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EXTREME VALUE THEORY AND FIRE LOSSES - FURTHER RESULTS

by
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SUMMARY .

In a previous paper the author illustrated the use of the theory of extreme
values for analysing the largest losses due to fires in buildings. In thi.'3
paper the theory is extended so as to cover the top 17 extreme losses in the
textile i.ndustry. A few statistical problems concerning these extremes and
their averages are discussed. Using the estimated values of the parameters of
these extreme value distributions a method for assessing the total loss in
smaller fires in a given year is also illustrated. This method could also be
used to estimate the expected loss in a particular building of known value at
risk. Problems for further research have also been suggested.

Conceptually, the intensity f'unc taon of the probability distribution of
fire loss is 'u' shaped. But, neglect:iJig the infant and early stages of growth
of fire this function increases exponent I aHy , In 1967, there were about 105
fires in the textile industries with individual losses in the range between
£55 and £10,000. The overall average loss in these fires was about £2,200. In
the same year and in the same industry sprinklered buildings had an average
loss of £1,600 for a cqmparable loss range. Hence in non-sprinklered bui.ldings
the average loss was about £2,800 indi(Ja.t:ing a sav:Lng of £1,200 per fire due

.to sprinklers in the range considered.

It is extremely unlikely that the total loss in all smaller fires (costing
less than £10,000) in the textile industries in 1967 was more t.han £300,000.
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INTRODUCTION

In many technological problems interest centres around a statistical

assessment of the life characteristics of the material under investigation.

One such problem is the phenomenon of the spread of fire, statistical

treatment of which has been receiving attention only in recent times. A

deeper understanding of the life of a fire under given conditions would provide

a sound technical basis for planning fire fighting and fire protection

strategy.

Essentially there are three ways in which the life of a fire could be

expressed. First we could consider the physical extent of spread in terms of

the area or volume destroyed. Secondly, the duration of burning in time units,

which is useful in certain problems, especially those concerning fire brigade

operations. Thirdly, the extent of financial damage, which plays a vital role

in the economics of fire protection measures. The analysis in this paper

relates only to the third aspect, viz. financial loss. Using suitably

determined conversion factors it should be possible to translate the monetary

values into equivalent values in time or physical damage, but this problem is

one for later study.

A statistical assessment of the financial damage in a fire implies a study

of the probability distribution of fire loss. This is the distribution of the

probabilities with which the cumulative monetary damage in a fire reaches

various amounts. The structure of this distribution is not likely to change

from one set of conditions to another; but the values of the parameters would

vary. The values of the parameters would thus serve as indices of fire risks.

If loss figures were available for all fires it would be possible to

establish the structure and parametric values of the probability distribution

fairly precisely. But at present loss data are available only for fires

costing £10,000 or more. Hence the available observations are large or extreme

values at the tail end of a given parent distribution. Repeated sets of

extreme values are produced from year to year under different c9nditions. One



is therefore faced with something like the traditional experimental design

and analysis situation with the difference that the data are known to be

sets of extreme values from an unknown distribution. The relevant theory for

tackling such data is the extreme value theory.

In a previous paper1 the author reviewed the extreme value theory with

special reference to financial losses due to fires in buildings. It has been

assumed that the probability distribution in a fire, i.e. the parent

distribution, is of the exponential type if the logarithm of loss is

considered as the operational variable. Using the appropriate asymptotic

distribution the largest losses in the textile industry in the United Kingdom

during the period 1947 to 1967 have been analysed. In this paper the

extension of the theory to cover the top 17 extremes is discussed.

THE DATA

The data used in this paper relate to large losses that occurred' in the

textile industry in the United Kingdom during the 21 year period from 1947 to.

1967. The top 17 of these losses arranged in decreasing order of magnitude

for each year are given in Table 1, Appendix 1. These were preliminary

estimates furnished to the British Insurance Association and published in the

'Times' .

With the aid of the index numbers for retail prices a correction for

inflation has been made to the observed loss figures and the corrected figures

are shown in Table 2.

In the previous paper1 it was explained in detail that the logarithm of

loss follows a probability law of the exponential type. Hence i.n the actual

analysis we have to consider the logarithms of corrected losses and these are

given in Table 3.

THE HEDUCED EXTREMES

. Consider the variable -z. which is the logarithm of the observed loss

corrected for inflation. This has a probability distribution F ( z.) the

structure of which is assumed to remain the same over the years. The fire

losses in a given year constitute a sample of observations from F (2-). Let

these losses be Z" Z~ ••••• 2.n with Vl denoting the sample size, Le.

number of fires in the year. If these VL observations are rearranged in

decreasing order of magnitude, let 2(1I be the larges t and Zen) the

smallest. Also let 2(~) be the mt h observation from top.
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the parent distribution F (z) and the

is of exponential type, n. is large and m
The asymptotic density function ·)L.-m( 'jtrl)

Over the years, 2(nl) has a probability distribution the structure of

which depends upon the rank m ,
sample size 11 . But if F (z.)

is small in comparison with n
of the mt h extreme' from top is

mY17

(1'11.-1) !

where the reduced mth large value Y'ht is defined as

~n {"Zrm} - ~mTJ )

The parameters and J
~1YI71 in (2) are the solutions of

m--n and

where f (2.) ( = F (Z)) is the density function of Z.

The distribution function corresponding to the

j
~-rYl

~~lj"fYl}
_cO

density function (1) is

which could be rewritten as an incomplete gamma function

(5)

by introducing the transformation

In the application

assumed that the sample

of the classical theory of extreme values it is

size Yl is constant. This assumption is not

satisfied in the example considered as the frequency of fires, though large,

has varied considerably from year to year1. This variation would be expected

to affect the values of the extreme value parameters a.m nand -t-m 1'2. as

they are functions of YL. This aspect of the problem has been investigated in

detail in Appendix 2. It appears that the following model would suffice for all
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practical purposes:

I

7rmJj - t; n, +~
am rl

J

where

r
jmJ + ~6 (YlJ!n,)Ymj (8)

Vl, number of fires in 1947

YL' = number of fires in the j th year

Jr~n = the characteristic mt h large value for samples of
I

size vt t as defined by expression (3) with YL = rt,
aYl1 n = the failure rate of parent distribution (at -6-......... n ) as

I " • I
defined by expression (4) with YL ;;;; n j

~)j = the mt h large value from top as observed in the jth

year, and

~ mj the reduced mth large value corresponding to ZeTYl) j
calculated on the assumption that the samples have the

constant size of YL,

(9)
1?mj

N+I

The value.s of 2c'Yl1) j for m ;;;; 1 to 17 are contained in Table 3,

Appendix 1. If each of the 17 sets (of 21 values) of 2(rnJj is arranged

in increasing order of magnitude let 'Kmj be the rank of ZemJ j The

ranks are shown in Table 4. The empirical value of the cumulative relative

frequency of ~Tn)j is

Cf5m (4mJj )

where rJ = 21. Since cumulative frequencies are preserved under

transformations

(10)

where

~.
J
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were obtained and are

from tables of incomplete

= 1, •..• 21) corresponding toThe values of u.mj (M= 1, •••• 17; j
the cumulative frequencies (9) were calculated

gamma functions. Then using (11) the values of

given in Table 5.

The correction term loge YlilrtJ ) for ljm.j is independent of YI1 •

These correction terms are shown in Table 6. Using these values the

corrected reduced variates Y~j have been calculated using (8) and are

Shown in Table 7.

EXTREME VALUE PAR.A.METERS

The next step in the problem is to estimate the extreme value parameters

t1.mn., and ~ tl, This can be achieved by fitting the straight line (7)

to the variables ~}J and Y(mj (j '= 1, •..• 21) using the method of

least squares. The values of the parameters thus obtained are given in Table 8.
:;I.-

Also given in~he table are the me~ ~m) and variance ~CrYJ} Z- of ~}.i '
and the mean ~'m and variance --$ 7Yl !J of Y-mj

Fitting the straight line (7) involves a residual error emj. The

expected value of ~ may be assumed to be zero while the variance of €rnj
is equal to

( 12)

I ,

and ~ "rtlj
correlation has

where ll.'1Yl is the correlation coefficient between ~)j

The values of J1"n"} are also given in Table 8. Since a high

RS~been observed in all the cases, "" is negligible in magnitude. The

In the same way, ~) j
Using the sample estimates of

high correlation also strengthens the hypothesis that the logarithm of fire

loss follows a probability law of the exponential type.

In the example under consideration the number of observations (years) f\/
for each extreme is 21. For large values of N , the sample moments Y'm
and ~;~ of the reduced extreme ymj tend to limiting or population

values 77YJ and O-:;;'j respectively. The derivation of these limiting

values is shown in Appendix 3 together with a tabulation for M == 1 to 40.
I\. '2-

has a limiting mean 2 T'fl and variance 0-m 2- .

~Yl- and -6-?'Y\n
~ - ,

+ y~ +PJ-.
O-m.n,
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In (13), 7J' is the mean (population) value of the correction factor

an estimate of which is furnished by the sample value

rJ
b .s, { Pi (16)

t v J:::'/
2-

Also in (14) sample estimates of Op and ('CJ V (.:f'Y'n.j , ~J' ) are furnished

by

I-N-I (17)

( 18)

In (13) and (14) population moments are available only for Y~l i.e.
-- 'J-- 'l,J

)I'M and ()Tn'j since the probability distribution of YrnJ only is known.

For the remaining parameters due to Pi only sample estimates can be inserted.

By studying the trend in the frequency of fires it may be possible to obtain
- '2- /'

better estimates of '1j ()p an~ LO U (~j ,h' ). However, using

available estimates, the values of Z and --:l- have been calculated and
7Yl cr7Y)2-

given in the last two columns of Table 8. These figures are improvements over

the corresponding values ~ and -5~z.. (Table 8) which are purely sample

estimates.

AVERAGES OF EXTREMES

Consider the observed extremes 2(m)j (H1= 1, o • •• 17) of the ·th year.J

"The expected value
~ of 2frrvj is given by (13) . If

'7
Z '

, .£ 2 (19)--
1'7) J /7 'N1;::.{ (h1)j
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for a year has a probability distribution for differentthe ave rage

values of j
~7/j

Hence over the years, itself has the expected value

(20)

of 2,.,' is given by- (,J /7

- -.L"7--- lJ a.n .£ 2(7Y'I}J'
17 rrvz I

The variance
_2­
o

11/2-

7-
The variance of L(m) j is a:7YI 2- given by

the covariance of two extreme order statistics

(7), is given by

(14). For a given J

2~j and 2(jn)J

(year)

, from

It may be easily verified that

(22)

and theUsing the estimated values of

covariances it was found that

In Appendix 4 it has been proved that if t\'t >e ,with the order counted from

the top, the covariance of lf~j and ~1Y\j is equal to the variance ~
of ~~ tabulated in Appendix 3.

= 3.9904

= 0.1645

and



Hence over the years, the averages of the top 17 losses in the textile

industry were fluctuating around a value of 3.9904 (£54,100) with a

standard error of 0.4056 (£1,500) both at 1947 prices.

There are two unsolved problems concerning an average of large order

statistics. Firstly, we require the confidence limits for the average.

These could be obtained either from the probability distribution of the

average or by using the standard 't' value corrected for skewness and kurtosis

as indicated by Gayen2. Both these methods are being attempted. Secondly,

a test has to be devised for judging the significance of the difference

btween two averages of extremes. This problem would arise when we wish to

compare, say, the textile industry with another industry in terms of the

averages. A solution to this problem is also being attempted.

RETURN PERIOD

In the . 1 the usefulness of the 'return period' wasprevlOus paper

illustrated with reference to the largest value (Y\1.= 1). This concept may be

generalised with some modification. If the mt h large observations follow.

each other in time, if the sample size is constant, and further if the. ,

distance between consecutive mt h large values is approximately constant

(1 year in our case) then the function

-I

": (2mILr) . [i - (fi", (z",/LP)J (25)

expression (25) gives

defined as the 'return period for the mt h large value', gives the average

number of years necessary to obtain an mth value larger than Zmnt .
Now consider the 29 year period from 1947 to 1975. For T = 29

45"lYl~?t~) = ~~ = 0.966. The reduced values

= 1, ..... 17) corresponding to the above cumulative probability,~~ (
obtained via incomplete gamma functions, are given in Table 9. If the sample

size (number of fires) is constant at the value n l of the base year 1947,

then only one of the mt h values will exceed

-
in the course of 29 years from 1947. Since the sample size is increasing this

will actually occur in a period much shorter than 29 years, or more than once

in 29 years. But we are interested in a value of ~~p which will be

- 8 -



(28)

exceeded only once before 1975. This has to be higher than the value given

by (26). The following method of calculation may be adopted.

If it is assumed that the number of fires increases at a rate 'Jr'

per annum the frequency Yli in the jth year is given approximately by

J-I
h-J z: n, {I -i: 11) (27)

where ~I is the number of fires in the base year (1947). Fitting (27) to

the data for the textile industries for the period 1947 to 1967 the value of

lL appears to be 0.038. Since ~l = 465, about 1310 fires are likely to

occur in the textile industries in the year 1975 ( i = 29). From the

straight line (7)

I
2-tvlll.f

since log (Y4-'l/n/) has the value 1.036. The probability of log (hJ/n,)
being less than 1.036 is almost unity. Hence the probability of the observed

loss being less than z!~J1f during the period 1947 to 1975 is 0.966. The

probability of exceeding ~I n~ is 0.034 or one in 29, i.e. once before
r 7Vl T

1976. The values of 2- lVlllf are also given in Table 9.

If we take the mt h loss from top in the textile industries every year

before 1976 and correct for inflation (at 1947 values) only one of them is
I

likely to exceed ~TnJLf given in Table 9. The estimates in Table 9 are

based on the current trend. During the course of the period up to 1970 none
Iof the actual losses exceeded 2..7Vl.nf values, except the 4th and 5th extremes

of 1969. Hence the excesses are likely to happen during the 5 year period

1971 to 1975. If they do not actually happen then it would appear that

improved fire protection and fire fighting methods in textile industry fires

were having an effect. Fire prevention activities would also have played some

part in keeping the number of fires below the levels forecast in (27) thus

reducing the values of log (Yl-i/tl , ) ' On the other hand if more than one

mth loss were to exceed 2- 1Y1~ during 1971 to 1975 then there would be

reason to doubt that fire fighting, fire prevention and fire protection

methods are coping with the situation.

The forecast figures given in Table 9 are for the entire population of

textile industry buildings. By doing further research it would be possible to

- 9 -



I .,. ._~

forecast 2.7'Y1J"Uf' values separately for, say, sprinklered and non-sprlnklereCi

buildings. From such an analysis it would be possible to estimate the'saving

due to sprinklers in extreme (very large) losses. The estimate could be

used as a guidefor assessing the economic value of sprinkler protection in

buildings where such large losses are likely to occur.

THE PARENT DISTRIBUTION

Consider the parame te r a\-'()11j for the mth extreme from a sample of

size Yl, . From (3) and (4)

tZ'lnl'1f f (1r'in t\,)/1- F ({;",n)

tL ( -t-iY\1'vt ) (29) ..

The function h (jA) gives the conditional probability of extinction of the

fire in the interval (u.. J u- +d.u...) given that it has surrived till the value

Ul has bee~ reached. It denotes the ratio of the probability of extinction,

to the probability of survival or spread at the point u... This function is

known as the 'intensity function' in extreme value theorJ, 1 hazard' or

is the value of the intensitY'function of·

the charac teristic large va.Lue -i-m ~ 0

1
that the

'failure rate' in reliability theory and 'force of mortality' in actuarial

statistics. The parameter am n I

the parent distribution r: (2-) at

A constant value of ~i\1 for varying 'h1 is an indication

parent distribution is a simple exponential distribution, Leo

-az.
cte. oJL

-az.
I-e

However, according to Table 8 amTlr decreases for increasing 'h1 or

increases with increasing ~ , indicating an increasing failure rate. The

increasing trend for 'YYt = 14 to 17 is likely to be due to random

fluctuations. In earlier papers 1 ,3 the author discussed the possible

relevance of distributions with an increasing failure rate for describing the

probability distribution of fire loss. If a fire has been burning for a long

time it is likely that fire fighting will have commenced meanwhile. Some

items (e.g. oxygen, fuel) contributing to fire spread may also be getting

exhausted. Given these factors the probability of extinction would increase at

a rate higher than that of the probability of spread so that h.(u.j (oJL h.(2-))
would increase for large values of U (crt 2...) .

- 10 -



. During the period immediately following the ignition of the first

material involved the failure rate is likely to be high. Such a phenomenon

is known·as 'infant mortality' in the analysis of life test data. concerning,

say, electric bulbs. It arises when the failure rate is relatively high in

the early period of life. This phenomenon has also been observed in the

case of a human life. It should be true in the case of fire. A high rate

in the 'infant' stage may be attributed to the presence in the room of

origin of materials which 'fail' to continue to burn after ignition or to

which fire fails to spread. It may be of interest to note in this

connection that in 1967, out of a total number of 982 fires attended by fire
-,

brigades in buildings concerned with textile manu.facture, 524 fires were

confined to exterior components, appliances and cornmon service spaces4•

In the early stages of growth after the infant,stage, a fire has a

greater tendency to. spread s.o...that . ~(lA) . tends to decrease. Thereafter,

after remaining constant for a short period, It (tA) will eventually

increase till the fire become extinct. Of course, a fire cannot burn for

ever. There is no possibility of checking the above assumptions regarding

the infant and early stages of growth since data are not available for small

losses.

Conceptually, therefore, 1t(lA.) is a 'U' shaped curve. If, however, we

disregard the infant mortality and early growth periods, for the remaining

long range of the variable we may assume that fL(~ increases

exponentially· so that

Consider now the year 1967. There were 982 fires (1'1 j ) in textile

• industries in that year against hi (= 465) fires in 1947. Using the

correction formulae

the values of i-Jt~. for 1967 have been calculated and given in Table 10.

These values are logarithms of characteristic values in units of one pound.

A constant value 6.908 (loge 1000) was added to ~/L~, as it was originally

estimated in units of £1,000. Such a change implies only a change of origin

in the straight line (7) without affecting the slope of the line, i.e. 1~
/ C{.77.Yl/
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The estimated values of a"'2. 'Yl, are also reproduced in Table 10. I '

,Using the fact that a"L'Ylvf = h.-. (~1r./l, nJ ' the. exponential function

in (30) was fitted to the data in Table 10. The following results were

obtained.

rI- ::: - 4-' 0 'l2.S"

(3 (). '3 g--39

wi.th,a high correlation (0.9586). As explained earlier the f'uncfzion (30)

could be expected to give reasonably good estimates of the failure rate for

,the major portion of the :range of the fire loss variable z.. excluding small

values. In this connection it has to be mentioned that small claims are

generally d1sallowed by an insurance firm as 'deductibles'; the insu~ed

himself having to bear a certain minimum loss. In 1967 th~ smallest loS's ,in

textile factories, pr'ovd.ded with sprinklers was £65. (For sprinklered

buildings loss figures for fires costing less than £10,000 are aV"ailabfe) •

.Hence it is reasonable to assume a minimum value of £25 (Xo ) or 3.21 9 (~)

for Z. at 1947 values. At 1967 values the minimum loss would be £55.

Acceptance of the values in (31) with 20 = 3.219 provides a few

interesting results. First consider the function

L
'Z- d. T {!>C( J

- e ct'-L

e.-

where ~ (~) is the cumulative distribution function (expression 2,

Appendix 2). The function (32) gives the probabili.ty of exceeding the value Z.

given that the loss is greater than ~ A loss of £10,000 in 1967,
corresponds to a loss of £4,500 at 1947 values. Hence if .:xe is 4,500 with

the corresponding value Ze = 8.4, the probability of loss exceedf.ng Ze.
as given by (32) is 0.385. In 1967 there were 65 large fires costir~

£10,000 or more. Hence in that year there were about 170 fires in textile

industries each costing £55 or more, out of which about 105' were smaller fires

costing less than £10,000 individually. According to the data furnished by

the Fire Pro tection Associa ti.on, there were 59 smaller fires in 1967 in

textile buildings provided with sprinklers. An equal number of smaller fires

in non-sprinklered buildings could have occurred since about'50 per cent of the

textile industry is sprinklered. Also in 1967, out of a total of 982 fires

- 12 -



a~~ended by fire brigades in this industry, only 194 fires spread beyond the "

room of origin4•

The exponential function (30) with the values of the parameters given

by (31) has another practical use. With the aid of this function it is

possible to obtain an approximate estimate of the average loss in smaller

,fires in the range less than £10,qOO. (At present losses in smaller fires

are not available for non-sprinklered buildings). The method of estimation

is"described in detail in Appendix 5. Accordingly the average loss in

smaller fires in 1967 is gi~en by

where r;J..

d,,!

and (3 are given by (31) and
-rJ...

= e - 59.3

= 0.046

O<+f3Ze;-
3e = e /(3 = 10104 (~= 804)

cX+f320/
So = e /(3 = 0.1514 (20 = 3.219)

I
§;; -J; = 1.908

e -e. e
I- ~e :3 'I
J~ e 3 ((3dS

{CO e~ 5 Vf?'d.5

o 1~"5o e 3 3 11pet3 _.
h 0.0001 (negligible) andr e 3 :3 I/~d3
o

r (1 + ~ ) = 3.32 approximately.

Inserting the above values in (33) the estimated value of Ze (for all

buildings) appears to be of the order of £1,000 at 1947 values or about

£2,200 at 1967 values. In 1967 the average loss in smaper fires in

sprinklered buildings engaged in the textile trade was about £!,600. Hence

in non-sprinklered buildings the average loss was about £2,800 indicating a

saving of about £1 ,200 per fire due to sprinklers in the range considered.

Following the method described in Appendix '5 the standard deviation is about

£1,100 at 1947 values or about £2,400 at 1967 vaLuas ;

- 13 -



Wit.h an average loss of £2,200 the total loss in about 105 fires in

the range £55 to £10,000 appears to be of the order of £231,000 with a

standard error of about £24,000 (Appendix 5). Besides these there were about

812 smaller fires attended by fire brigades most of which were likely to

have been cqnfined to the room of origin, with an average loss of, say, £50.

Also it was likely that a number of small fires extinguished by sprinklers

and other means were neither attended by the fire brigades, nor reported to

the organisation. The total losses in all these fires would have been only

marginal. Adding all the above losses it is extremely unlikely that the total

loss in all smaller fires in the textile industries in 1967 was more than

£300,000.

DISCUSSION

As in other fields, a major task in fire protection economics is to

evaluate the expected extent of damage in a given building or group of

buildings. For this purpose it is necessary to find an expression defining

the probability distribution of fire loss i.n the given risk. Estimation of

the parametric values of this distribution would be reasonably easy if loss

.. figures were available for the entire range. But at present, for a majcrity

of fires, figures are available only for fires costing £10,000 or more.

Hence the precise structure of the parent probability distribution of

fi.re loss is not known, though the logarithm of loss appears to belong to an

exponential family. Available observations are located at the upper tail of

this distribution. Therefore the treatment of the loss data has to rely on

the techniques of extreme value theory. An application of this theory ha.s

been illustrated in this paper with the aid of data on the top 17 losses each

year in the textile industry during the period 1947 to 1967. A few practical

results have been obtained. Problems for further research have also be,sn

indicated.

The pe,rts played by mean, standard deviation and standardi.sed or reduce.d
. bl ( " variable-mean )" 1 teal th t k . b Ivar-aa e r , e , t d rd d "t" an c aseac eory are a en up y ~h1

13. an a ev~a ~on

a"l"Y\ and Ij TY1 respectively in the theory concerning the mth extreme. In

repeated sampling over, say, years, unlike normal theory, the expected value of

':JTY1 is not zero and its variance not unity. The moments of the error ':}.,.,.,

depend upon the rank h1 from top. For different 'l'">'] in the same sample

(year) the errors are not independent and hence have covariances. The errors

are not normally distributed but tend to normality as m increases, Le. as

the centre of the parent distribution is approached. Considered individually

- 14 -



The above mentioned method could also be used to estimate the expected

the extremes are not difficult to handle. But complications arise when they

are to be used as a collection of extreme order statistics.

But extremes are useful. Their economic importance lies in the fact

that more than 50 per cent of the total loss is in large fires. By studying

their extreme value distributions over a period of years it i.s possi.ble to

get some idea of the parent distribution from which they arise. As seen in

this paper the extreme value parameters ~n. are the values of the intensity

function h-(IA} at the characteristic large values ,gmYl While tZ1'Y)Jt

could be assumed to be a constant (as a first approximation), -0-7yH1. increases

with years. The unknown location parameter of the'parent distribtltion'is

linked with the values of )ymn. for varying 'h1; hence,this parameter also

increases over time due to inflatio:a and the increasing number of fires. Such

ideas of shifts in the parametric values denoting the changing trend in the

parent distribution were expressed in a recent conference of the International

Reinsurance Offices' Association5.

The parameters am n and l,mn together describe the shape of the

intensi ty curve h-(tA) and hence, with sufficient accuracy, the parent

distribution in the region of the extremes considered. Pro ject.i.on of this

curve below the smallest extreme (largest'h1 ) considered is difficult. At

till.s stage only conjectures are possible since data are not available for

smaller Losaee ,

Conceptually h. (tA) will be roughly 'U' shaped due to infant mortality

and decreasi.ng failure rate for small values of u... and increasing failure

rate for large values. Hcwever, ignoring the infant and early stages which are

: not of economic importance, h-Ct.\) wi.11 be an increasing function. Under this

assumption and with the aid of the estimated values of the extreme value

parameters, a method for estimating the expected loss in smaller fires has been

described in detail in this paper, and applied to 1967 lesses for purposes of

illustration.

c I
loss in a given blJilding in the textile industry with a given monetary value '1).

at risk. Using expression (17), Appendix 5 the follqwing results were obtained

. for a few magnitudes of 'It- for the year 1967.
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Value at risk ('17) Expected loss (FL· )
Expected

loss ratio
1947 values .1967 values 1947 values 1967 values

(~J(£) (£) (£) (£) ~

1,000 2,200 320 700 0.320

5.000 11,000 1,100 2,420 0.220

10,000 22,000 1,830 4,030 0.183

50,000 ,.110,000 5,480 12,060 0.110

100"000 220,000 7,840 17,250 0.078- ,
500,000 1,100,000 12,270 26,990 0.02.5

l,OOO,OOO .2,2QO,000 12,920 28,420 00013

From the above table it appears that the expected loss does not increase

linearly with V-. The propor-td.onate damage (loss ratio) decreases perhaps

exponentially, with increasing value at risk. As expressed in an earlier note
6,

this apparent paradox may be due to the fact t.hat a fire Ln a Lar-ge bu:Uding is

more likely than one in a single room or a small bui.Ldi.ng to be discovered and

extinguished before involving .the whole building. The proportion destroyed in

a small build.ing would therefore be expected to be greater than the

proportion destroyed in a large building.

As explained in Appendix 5 the etandard error of the total loss in fires

in a group of independent bu.ildings is equal to the standard deviation of the

individual loss for the group multiplied by In where n.- is the number of

fires in the group and period considered. The greater the value of 'Yt the

better will be the prediction for the total loss. That is to S!iY that the

estimated value of the total loss for a large group will have a small

coefficient of variation and hence be more reliable than the estimated total

loss for a smaller group with a larger coefficient of variation. The number of

fires in a group depends upon the number of buildings in the group. It is not

claimed that studies of this nature could help an insurance firm to. decide the

number of policies it could accept from a particular range of values at risk or

sums assured. The studies, as such, are also not likely to be useful for

tackling reinsurance problems. However, it should be mentioned that attempts

to apply extreme value theory for reinsurance strategies have been made by

Beard7, Hooge8 and Ju:ng9.

The method of estimating the expected loss and standard error for a given

range described in this paper may require refinement in the light of further

- 16 -



research, and the availability of additional information. Confidence limits

are needed for the expected loss. At any rate extreme value theory appears

to have practical applications in the field of fire loss.

CONCLUSIONS

Extreme value· distributions of exponential type parents fitted well with

the top 17 observed fire losses in the textile industry during the period

from·1947 to 1967. A high correlation between observed and theoretical values

.was obtained for each extreme. This strengthens the assumption that the

parent probability distribution of fire loss belongs to the exponential

family if the logarithm of loss is considered as the operational variable

after applying the necessary correction for inflation•

. In the textile industry the top 17 losses over a period of years had an

expected value of 3.9904 (£54,100) with a standard error of 0.4056 (£1,500)

both at 1947 prices. In the calculation of these estimates the non-normality

of the extremes and the dependence between them have been taken into

consideration.

The frequency of fires in the textile industry increases at a rate of

3.8 per cent per annum. About 1,310 fires are likely to occur in this industry

in 1975.

A 'return period' analysis yielded certain forecast values (Table 9) a.t

.1947 prices for the top 17 extremes. If we take the mt h losses from top

that actually occur in the textile industry every year before 1976 and correct

them for inflation (to 1947 values) only one is likely to exceed the

corresponding forecast value. The forecast figures are based on the current

trend; only drastic changes in fire fighting and fire protection methods cr

the industrial processes would be likely to alter this picture for better or

worse.

A 'U' shaped model for the intensity function of the parent probability

distribution of fire loss appears to be physically relevant. This function

appears to increase exponentially in the range excluding the infant and early

stages of fire growth.

With the aid of the estimated values of the parameters of the extreme

value distributions it is possible to estimate the values of two parameters

describing the parent distribution. These results indicate that, in 1967,

there were about 170 fires in the textile industries each costing £55 or more

of which about 105 were smaller fires costing less than £10,000 individually.

- 17 -



A method for estimating the expected loss in smaller fires has been

described in this paper. Following this method it appears that, in 1967, at

1967 values, the average loss in the textile industry in the range £55 to

£10,000 was about £2,200. In the same year and industry and for the same

range the known average loss in sprinkler~d buildings was £1,600. These

figures gave an average loss of about £2,800 in non-sprinklered buildings

indicating an average saving of about £1 ,200 per fire due to sprinklers in

the given range of smaller losses.

It appears that, in 1967, the total loss in all smaller fires in the

textile industries was' not more than £300,000. In the same year and industry,

65 large fires each costing £10,000 or,more caused'a totalloss,of,£4'~55'million.

Thus large fires, appear to have accounted for nearly 94 ,per cent of the total

loss in the industry.

The expected losses due to fire have been estimated for a few values at

risk in buildings engaged in the textile trade. It appears that the

proportionate damage (loss ratiO) decreases with increasing value at risk.'

,For a given or acceptable level of the coefficient of variation of the

total loss for a group of buildings it is possible to determine the

corresponding number of fires (and buildings) for a particular range of value

at risk. These studies, as such, are not likely to heLpnan insurance firm to

decide the maximum number of policies it could accept from a particular range

of sums assured. It is also not claimed at this stage that the studies would

be useful for tackling reinsurance problems.
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APPENDIX 1

Table 1

. (£'060)

. Fire -hrssw in- tJ:e ··textHe-industry-
.. - .~ .... ~.

-
Extremes 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967

1 460 350 210 350 550 1000 460 150 320 250 400 340 570 269 310 532 493 392 1912 445 1033
2 270 200 150 300 350 450 320 150 230 180 350 200 363 140 200 250 450 325 1002 400 300r

3 198 191 140 173 130 250 285 90 200 150 125 200 250 110 175 165 450 300 635 309 290
4 190 143 135 115 75 .150 275 75 190 145 100 150 241 80 142 155 286 290 502 275 286
5 135 105 120 110 70 125 176 65 160 125 80 140 200 55 100 110 175 245 445 257 280
6 75 100 100 100 70 90 150 50 110 100 75 120 188 50 97 110 167 225 370 230 268
7 45 100 86 100 65 80 86 25 100 90 45 112 170 50 92 82 165 191 290 205 203
8 30 65 60 80 56 65 85 20 100 . 90 35 110 120 48 79 77 126 180 275 172 192
9 27 46 55 75 50 60 80 20 100 75 32 75 100 45 75 72 126 170 200 143 114.,

10 20 32 35 75 50 60 60 15 100 75 30 72 80 44 52 65 115 151 200 142 112
11 17 31 25 74 49 59 58 11 80 74 29 69 75 40 50 64 90 144 199 110 109

" ..
12 15 22 24 65 40 50 50 10 70 60 25 53 71 34 46 63 64 129 185 108 95
13 14 18 21 60 35 40 49 go- 50 50 24 50 60 31 35 60 60 120 180 100 90""J.

14 13 16 20 59 34 35 45 9" 49 49 .t20., 49 55 28 33 45 52 ·..j,88 120 90 85
15 13 13 19 50 30 30 45 9" 49 42 20 46 46 28 30 45 50 87 105 77 85
16 11 11 15 40 25 28 40 9" 45 40 20 44 43 25 23 44 50 81 82 75 82
17 10 10 15 36 25 28 35 go- 40 35 20 43 38 25 22 40 40 67 71 75 75

I
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Table 2.

Fire losses corrected for inflation (1947 values)
(£'000)

Extremes 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967

1 460 324 189 307 440 735 329 105 215 160 247 204 339 159 177 291 265 204 951 212 470
2 270 185 135 263 280 331 229 105 154 115 216 120 216 83 114 137 242 169 499 190 136
3 198 177 126 152 104 184 204 63 134 96 77 120 149 65 100 90 242 156 316 147 132
'4 190 132 122 101 60 110 196 52 128 93 62 90 143 47 81 85 154 151 250 131 130
5 135 97 108 96 56 92 126 45 107 80 49 84 119 33 57 60 94 128 221 122 127
6 75 93 90 88 56 66 107 35 74 64 46 72 112 30 55 60 90 117 184 110 122
7 45 93 77 88 52 59 61 17' 67 58 28 67 101 30 53 45 89 99 144 98 92
8 ·30 60 54 70 45 48 61 14 67 58 22 66 71 28 45 42 68 94 137 82 87
9 27 43 50 66 40 44 57 14 67 48 20 45 60 27 43 39 68 89 100 68 52

10 20 30 32 66 40 44 43 10 67 48 19 43 48 26 30 36 62 79 100 68 51
11 17 29 23 65 39 43 41 8 54 47 18 41 45 24 29 35 48 75 99 52 51
12 15 20 22 57 32 37 36 7 41 38 15 32 42 20 26 34 34 67 92 51 43
13 14 17 19 53 28 29 35 6 34 32 15 30 36 18 20 33 32 63 90 48 41
14 13' 15 18 52 27 26 32 6 33 31 12 30 33 17 19 25 28 46 60 43 39
15 .. 13 12 17 44 24 22 32 6 33 27 12 28 27 17 17 25 27 45 52 37 39
16 11 10 14 35 20 20 29 6 30 26 12 26 26 15 13 24 27 42 41 36 37
17 10 9 14 32 20 20 25 6 27 22 12 26 23 15 13· 22 22 35 35 36 34
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Table 3

Logarithms of extremes

Extremes 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957

1 6.131 5.781 5.242 5.727 6.087 6.600 5.796 4.654 5.371 5.075 5.509
2 5.598 5.220 4.905 5.572 5.635 5.802 5.434 4.654 5.037 4.745 5.380
3 5.288 5.176 4.836 5.024 4.644 5.215 5.318 4.143 4.898 4.564 4.344
4 5.247 4.883 4.804 4.615 4.094 4.700 5.278 3.951 4.852 4.533 4.127

5 4.905 4.575 4.682 4.564 4.025 4.522 4.836 3.807 4.673 4.382 3.892
6 4.317 4.533 4.500 4.477 4.025 4.190 4.673 3.555 4.304 .4. 159 3.829
7 3.807 4.533 4.344 4.477 3.951 4.078 4.111 2.833 4.205 4.060 3.332
8 3.401 4.094 3.989 4.249 3.829 3.871 4.111 2.639 4.205 4.060 3.091

9 3.332 3.761 3.912 4.190 3.689 3.784 4.043 2.639 4.205 3.871 2.996
10 2.996 3.434 3.466 4.190 3.689 3.807 3.761 2.303 4.205 3.871 2.944
11 2.833 3.401 3.135 4.174 3.664 3.761 3.738 2.079 3.989 3.850 2.890
12 2.708 2.996 3.091 4.043 3.497 3.611 3.584 1.946 3.850 3.638 2.773
13 2.639 2.833 2.944 3.970 3.332 3.367 3.555 1.792 3.526 3.466 2.708
14 2.565 2.708 2.890 3.951 3,296 3.258 3.466 1.:J92 3.497 3.434 2.485.

15 2.565 2.485 2.833 3.784 3.178 3.091 3.466 1.792 3.497 3.296 2.485
16 2.398 2.303 2.639 3.555 2.996 2.996 3.367 1.792 3.401 3.258 2.485

17 2.303 2.197 2.639 3.466 2.996 3.045 3.219 1.792 3.296 3.091 2.485

.Cont'd ........
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Table 3 (cont'd)

Extremes 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967

1 5.318 5.826 5.069 5.176 5.673 5.580 5.323 6.858 5.357 6.153
2 4.788 5.375 4.419 4.736 4.920 5.489 5.130 6.213 5.247 4.913

3 4.788 5.004 4.174 4.605 4.500 5.489 5.050 5.756 4.990 4.883

4 4.500 4.963 3.850 4.394 4.443 5.037 5.017 5.521 4.875 4.868

5 4.431 4.779 3.497 4.043 4.094 4.543 4.852 5.398 4.804 4.844
6 4.277 4.719 3.401 4.007 4.094 4.511 4.762 5.215 4.700 4.804

7 4.220 4.615 3.401 3.970 3.829 4.489 4.595 4.970 4.585 4.522

8 4.190 4.263 3.332 3.807 3.738 4.220 4.543 4.920 4.407 4.466

9 3.807 4.094 3.296 3.738 3.664 4.220 4.489 .4 .605 4.234 3.951

10 3.784 3.892 3.258 3.401 3.584 4.127 4,382 4.605 4.220 3.932
11 3.714 3.807 3.178 3.367 3.555 3.871 4.317 4.595 3.951 3.932

12 3.466 3.738 3.045 3.258 3.555 3.526 4.205 4.522 3.951 3.761

13 3.401 3.584 2.890 2.996 3.497 3.434 4.143 4.;500 3.871 3.714
14 3.401 3.526 2.833 2.944 3.219 3.·332 30829 4.094 3.761 3.664

15 3.332 3.296 2.833 2.833 3.219 3.296 3.807 3.951 3.611 3.664

16 3.258 3.258 2.708 2.565 3.178 3.296 3.738 3.714 3.584 3.611

17 3.258 3.135 2.708 2.565 3.091 3.091 3.555 3.555 3.584 3.526



Table 4

Ranks of extremes

Ext2'emes 1947 1948 1949 :1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 .1960 19.61 1962 1963 1964 1965 1966 19§'l

1 18 14 5 13 17 20 15 1 9 3 10 6 16 2 4 12 11 7 21 8 ,,19

2 18 11 6 1<7 19 20 15 2 9 4 14 5 13 1 3 8 16 10 21 12 7

3 18 16 9 '14 '[ 17 19 1 11 5 3 8 13 2 6 4 20 15 21 12 10

4 19 1f- 1,r' 9 3 10 20 2 12 8 4 7 16 1 5 6 18 17 21 . '1-t',¢J 13

5 20 I 12 14 11 4 9 17 2 13 7 3 8 15 1 5 6 10 19 21 16 18

6 11 15 1.3 12 5 8 16 2 10 7 3 9 18 1 4 6 14 19 21 17 20

7 4 17 13 14 6 9 10 1 11 8 2 12 20 3 7 5 15 19 21 18 16

8 4 11 9 16 '[ 8 12 1 14 10 2 13 17 3 6 5 15 20 21 18 19

9 , 4 8 12 16 6 9 14 1 17 11 2 10 15 3 7 5 18 20 21 19 13..
10 3 6 7 17 9 12 10 1 18 13 2 11 14 4 5 8 16 20 21 19 15.
11 2 7 4 19 9 12 11 1 18 14 3 10 13 5 -6 '8' '15 20 21 1'7 -16-

12 2 4 6 19 9 13 12 1 17 14 -3 8 15 5 7 ,11 10 20 21 1.8 16

1-3 2 4 6 19 8 9 15 1 14 12 3 10 ·16 5 7 13 11 20 21 18 17

14 3 4 6 20 10 9 14- 1 15 13 2 12 16 5 7 18 11 19 21 18 17

15 4 3 7 1.9 9 8 15 1 16 11 2 14 13 5 6 10 12 20 21 17 18

16 3 2 6 17 9 8 15 ' 1 16 11 4 13 12 7 5 10 14 21 20 18 19....

17 3 2 6 17 8· 9 14 1. 16 10 . 4 15 13 7 5 1 t&.· 20 19 21 18

I
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Table 5

Reduced extremes (Y?Y1j) - uncorrected

Rank Cumulative .Extremes (m)
freCJ.uency

(J ) ( j/N+f) 1 2 3 4 5 6 7 8 9

1 0.0455 -1.125 -0.884 -0.760 -0.681 -0.619 -0.574 -0.538 -0.509 -0.483
2 0.0909 -0.874 -0.695 -0.598 -0.537 -0.489 -0.454 -0.426 -0.402 -0.383
3 0.1364 -0.691 -0.559 -0.4~5 -0.438 -0.398 -0.370 -0.347 -0.329 -0.312
4 0.1818 -0.533 -0.445 -0.389 -0.351 -0.324 -0.300 -0.283 -0.267 -0.254
5 0.22.73 -0.394 -0.345 ~0.3C17 -0.281 -0.256 -0.241 -0.227 -0.216 -0.205
6 0.2727 -0.261 -0.253 -0.229 -0.213 -0.197 -0.185 -0.175 -0.167 -0.160
7 0.3182 -0:n6 -0.165 -0.158 -0.152 -0.143 -0.135 -0.129 -0.123 -0.118
8 0.3636 -0,011 -0.078 -0.087 -0.091 -0.089 -0.085 -0.082 -0.080 -0.078
9 0.4091 0.112 0.006 -0.020 -0.031 -0.036 -0.038 -0.039 -0.039 -0.039

10 0.4545 0.239 0.092 0.047 0.028 0.016 0.010 0.005 0.002 -0.001
11 0.5000 0.367 0.177 0.115 0.086 ' 0.068 0.057 0.048 0.042 0.037
12 0.5455 0.502 0.244 0.185 0.146 0,122 0.105 0.094 0.084 0.077
13 0.5909 0.643 0.356 0.258 0.207 0.176 0.154 0.138 0.126 0.116
14 0.6364 0.793 0.451 0.333 0.271 0:233 0.205 0.185 0.170 0.157
15 0.6818 0.960 0.556 0.415 0.340 0.294 0.260 0.236 0.217 0.2q2

16 0.7273 1.143 0.669 0.503 0.415 0.360 0.318 0.290 0.267 0.~49

17 0.7727 1.357 0.799 0.603 0.500 0.434 0.385 0.351 0.324 0.302
18 0.8182 1.605 0.962 0.716 0.594 0.518 0.461 0.419 0.387 0.359
19 0.8636 1.923 1.132 0.859 0.708 0.619 0.553 0.503 0.470 0.433
20 0.9091 2.350 1.372 1.043 0.863 0.756 0.668 0.610 0.564 0.523
21 0.9545 3.078 1.774 1.334 1.102 0.972 0.856 0.781 0.715 0.671

Cont'd
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Table 5 (cont'd)

Rank Cumulative Extremes (m.)
frequency

(j ) ( S/1I!+t) 10 11 12 13 14 15 . 16 17
. ,

1 0.0455 -0.462 -0.437 -0.428 -0.412 ~.399 ,...D. 387 -0.377 -0.367

2 0.0909 -0.365 -0.351 -0.338 -0.327 -0.316 -0.307 -0.297 -0.290

3 0.1364 -0.299 -0.288 -0.277 -0.268 -0.259 -0.251 -0.243 -0.238

4 0.1818 -0.244 -0.234 -0.226 -0.218 -0.212 -0.206 ·-0.201 -0.195

5 0.2273 -0.197 -0.190 -0.183 -0.177 -0.172 -0.167 -0.163 -0.158

6 0.2727 -0.153 -0.150 -0.144 -0.139 -0.135 -0.131 -0.128 -0.127

7 0.3182 -0.114 -0.111 -0.108 -0.194 -0.101 -0.099 -0.097- -0.094

8 0.3636 -0.076 -0.074 -0.072 -0.070 -0.072 -0.067 -0.066 -0.064

9 0.4091 -0.039 -0.039 -0.039 -0.038 -0.038 -0.037 -0.037 -0.036

10 0.4545 -0.002 -0.004 -0.005 -0.006 -0.006 -0.007 -0.007 -0.008

11 0.5000 0.033 0.030 0.028 0.026 0.024 0.022 0.021 0.020

12 0.5455 0.071 0.066 0.062 0.058 0.055 0.053 0.051 0.048

13 0.5909 0.108 0.102 0.096 0.091 0.087 0.083 0.080 0.077

14 0.6364 0.148 0.139 0.131 0.125 0.120 0.114 0.110 0.106

15 0.6818 0.190 0.179 0.169 0.161 0.154 0.148 0.143. 0.138

16 0.7273 0.233 0.221 0.209 0.200 0.191 0.184 0.177 0.1 '71

17 0.7727 0.283 0.269 0.255 0.244 0.233 0.225 0.216 0.209

18 0.8182 0.339 0.321 0.305 0.289 0.280 0.268 0.259 0.250

19 0.8636 0.407 0.386 0.367 0.350 0.336 0.323 0.312 0.302

20 0.9091 0.494 0.468 0.445 0.426 0.407 0.391 0.378 0.368

21 0.9545 0.626 0.598 0.568 0.541 0.520 0.501 0.482 0.465
.
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Table 6

Correction due to fire frequency

Serial No. Year Number of fires Correction
(f) (l1t) log (Yl-j11:'1 )

1 1947 465 0.000

2 1948 478 0.028

3 1949 512 0.097

4 1950 574 0.211 .

5 1951 728 0.449.
6 1952 568 0.201

7 1953 725 0.445 .

8 1954 662 0.354

9 1955 740 0.465

10 1956 716 0.432

11 1957 645 0.328

12 1958 560 0.186

13 1959 872 0.629

14 1960 760 0.492

15 1961 696 0.404

16 1962 724 0.443

1963
.

790 0.53017

18 1964 998 0.764

19 1965 964 0.730

20 1966 1050 0.815

21 1967 982 0.748
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Table 7

Reduced extremes - corrected

Extr.emes 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957

1 1.605 0.821 -0.297 0.854 1.806 2.551 1.405 -0.771 0.577 -0.259 0.567

2 0.962 0.205 -0.156 1.010 1.581 1.573 1 .001 -0.341 0.471 . -0.013 1.080

3 0.716 0.531 0.077 0.544 0.291 0.804 1.304 -0.406 0.580 0.125 -0.157

4 0.708 0.368 0.183 0.180 0.011 0.229 1.308 -0.183 0;611 0.341 -0.023

5 0.756 0.150 0.330 0.279 0.125 0.165 0.879 -0.135 0.641 0.289 -0.070
6· 0.057 0.288 0.251 0.316 0.208 0.116 0.763 -0.100 0.475 0.297 -0.042

-7 -0.283 0,379 0.235 0.396 0.274 0.162 0.450 -0.184- 0.234 0.350 -0.098

8 -0.267 0.070 0.058 0.478 0.326 0.121 0.529 -0.155 0.635 0.434 -0.074

9 -0.254 -0.050 0.174 0.460 0 ..289 0.162 0.602 -0.129 0.767 0.469 -0.055

10 -0.299 0.251 -0.017 0.494 0.410 0.272 0.443 -0.108 . 0.804 . 0.540 -0.037

11 -0.351 -0.083 -0.137 0.597 0.410 0.267 0.216 -0.083 0.186 0.571 0.040

12 -0.338 -0.198 -0.047 0.578 0.147 0.297 0.507 -0.074 0.720 0.563 0.051

13 -0.327 -0.190 -0.042 0.561 0.379 0.163 0.606 -0.058 0.590 0.490 0.060

14 -0.259 -0.184- -0.038 0.618 0.443 0.163 0.565 -0.045 0.619 0.519 0.012

15 -0.206 -0.223 0.305 0.534 0.412 0.134 0.593 -0.033 0.649 0.552 0.021

16 -0.243 -0.269 -0.031 0.427 0.164 0.383 0.588 -0.023 0.642 0.453 0.127

17 -0.238 -0.262 -0.030 0.420 0.385 0.165 0.551 -0.013· . 0.636 0.424 0.133
,
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Table 7 (Cont'd)

Reduced extremes - corrected

..

Extreme 1958 1959 1960 1961 1962 1993 1964 1965 1966 1967

1 0.503 1.772 -0.382 -0.129 0.945 0.897 0.050 3.808 0.804 2.671

2 -0.159 0.684 -0.392 -0.155 0.365 1 .199 0.856 2.504 1.059 0.583

3 0.099 0.887 -0.106 0.175 0.054 1.573 1 .179 2.064 1.000 0.795

4 0.034 1 .044 -0.189 0.123 0.230 1 .124 1 .264 1.832 1.086 0.955

5 0.097 0.923 -0.127 0.148 0.246 0.546 1.383 1.702 1 .175 1 .266

6 0.148 1.090 -0.082 0.104 0.258 0.735 '1.3.17 1.586 1.200 1.416

7 0.559 1.239 0.145 0.275 0.216 0.766 1.267 1 .511 1 .234 1.038

8 0.312 0.953 0.163 0.237 0.227 0.747 1.328 1.445 1.202 1 .218

9 0.185 0.831 0.180 0.286 0.238 0.889 1.287 1 .401 1.248 0.864

10 0.219 0.777 0.248 -0.169 0.367 0.763 1.258 1 .356 1 .222 0.938

11 0.441 0.731 0.302 0.254 0.369 0.709 1.232 1 .328 1.084 0.969

12 0.377 0.798 0.309 0.296 0.558 0.438 1.209 1.298 1 .120 0.957

13 0.180 0.829 0.315 0.300 0.534· 0.556 1.190 1 .271 1 .104 0.992

14 0.241 0.820 0.320 0.303 1 .095 0.554 1 .100 1 .250 1.095 0.981

15 0.300 0.515 -0.070 0.361 0.436 .0.682 1 .155 1 .231 1.040 1 .016

16 0.709 .0.237 0.395 0.241 0.436 0.640 1.246 1 .108 1.074 1 .060

17 0.324 0.706 0.398 0.246 -0.013 0.578 1 .132 1.032 1.280 0.998
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Table 8

Results

Extreme -1:r.,., n- .
-, .'l- ' . _.. , -z- -/ '2-- A '2-

("M) ~n-, 2 m -5'n1 z, lj'I'VI -S1Y1,~ ~7rt ~7YJ'J / 2'h? to-n2- .ru;
I

1 2.247 5.214 5.634 0.278 0.526 1.203 0.943 1.300 5.656 0.345 0.961

2 1.785 4.829 5.201 0.193 0.246 0.489 0.663 0.543 5.214 0.221 0.945

3 1.626 4.534 4.890 0.174 0.161 0.305 0.578 0.383 4.899 0.179 0.912
4, 1.460 4.327 4.693 0.196 0.118 0.221 0.535 0.324 4.702 0.181 0.880

5 1 .387 4.113 4.483 0.202 0.096 0.175 0.513 0.282 4.488 0.171 0.853
6 1.424 3.988 4.336 0.187 0.079 0.142 0.496 0.280 4.341 0.157 0.857

7 1.239 3.749 4.145 . 0.255 0.067 0.121 0.484 0.255 4.145 0.188 0.807

8 1.163 3.564 3.975 0.271 0.059 0.105 0.476 0.253 3.977 0.208 0.830

9 1.212 3.448 3.859 0.224 0.052 0.093 0.469 0.230 3.839 0.174 0.837

10 1.034 3.259 3.728 0.291 0.047' 0.083 0.464 0;226 3.711 0.232 0.853
11 0.973 3.137 3.610 0.318 0.043 0.075 0.460 0.211 3.613 0.244 0.838

12 0.925 2.972 3.465 0.328 0.039 0.069 0.456 0.206 ' 3.468. 0.262 .0.857

13 0.886 2.832 3.341 . 0.351 0.036 0.064 0.453 0.201 3.347 0.277 0.853

14 0.924 2.749 3.235 0.304 0.033 0.059 0.450 0.187 3.239 0.236 0.847

15 0.937 2.680 3.158 0.283 0.031 0.055, 0.448 .. 0.182 3.16.1 0.223 0.856

16 0.950 2.583 3.052 0.282 0.029 0.052 0.446 0.186 3.055 0.221 0.857

17 1.002 2.537 2.981 0.247 0.027 0.049 0.444 0.180 2.983 0.191 0.851
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Table 10

Characteristic large values for 1967
(At 1947 values)

Extreme Characteristic
lar~ values tl/l-'YVr(Jl) ( ;!l..1l<')

1 12·.455 2.247

2 12.1 56 1.785

3 11 .902 1.626

4 11.747 1 .460

5 11 .560 1.387

": 6 11 .421 1.424.
7 11 .261 1 .239

8 11.115 1 .163

9 10.973 1.212

10 10.890 1.034

11 10.814 0.973

12 10.689 0.925

13 10.584 0.886

14 10.467 0.924

15 10.386 0.937

16 10.278 0.950

17 10.192 1.002
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THE 'FAILURE RATE FUNCTION

APPENDIX 2

CORRECTION FOR VARIATION IN SAMPLE SIZE

INTRODUCTION

Extreme value theory is concerned with the distributions of extreme order

atatistics in repeated samples from a given parent distribution. The classical

theory assumes that the sample sizes are maintained at a constant value. This

is to ensure that the parametric values of the distributions of 'extremes remain

constant during the process of sampling. However, there may be practical'

situations where the sizes of the samples vary considerably. In the case of

fire losses, for example, the frequency of fires in a year increases significantly

over a period of time. In such cases the classical theory needs to be modified.

This aspect of the problem is examined in the succeeding sections.
<,

By definition

F (Z)

where F(2-) is the parent distribution function and -t.ll:n.. the characteristic ;zf'"
large value from top in samples of size Vl from F{'Z-). Also by definition

.n.;«.
-e. 0

where k.ClA.) is the failure ratetfunction. From

H (~Yv ) = /Lk(u)d4-
o

~:J (""In)
Also according to fundamental results, if? is the observed

'?LtV'
in the j sample of size Vt, we have J .

It..
/l- large value

F(~lIVj )
-iZ (ZIl.VV - .t/lVV)I n. lll-t- J (4)--e..-n

where

Cl/Uv - ~ (~/i-lV) (5)



Approximations (1) and (4) which are true for exponential type distributions

have been obtained under the assumption that L'Hopital's rule is applicable for

large values of 2. According to .this rule the critical quotient 6«(2.) given by

(6)

GlCz.-) tends to unity for large 20 For large "Z. the density of probability

fcz-J becomes very small and the same holds for the probability i I- F(":2-)]
of a value exceeding 2. If the variate is unlimited the derivative f I (z-) .
also converges towards zero. From (6) we m~y write

-t-(2-) - ~ -12- I(Z-J/f{z-} (7)
t - F(~)

is the derivative of f(2-) and -f(2..) the derivative of fl- F(2-)}

~ (2-) .:::.

In (7) ~ f(~

By taking further derivatives we may extend (7) to write that, for large Z~

('Ir? _{'hilvCz-J ~-~ ~ ~'-:1
-f(?-J f I (2)

We have, from (7),

(8)

+'~)

1- Fez;

+ 6!;~7-J2-)
+ (IvC2Jt}

Z .......:;. Q::;I In the same way

--

But from (18),

+'~) r>;:

Hence h. ((2-) tends to zero for
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f" h I
-'T,-----<?-:_-} tv (z)
f(7-)

/If ,/
The above expression for tv (Z) tends to zero since nv (Z) does so and

from (8)

f 1/ (z'J

f~)

In the same way it can be shown that all the derivatives of t (2) tend to

zero for large ~ The asymptotic distribution of extreme values for the

exponential family has also been derived under the condition that

-. [ 1z ( '+~:;))J

~aO fz- ( fv~7-)) 0

The above mentioned property of. the derivatives of h-(z} is implied in the

asymptotic probability of ~~ given by (4) with the density function given

by expression (1) in the text.

Hence the failure rate function of the parent distribution could be

regarded as a constant in the vicinity of any characteristic large value -t-.Jth­
provided J"1.. is small compared with large h.- and"2-. Small deviations in the

value of z, around ~"L- do not appear to produce any significant changes in

the value of a./L"n-. However, for /L.. = 1,2,,---··the sequence C/./2.n may assume

any pattern depending upon the parent since the characteristic large values

need not be sufficiently close to each other. _In£:-the case of a parent of

simple exponential form (ie with density ~ e. tt where t- is a constant) the

failure rate~n is equal, to the constant tt for all/l..--.
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Let JA-1Vj
sizel1rj from

MODIFIED MODEL
~

be the characteristic. .f1, large value from top in samples of

F(Z-) • In the neighbourhood of .-tr-'LYl- we have

H(-6-~vvj) - H(f,-/t~)
I ! '2-- tffl )

:: (§/t7'vj --t--'1.~) H (~/l.y.) +l~)l.,j --t/l)}) I-f (l'/'t~ + ... --~-' '- .
~ '2.- f II

-=- (f/t YVj - -t-.J2,'~~) h.- C~/L0 +(6-/try,j -.-t...-'l-"Y\') h, ~/l~) + . r - ~ ..

.:z-

From (3), the left hand side of the above equation is equal to log l'h,i;lrv~
It has also been proved in the previous section that the derivatives of ~(~)

are of negligible magnitudes in the vicinity of ~/l~ Hence

(9)

In an investigation to be undertaken separately it is hoped to evaluate by

numerical methods the errors in adopting the first approximation given by (9)

for different distributions of exponential type.

We have,

where '::J is the reduced value.

+- :}A..n-j
«; lVj

Hence using (9)

(10)

since CUL~ "is equal to the constant value C0l:l1..- for values of .-6-..J2.wJ in the

neighbourhood of h.A :n.,,- The random variable 'JAft./j is independent of the sample

size 'YVJ' provided it is large. Its value corresponding to 2.12.."'::}' may be obtained

by treating yt... as constant for the samples.
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APPENDIX 3

POPULATION VALUES OF REDUCED EXTREMES

The reduced i t h large order statistic from top is

parent

6li (t) of

lj~ x: o( (;;('L' - U L)

where'xc: is the observed i th large order statistic, u. the characteristic i th
J..

extreme and oiL the value at ui of the intensity function of the

. distribution. It is known that the moment generating function

Yi is given by

c,. (t-)
L

1J is Euler's constant andwhere

5k = i, (I~*) aMd.

with sIR"~ ~ () Using Bernoulli numbers the approximate value of S2 is

1.6449. From (3) and (4) we have

-
and

Z-
0;: = variance of yi

=1.6449

With the aid of the expression (5), the expected value and variance of the

top 40 large order statistics have been obtained and tabulated below
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Extremes (Yi)
Order

(i) Expected value Variance
(((2)

1

1 0.5772 1.6449
2 0.2704 0.6449
3 0.1758 0.3949
4 0.1302 0.2838
5 0.1033 0.2213
6 0.0857 0.1813
7 0.0731 0.1535
8 0.0637 0.1331
9 0.0565 0.1175

10 0.0508 .• 0.1051
11 0.0461 0.0951
12 0.0422 0.0869
13 0.0390 0.0799
14 0.0362 0.0740
15 0.0337 0.0689
16 0.0316 0.0645
17 0.0297 0.0606
18 0.0280 0.0571
19 0.0265 0,0540
20 0.0252 0.0512
21 0.0240 0.0487
22 0.0228 0.0465
23 0.0219 0.0444
24 0.0210 0.0425
25 0.0201 0.0408
26 0.0193 0.0392
27 0.0186 0.0377
28 0.0179 0.0363
29 0.0173 0.0351
30 0.0167 0.0339
31 0.0162 0.0327
32 0.0156 0.0317
33 0.0151 0.0307
34 0.0147 0.0298
35 0.0143 0.0289
36 0.0138 0.0281
37 0.0134 0.0273
38 0.0131 0.0266
39 0.0128 0.0259
40 0.0125 0.0252
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APPENDIX 4

COVARIANCE OF LARGE ORDER STATISTICS
FROM EXPONENTIAL TYPE DISTRIBUTIONS

It is necessary to recall first the notation and some of the fundamental

results already obtained. We may assume, for the sake of simplicity, that the

population under consideration has the distribution function ~(;() with

density functionf (X) which is continuous. Consider the elements of a random

sample of size Yl drawn from the population which are mutually random variables.

Rearranging them in decreasing order of their magnitudes we may write

If rJ such samples

distribution F (X-), the

of size l'l
.th d
1. or er

are drawn from the same parent

statistics X~ will have a probability

We can now define two parameters

extreme from tqp as the solutions of

distribution with a density function given by
n-L . {-I·

~(/t.i)d x, = . n!6 . rF(xD] {t- F{x,B -f(Xe)d?tt, (2)
c (l-o!n-c.)!L'

de: and Ui with reference to the
.th
l

I-~) ~

(Yv/c: )--f-h- (Ut )

Following Gumbe11 we may expand F (~) for large values of /( about the

characteristic i th largest value /.Li. If F (X) is of the exponential

type we may write approximately, for large Z •

F(Xi) = I -(j) ~Cjc.' aAIVi

f(7Lc) Cln) o<c. e.~i (6 )

where



(8)

(11. )

With these values, for large ~, the density function 'f-f (Xi) tends to

Jti (XL) =[C~-I)J «: eX!=' {~iYi-ie;xp(-~i))dxc: tr'L

v-eJlje) ={ L~_I}!J eX? f- i ';Ji -i ~p r- 'de) J etl.H

for -CO £. ~L' ~ oQ • For the largest value ( = f we obtain the density

with the distribution function

3. COVARIANCE

If the sample observations are arL'ange,l in decreasing order of

magnitude as in (I) the ,joint distribution of the i th and j th order

statistics with G;? J- could be wri tte.n as

'11.1 [n-i l-J-f j-f
crv-i}!CC-j-l}! (j_I)! F(7tJ] [F{X./)-F(£i}j [f-f{XJ) ]

. feZ L) - texJ) et 'Xi dXi

which is true for the domain Xc: <: 'tJ . With the aid of the values in

(5) and (6) we may write the asymptotic form of (11) as

(c- j -~j/(J-()1 exp {-~c:- j lJi- i ~(-':Jt)]@eY~j e~jf-J1'j(' i JJ (12)

for large values of it , :Xi and Xi. By writing

3i = ce-:/<' ~ 6'J = i e-~J'

- 40 -
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we can rewrite (12) more elegantly as

I -.si i-j-I ,;-1
~\j z: (i-j-I) !(j-IJ! e (fi-SJ) ~' dsitl., .5J' (14)

which is true for the domain 0 ~ 5;; S si £=

since t: » j and F (Xi) « r:- (~) expression (5"'")

Denoting the expected value by the letter E the covariance

O:j of Ij~ and 'j<J' is given by

From (14),

f ('j i ~,,j)

=.. I , ,fe3%:y{7fJcLfL f(t--3J)L-j1J/.I-~3~J(5j(16)
CL--rY!(~-Y, 0 0 J

The evaluation of the integral in (16) is shown in appendix'4(a)

We have:- ,

But from (5) of ,Appendix 3

i-I

)} -rfoj i - ff @:) ~
V +~3J -l; Ek)

Hence
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- ",'

From (15), (17) and (1,8) we obtain the covariance

0::;
, 'Z;

E(~L'Zj~ [ £ LljGJ]
= variance of ~ (

Therefore, the covariance of the'extreme order statistics U L, and' 1.<'J ,,", J
is the same as the 'variance of ~c: where c > j This result is analogous

to the covariance for order statistics from the simple exponential distribution
2

obtained by Sarhan. Greenberg and Sarhan have also tabulated the expected

values and the

size ~ 10

variances and covariances of the order

from the exponential distribution3•
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APPENDIX 4(a)

Consider

where ~ denotes the beta function and

where '1'VI.,::: i-j -I Hence

It can be proved numerically and otherwise that the series on the right

hand side of (1) is equivalent to
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Hence

Now

Now

But

f bc· yJ == 13(j}~-j) r'(t') 1<»e-til.cj (~J I, d. t(
. .

~ -P'(iJ [tej~3i{-'i.:s(0J~W.)d~ ......
. . [-f 00 . f ..

+2, &J j e~L z<--~ ~}~fLJ
Il.~j .0

- ~c:j [1:3 + ~>@:) i;J
1

3
= re~i{'<e"3G~J,l,srxJcl$,.

. 0

:::. k:J ,-' '&j J r(?)
/f} . ; ) r--gi- i-I

-lu~ r.-+1.oj J l e 3i. ~5 Si d.~i
o

+ re:rifti-t (~3 {)"2--d f,:
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Expression (4) follows from (8) and (3) iIi Appendix '4. Similarly it can

be shown that

Hence, after simplifying

['3 z: ("'(i) { £Os (k) E (~c..) + E 01/-))
aVId.

E4-::: rye.) i--Lo<J Z- 43 i + E (':}J )

z: rcc) E (:1 o

It follows from (3), (5) and (6) that

(5 )

(6 )
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APPENDIX 5

EXPECTED LOSS IN SMALLER FIRES

From expression (2), appendix 2, the density function of the parent

distribution is

f (2-) =-

-z-
- J k(CA)du..

Iv (zJ e, 0 d z:

where ~ (U-) is the failure rate or intensity function. If h.. (it) is of

the form

o<+(3U
- e

it is easily seen that

where

In (3), put

so that

(5 )

(6 )

"

Since 0 is z..E=.. t:fO , we have
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It may be verified that the integral of (6) over the prescribed range is

uni ty so that f (5) can represent a density function. If e~ is almost

zero k may be assumed to be equal to unityo

From text it may be observed that Z- is the logarithm .or the loss .x .
Hence from (5)

~9 (3 -t-~ 3 - 0< z: (3 43 X ~.

;( -»» d. ') 1/(3

where

-0<
= e (8)

We are neglecting values of J( less than ?(o as due to infant mortality.

Also let)(e correspond to the amount £10~OOO corrected for inflation. The

expected value of x.. is reCluired for the range 'Xo ~ x: ~ Xe If

2 e :=:~ Xe: and Zo -= ~9 Xo , the corresponding upper and lower limits

for 3' are

The density function in the range

(9)

30 c. .3 <.{e is given by

+e ('5)
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The integral of (11) over the given range ought to be unity so that

-If :;(e.- is the expected value in the range ::to <::: . ')( ~. 'Xe from (7)',

(13)

But from (11),

E {3 ~r) -
t

The ratios

ce 13ee.3.5 Ifpd.:s . -
30 (14)

Ce [1,\-3:$ Vf>dS - /e~~;~<is}

~e .3 Ij1e .3 rf'dS

ro C 3 3 Y'(3df
()

J:Oe- 3s ~d3

( e 3 .3 Vf3d5

and

could be obtained from Tables of Incomplete GaIDa Functions. Thus



1

\
\1

II
1

11

I I
1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

. \

- 4.9 -

and

From (7),

where

Following the algebra in (14)

and



The variance of X in 'Jlo ~ 7L~Xe is given by

:2-

- ee:»: [~(X)J
e.

2-

E (Xz-)_~
e.

= expression (18) - (Expression (17»2 (19)

If we consider YL- fires wi thin the range 7lc' X 5.~ the total I~
of the losses in these Y1.. fires would have the expected value of h ;l(e
and standard error JYt .~ For the variance of ~ is

. - _. ;;(n)
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