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SUMMARY

If a piece or pile of self—heating”méferialris'heated, for example during a -
manufacturing process and then sxposed to cool surroundings, it may cool down to
" a stable safe condition or if the cooling is insufficient, heat to ignition. This

papei describes the theory of a new, relatively simple, method of discussing-sﬁch=

- a problem and so finding criteria for specifying the safe initial conditions, i.e.

the necessary degree of cooling. Practical applications will be- discussed elsewhere.

- In the special case of‘a very low surface heat loss one can negléct internal
temperature differences and the theoretical treatment is théﬁ trivial. When the
surface losses are very high the surface temperature is close to the ambient and-
one can readily adapt published computer solutions to a gimilar problem arising
in éxploaion theory. The general case has hitherto not been dealt with by any

method which is both as simple and, as judged by the two extreme cases,-as accurate. -

The criterion developed relates the critical explosionfparameter (S to the -
‘excess temperature Oo and the cooling characteristic of the equiyalent inert

material.
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THE SAFETY OF HOT SELF-HEATING MATERIALS.
IN .COOL SURROUNDINGS -~ A METHOD OF ANALYSIS

P. H. Thomas

INTRODUCTION

The determination of the long term steady condition to which a piece of
- self-heating material can be safely exposed makes use of the steady stat '
theory of thermal explosion or ignition1? 2y 3 .. : S

The condition is derived from equating the rate of heat ggpgratiqq”ﬁgkthq, -

rate of heat loes. In its gimplest form the heat balance is.

Vie =_Hﬂqm-TJ |
‘ . “~
-where depends on the reaction properties’
ig the wvolume of material at temperature Tm
ig the surface area

is the heat transfer coefficient

H o< e

ig the temperature of the surroundings -

and

o

is & constant in & term o) representing the dependence

of the heat generation rate on temperature.
It follows that
' | al -a(T - T) .
aVie m ° : (1)
T = a(Tm -— To)e - n--llo-
<& 1/%
from which the relation in Fig., 1 follows. Equation (1) is a.steady state

relation, but if the initial temperature of a piece of material -ig Ti'(ﬁk‘Tm)

one can see that cooling will take place if the initial condition lies within* °

the shaded area of Fig. 1 and self-heating if it does not.” The upper branch BC = i’ .’

may be regarded as giving the critical initial condifionmand the arrcws shoﬁ1‘

the direction of the temperature change. Steady solutioné allowing



for conduction are known for slab, cylindrical, and spherical geometry,but

only for a unique initial temperature distribution within the méterial which

is not uniform. However, for the simple model described above we have asgsumed
that the temperaiure is- unlform and this can only correspond to a very low ratio--
of external thermal conductance to internal thermal conductances, i.e. a small
Biot No. (= Hr/K) where X is the conductivity of ‘the ma‘terlal a,nd r a

characteristic dimension (e.g. V/S)

If, say, a slab at uniform temperature ia~ﬁlaced in cool surroundings
and Hr/k is not small, the edges will cool more gquickly than the centre.
The assumptions underlying Fig. 1 do not then hold. The assumption of an'
initial uniform temperature cannot correspond to the assumption of any ‘. /I
gteady state solution and we are forced to seek a solution to our, problem

from non—steady state theory in order to flnd the safe size and, temperature.r,,“
APPROXIMATE THEORY OF CRITICAL INITTAL CONDITIONS .

Derivation of -equations

The heat balance of unit velume of material is written as

2T

e o7 Lo ¢
P = K a I +J_a-r + Ae - .!..O.'(Z)

‘ . XY . s B3 - .

where t is time
QA is density ‘ .

¢ 1is specific heat

X is dlstance from centre )

J is zero for a slab, ' for a cylinder and 2 for a sphere

At the surface x = =~ r and we shall assume the Newtonian cooling: il

condition

It

RS e



We shall discuss the case where af t..= O .. =

T = T1 for -r<.x<r
This is appropriate when many small items are placed’togethef iﬁ‘a”piler

The conditions are shown diagrammatically in Fig. 2. The central
temperature will initially rise and will su‘bse_qu‘entlly fall if cooling from-.

the surface is strong enough.

» -

Equation (1) can be rewritten as

[ = — —+- < .o .(4)
T Rl b 3‘3
where . EBT‘== ZLQj_—"—T;)
g =
v AT

= ke /pear

At the surface

‘—3—‘—9 + “L@‘“_‘go_) = ©

‘wheré ‘ fo_ = k+”Y7/;(’

At t =.0,. .0 = 0 L (6)

LI T

and we define

o
]

5 and O are defined with respect to T1 though mth a modlflca.tlon -of R

the boundary condition both could be deflned with. resPect to T'l. .Tjdis ‘Ef?ﬁgﬂﬁ

en e the
over a- llmlted température range i
and- the.matching ig best made at hlgh temperature

values of é— i.e. (5; .

7 -aT
a conventlonal choice since reac*blons whlch obey laws” other tha.n e

Arrhenius Law, can be approximated by 'ea'T

' We seek. the critical - - . "‘_-



No general analytic solution is known for equation (2)-but Merzhanov -
et al4 and Bazykin et al5 have obtained computer solutions for-'°<:';7 o |
These solutions have been reviewed by Merzhanové. The case oL ~> © for
which eguation (1) applies has been widely-studied. CL
7,8

Friedman has earlier described a method .which could be used for this -
problem but it is more difficult to apply in some cases and relies on';

previously computed quantities, which are not available. for finite values = .,
of . '

We shall proceed te obtain an approximate solution from which one 'can
derive the critical condition and to show that for O(.—é'Cthhe results

agree to within 10 per cent with computed results .and. that they are
correct for o > O . " L

A 10 per cent error in éi, corresponds to a 5 per cént error in
estimating the safe radius or about 1°K, in the critical value of" T1 go . -
the method is presumably acceptable for practical purposes for all values

of (A_ (and initially uniform tempexratures).

Approximate solution

The approximation we employ is to trept the conduction losses frdﬁ'an

elementary volume as equal to those from an inert solid heat initially in

the same way. The method, which could be adapted to other initial conditions,”

ig as follows. " T o o

L s k3

> . i

We consider the solution. when CS is zeré, i.e. when the material is

inert. This gives a solution " Oi y viz. ( ol Ej ¥ ) which by virtue
of the linearity of the equatlons and boundary condltlons is proportlonal
to 6 and we shall write this as —\4/@ (51nce' Oi s always negatlve),

Q%#is zero at “+= 0 . \+’ is some times availablé as an analytic functlon
sometimes as a series, sometimes as graphical or tabular presentations.

We use this solution to estimate the conduction cooling in equation (4).

2 4 4 8 - Sy 4on A
:}ﬁj _ tj c;‘j}. ) EBH} tj ‘Bld

For an initially uniform temperature with cooling at the edgés of the material

and self-heating at the centfe, this approximation underestimates the conduction -

cooling of the centre itself, since the curvature of the &(x) curve is greater
than that of the inert solid. '



Equation {4) now becomes

-8
Gidgt = - EB}: giit: — C;ZLL
&(\\_ dT veeeee (T)

We now turn to discussing equation (7). We shall assume that from
symmetry we know a priori where the temperature is- highest, i.e. where

‘instability develops. Henceforth © and ¢} refer to.values at this position.

The approximate transient equation : v

Equation (7) will be used to find the value of cg , (in;téfms of' 8
and ol ) which separates safe OO where the temperature may at first rise
but subsequently falls from dangerous or super-critically high OO' where '
the temperature rises ito high values. From the nature of our approximation = -
to the conduction cooling we shall underestimate ACJL ‘so from the point oft -

view of safety the results will be conservative,

8 v
Following Boddington  who dealt with ‘b of & = we solve

equation (7) to obtain

o
L ~—

_\(9 vz
,r N cerees (8)
| — Jj; A

Figure 3 shows some typical variations. of @ wlth CT' for gradually

increasing
For all 65— 0 must eventually iend to Oo * because 'ﬁ{/-45 l and

4:lf‘9 &bybc/Q” is unbounded and must reach unity at some- value of S
for any finite cf‘ . This, however, is a conseguence of our approxlmatlon
and has no physical significance; it can be removed by regarding the rate
of heat generatlon as CI;Q. —_ C;ié 1nstead ofCTQL . and replacing S~

vy Y+ Je ‘7“/9.,

For Cg;(; J} there is a maximum temperature followed by a fall.



The maximum © occurs when

8 .
e = 6_d&F — O
AT

/

which combined with equation (8) gives

M :
‘I - @ ’\(, . ~—Q5\‘P““‘

? e JdAT+ e )
S @ut{z‘m |

which expresses 5 as a function of the time q‘:.. when the peak occurs.
In Appendix I it is shown that this has'a stationary value when L‘{/" igs zero
and this defines a limit to the time and hence defines Cf; .,J.thé la.f'ges't-.
for which @(’(\j exhibits this type of behaviour.

There is a relatively narrow range of (J < Cr‘< Cyz_)where
the constantly ascending temperature curve-has inflexions.and above. thls
. ( 5? J ) a progressively rising temperature without, 1nflex10n.
Ehcprese-.1ons for ; in terms of the time -at :which an- 1nflex1on occurs” can
be obtained on similar lines to the above determination of (f , and hence

cg_ can be found. The algebraic determination of f or J ig--

straightforward and leads to a parametric determmatlon of 5("(“,,‘)
and (9(”".“) but is somewhat cumbersome (see Appendix I).

Clearly the definition of criticality is somewhat . arbitrary for this

approximate model though clearly we should expect é\l 4o be & low estimate.

A comparison of 2 with the computed solutions for a sphere and'a

slab show it also is too small (by about 15 - 25 per cent).

We week some other characteristic in our theory which will compare with -
the computed values and we can find one in seeking a sufficient .condition

for super—critical states.



A sufficient condition for criticality

From equation (8) it follows that

— 4O S _Q"-‘("go
—= > = —
J— J7T |l —2 e 7T

80 we have upper and lower limits to ©

Consider — U Oo

Z:_-_ o

= £

Now

|
o= L —3O,
d~ (t _ ‘S“"—@QL(JT) * veeens (10)

' ~\ WU
&2 — < . J

© is always rising if Je T~ GO and infinite
PRV
temperatures are reached as N~ — ?)- e

L(/ is an increasing function of ‘T~  so our condition can be shown in
Fig. 4. The conditions for a finite rising temperature.ar.e satisfied in the
shaded area and the least value of 5 wﬁich gives {i—% pogitive as 8
approaches infinity is at the intersection X so that Cy>or3 is a
sufficient condition for super-critical states and thus this. choice for d;'-: J]

is given by

T (90'\.})‘(7}_): / ceeens (11)

| SN .
J} - @ . cerees (12)



This" CJ\LC(D;) locus satisfies . Ol'g d\ w

| F
Bquation (11) defines a time A _and equation (12) defines a d\,_ in
terms of this T and we have upper and lower bounds for this Icﬁ_ from

T ; o S
e ( (— (90’\.{/@;)) > » > .

Our first approximation is to take the lower bound to obtain the critical

condition from

( . ' - .
{ _
Q’.’_L{/(E—\ S ' ceeeee (13)
) <
[
a result that relates Cfc dlrectly and simply with the way the. equivalent,
inert hot body behaves. @c'\(/ is the rate of fall of the central
temperature ‘of the equlvalent inert hot spot. -JJ .is the adiabatic
R <

induction time, so we can state an approximate criticality criterion for

symmetrical hot spots in words.

The numerical value of JL igs the reciprocal of the dimensionless
adiabatic induction time and is equal to the rate of fall of the central

temperature at this adiabatic induction time.

It is readily shown from conV°n‘b10nal conduction theory that for 0<—9 o

[ \/7’ ‘
k{’ m ~ AC" (r‘c< ) for a slab .

— Yt

%
Yo a e /AT T (e

We find that cﬂ calculated from equation (13) and these expressions
for L_k' give better agreement with the computed -results than does <-J: or Jl

for a sphere

and moreover is simpler, so for these pragmatic reasons we choose it as our

criterion of criticality.




The approximation’ 5:(1 = 1 raises 90 for a given C’J:_,and reduces

our estimate of Jg. for a given Oo , so equation (13} is not itself the

sufficient condition for criticality - only an approximation to that given
by equations (11) and (12). '

(d;, calculated from equation (13) is within 10 per cent of the computed
results for the slab and sphere ( oé—=> O0). A'more detailed discussion
of the mathematical aspects of the above is given in Appendix I.  The
comparison shown in Fig. 5 is with results computed for a slightly different
boundary condition, since only these are available. ‘This different condition
is the transient diffusion across -a stolid/solid boundary instead of a
quasi steady constant relation between 0O and d“g/d,‘? : (equation (5) ).~
It gives a different value of L(/ but for "("@(- the ‘asymptotic forms
given above for %I are valid apart from a factor of . 2 in the actual
temperature difference as between the surface a.nd the centr.e,A ‘so - .
for (\Q<’¢( (i.e. 22 >>{) the two problems become identical’and we: . -

can, as we have done, use the one to obtain results for the other.

The special case Dé‘-%o

When o~ O , “kis readily shown to be .

v = (- g(”g/‘fﬂ)’t) I

For slab, cylinder and spheres

S = (+g
v
o (1))
o o - S8 . (=D
X ()

.and for large QO.

d. = og(tﬁ)&b-
i.e. A,ea:'l"c: d_f—(_‘?“_re)

which is in effect a repetition of equation (1).

-9 -



Solution for various D<

To find for OL— other than very small or very large we make use
- y

of conduction theory to find L(/ .  With:equation (13) this-gives. the

required values of CJL.(:d~;gL) which are shown in Fig. 6 for the sphere:. = - "~

The errors are likely to be greatest when O 1is sgmallest and the
region © 'C 2. requires special study which is _beyondl the scope of

this reporf?
DISCUSSION

For any size of pile and any initial‘temperafure we éan‘calcuiate-@o
and J . Provided this o is less than o for infinmite o we can:

find the minimum cooling necessary for safety.. -

This approximate theory has been justified oﬁl&lbyMCOmpaniéon?Wiih--i
computed results. We note that %(-: X;(_ N '\Pl(zf‘_) ‘-is -strictly less : .'-’ w
than 1 and this can be regarded as a change in the scdle.of Qo . DBut
for initial temperature distributions which are.imiform ﬁhe presence of
the term e{J/“rr in the term for o makes-CE_ vary only weakly -
with 90 so errors’ in the ‘OO scale correspond ﬁo*muchAsmaller errors :
in d; .

This would noi.be so for an initial.distribution“of.tempefature which
is peaked in the centre and errors in C£L gre then greater. In practice
this may happen if storage piles are built so that the outsides are made
up of items which have been exposed longer {o +the cool surroundings. This -
obviously makes for safety and, for a given initial peak central temperature, -

we should regard the results given here as being on the safe side.

The application of equation (13) is relatively straightforward-and the
above treatment can readily be applied to cther geometries, e.g. cubical -or: -
rectilinear piles with little additional'diffiéulﬁ& gince-selutions for -

LQ(T) are .available in the literature for many such shapes. Tt should -
be noted that whilst the analytic form for these is more complicated.than -
- for the simple geometries discussed here, we aré usually.-concerned with-
short times and.simplifications exist for these conditions. Thé faplace.f
transform method of finding \¥’ ig especially éuited_for;short times. '

A table of \%tij can readily be turned. into a table of ‘+%L

-gimple numerical procedure and hence }%93 éiﬁTT+ ereadily evaluated
with “C being replaced by ﬂé{' . A graph of KL» mugt be-differentiated.

with of course the possibility of graphical errors.

by

- 10 -



It can be seen from equation (13) that it may sometimes be more appropriate .

[
to consider ;459 and /Qf as the relevant dimensionless parameters.
“

Lk/ is sometimes presented in tabular and graphical form. These may
be more useful than analytic forms especially when C?Z_ is neither very
small (high o ) nor very large (low c&_ ). Q/’is often obtained as a
gseries for the immediate values of [Tl, that arise if the Biot No. oL
is small (small piles.or low cooling,coefficients). This still gives 17@0
explicity in terms of VQE (as a series) so allowing a graph of C{(QO) to
be drawn but it may be more convenient to use tables or graphs of t+/ .

CONCLUSICN

A theory is given for determining the safeiy of hot self-heating materials.
It can be applied to various symmetrical shapes ¢f material and it allows safe
temperatures -~ or minimum cooling requirements - to be specified in terms of

the self-heating and geometrical properties of the material at .risk.
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APPENDIX I

We have —_ Lgo\{/
(9 <
{ | — & J{TQ-&‘V’OU%

{

The stationary values (Fig. 3) satisfy

&
Qo OLLE = (99\(/( —_— CI:—Q
dT

-i.e. : Ay
| M._(QD _('QO\()“‘
1l = P Nl::lfks + = ceeee. (1)

d 8 S

where \_k,_,\ and L_{/Lare functions of /\f:,,_ the time for the stationary value.

We seek the smallest value of \/5- (highest (j_ ) for which a solution exists.

Now _A__ (\_) — _— é‘&aw \—P.l‘
A\ SR

so the smallestvalue of ’/df satisfying equation (14) is that for which

i *
L’/H makes -, zero .

Since L{/[ =0 at N-—» O for our boundary conditions

and "= | T —= oo
{
there must be a "\ when \P.....L 0.

This (UL can be found for a known

and then equation (1A) gives a critical oot(@;)

- * For this solution it makes no difference if “{~ is redefined as

LE A J&_qu/@o

- 12 -



We now consider the inflexions which, from equation (7) must satisfy

- (_()Q"q/!".._q. 5(32(9— @?’\4/') : = y e .(2A) |

582 ot » [SEG~ woe

At low values of Y (/r\‘< u-\> \{«15 p031t1ve and so we consider the

positive sign only.
RV N
Z + d u/f o 24 e - )
"" . ¥ : cevees (48)
] | = FeHFer T
0

l \f o .
where L{/ , LP and \_(/ are functions of. Of/(__ the time-at the

inflexion and

7= | sl e

‘_L_ - D‘Q_cg - ~ TEQM(QO’}LGUX (
cf LQD\(/ " Z L S5A)
The smallest ‘/J giving a root of equation (54) is obtained after
differentiation of equation (54) . '—cgo'\-‘/
L[ FOY_ Toewe
) ot
| : 1
9 &Y @D\(/ ‘)\J}\Pw—+t(—c9w

Qp\)wu-m)b L7,

;_ 13 _




Thus - has a minimum when

g
(0¥ +Z)\z—0cy ) =
@_:‘k{//k(/ﬂ__(_ 2«901(’“
4.

e = = Cop W 2 g

both sides being positive.

o )”’/k(/“

@b = (kl'(ll)"z_/_ k{/[q/”/

an g, = o] B

k{)“l

{

~ 2(90 W+

From equation (6A) one can find, for a given (\ﬁ ) 0906"(") .
Hence, from equation S5{A) or\_ can also be found .as a function of r\”: -s_d

" by choosing a geries of values of c(“ ' CfL and * ©_-can be fom'ld-‘paramefrica.l-ly.

. S Y
Redefining \-k/ as \.(« +- J&—Q ’T‘/Q‘b complicates the treatment

by leading to

P (VL R (Vb e
o ()T )

- 14 -
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