™ ©

where

(j(: = A (I’CL'--Q‘;) {7)



With these values, for large Y. . the density function /J(, (X;) tends to

o () {/ ,);}d exp {"‘Lb’r-cexkf Y) Jdae &2
CLL (‘jc): {i(d—!).’} Exp f’ Lye —¢ exp ("(jt‘)j d"jf (8)

-

for —p0 £ ljd < o0 . For the largest value € = [ we obtain the density

&, @(/ = @KP{—%"WP (""Jr)j dy, (9)

with the distribution function

B, (4) = exp § = oxb (-9 ] o)

3. COVARTANCE

If the sample observations are arrangsi in decresasing order of
+th th

magnitude as in (| ) the joint distwribution of the i and j order
statisties with ¢ 7J could be W.C‘:L't‘!"en as
,Vl’ L—— -‘f

o107 G- il f 6] [ )t [1—F) 7
Flro) - f(xg) 4x: dx (1)

which is true for the domain 7('6 < A i With the aid of the values in
(5) and (6) we may write the asymptotic form of (11) as

- d

(cijff}‘! G0 x"{ Je J‘S’J“&P(fft)}(e “fe ") “f/: dy; (12)

for large values of L , A and XJ' . By writing

Sc = ie and Fp=1i e W (13)

- 40 -



we can rewrite (12) more elegantly as
C—j-/ '_

-3
I
SL T Gy TG ;)I e (- 3;) 5 d3. 45 (14)

. L e
c

which is true for the domain O & 3:.\ <3
since ¢ >) end = (%;) < F (7(.4) expression (57)
Denoting the expected value by the letter E the covariance

of le‘ and ldd ig given by

7]
o = € (y:4) —EG)EQS) (1)
From (14), .

£ (ycuy)

. t "J ~f -
SR f"gﬁ& C‘.a.fzz il
(Y TGy o ¢ 3(4:) §LOC 5) i 5[%)4? (16)
The evaluation of the integral in (16) is shown in appendix 4(e)

We have:-
e~/

E(scaJ)—E(vf)—rE(wfzw 48)} o

But from (5) of .Appendix 3
!

E@J v +log ¢ — 2 &) amd
E(y) = » +b, -—g;_, @)

1}

Hence
c—{
' (i8)

Ely;)—Ely) = /é,- &) — 43 ()

-4 -




From (15), (17) and (18) we obtain the covariance -

.'_‘ ‘2;
szlf = EE(?jdigj)*———-ii tgtfjé):7
= variance of HC

Therefore, the covariance of the extreme order Statistics Eft -énd;jd
ls the same as the ‘variance of jc. where ¢ ;>J . This result is analogous
to the covariance for order statistics from the simple exponential distribution
obtainédlby Sarhanz. Greenberg and Sarhan have also tabulated the expected
values and the variances and covariances of the order statistics in samples of

size <€ |0  from the exponential distribution’
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APPENDIX 4{a)

Consider
' 3¢
T = [ ((c—%)
! o
Making the substitution gi = §- '\'

"{A,g@/ - n)
"“I"\ t— J) {"3}\0“\}

= 5 (g l2)Bli) — L ]

where B denotes 'the beta function and

T = f - ) g g g

£yt

% g ()4 5

{ .
™ L J+2—l
i ™m Cq,("") fo N '&3 KJ‘ d”\i

=0

B

where Ywn, = (.,-"d - . Hence

Vi /L :
T = — 5 m C;LC"”) /@4—/2,)?" (1)
A =o

——

2

It can be proved numerically and otherwise that the series on the right

hand side of (1) is equivalent to

-B (i, -J)Z &) ?

- L3 -



Hence

T = B(j H)g {/a;ﬂ(/gw H}

e

Now

__ 5o (%, ) T A S
Ely4)= g5 0070 L s c

[J &g 'fos@/sc){bﬂ(%)dg
ég)f Tt e )]

:’5[@[»3“‘2'@)1] 8

T, - _f" 5 ey ) &a(/ﬂfﬂ

,@Uﬁ cbogy T
_@oﬂ c-f-&:jJ)fJ 5 '(e)ﬂ thsﬂ‘

+ [ eFs (g ) 45

Now

But

@ < -
'Jo Q’gt S //&3 ;Coggi |
: . —Yc e L
< L LY, —Le L ¢ L--'ce
= &3 C’_[:gcce 7 d@yi _-,C; € 7 [jc"’(fﬁ
= O {ege — E(ye ]

. (4)___ .



Expression (4) follows from (8) and (13) in Appendix’l, Similarly it can
be shown that

[ e% 5 g5 s

] g9 2ty K 0]

Hence, after simplifying

fg = () {‘g"ﬁ’ (J/(.)Eéj‘—) +E (362-)} (5)
and

T, = M) J4ogi —Fgi + E G

= M E@) ©)

It follows from (3), (5) and (6) that

Eiwi) = By + B[ £ () — 46|
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APPENDIX 5

EXPECTED LOSS IN SMALLER FIRES

From expression (2), appendix 2, the density function of the parent

distribution is
2
| _ [ hydu
%@y = h@e?’ Codz 0 T

where }‘\, (L) is the failure rate or intensity function. If A_ () is of
the form

o+ [3U
hw = e (2)
it is easily seen that A+B2-
e
A z—

_F(z.) - Ke 7 e dz (3)
where ’@i

K =eP | | (4)
In (3), put

0(’*'[52‘:__ /gg (5)

€
s0 that
-2
f(» = Ke 43 (6)
A
Since 0 & 2 & & , we have £ _ < $ €.
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It may be verified that the integral of (6) over the prescribed range is
unity so that ‘F (£) can represent a density function. If é’(/ﬁ is almost

zZero K may be assumed to be equal to unity.

From text it may be observed that <. is the logarithm of the loss xX ,
Hence from (5)

Log 3 +Aog 58— = Blog X L

where

/ —X
« =€ (8)

We are neglecting values of X 1less than Xo as due to infant mortality.
Also let .xe correspond to the amount £10,000 corrected for inflation. The
expected value of X is required for the range X, &£ X < 7(€ . If

2'€ = '&95 Xe and Z, = /4;3 X, , the corresponding upper and lower limits
for £ are '

At (32
§€:€ﬂ/ﬁ amd (9)

A + 3%
iZO - €& [3//123 (10)

The density function in the range §o < g S _§e is given by

g
~{—€(§} =Ge 45 o o)
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The integral of (11) over the given range ought to be unity so that

C, = — — | o (12)
Ay
If )%17 is the expected value in the range ﬁ o 7( < 2%3 '?rom (7).
@0(1)13 E(S ‘B, o 63)
But from (11),

* 5y
EElP) = Qf SRERUER:
€

[ffee g’//bdg____/e g/Pcégi] |

The ratios

3¢ /
; [ e 5 lPys )
Q: arn
j e z/Pds
~ %o

| %5 Pys
[ge’g_g P s

could be obtained from Tables of Incomplete Gama Functions; Thus

po =

3

F

FEsPas = g ((1+75) "

(m) -



and

- 70

© wrom (13), (14), (415) and (16)

75@ _ (/pgv*f?o) C@ [ﬁd’) P/’?C’ ,/,,L) (17)

From (7),
'y / % G
% (7(: / — (ﬁol ) X % (g )

Following the algebra in (14)

ECT) = (Ge—%0) G (p) P T (15D a9

where g

and
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The variance of X in Hp < iéxe is given by

2-
2- 2
g = EGD— [6&]
-
= E (Z 2') ""Zg
¢
= expression (18) - (Expression (1‘7))2 (19)
If we consider YL fires within the range Xp & XS'XG the t6t31 7;1

of the losses in these M fires would have the expected value of h;(-C
and gstandard error JYL o’é « For the variance of 7;; is

an Ty = Van (24— )
= n.a
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