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SUMMARY

If a piece or pile of self-heating "'material. is heated, for example during a '

manufacturing process and then exposed to cool surroundings, it may cool down, to

a stable safe condition or if the cooling is insufficient, heat to ignition. This

paper describes the theory of a new, relatively simple, method of discussing ,such·

, a problem and so finding criteria for specifying ,the safe initial conditions, i. e.

the necessary degree of cooling. Practical applications will be'discussed elsewhere.,

In the special case of a very low surface heat loss one can neglect internal'

temperature differences and the theoretical treatment is then trivial. ,When the

surface losses are very high the surface temperature is close to the ambient and'

one can readily adapt published computer solutions,to a similar problem arising

in explosion theory. The general case has hitherto not been dealt with by any

method which is both as simple and, as judged by the two extreme cases,' as accurate"

The criterion developed relates the critical explosio~ parameter cl to the

'excess temperature 00 and the cooling characteristic of the equivalent inert

material.
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The determination of the long term steadY condition to which' a piece· of

self-heating material can be safely exposed makes use of the steadY state

theory of thermal explosion or ignition1 , 2, 3 •

The condition is derived from equating the rate' of hea.t ge::>:eration..t.o. th7. '

rate of heat loss. In its simplest form the heat balance is.

aTm
VAe = iiS(T - T )m 0

,where A

V

depends on the reaction properti,es'

is the volume of material at temperature Tm
S is the surface area

H is the heat transfer coefficient

T is the temperature of the surroundings
o

and a is a constant in a term z'epresenting the dependence

It follows that

of the heat generation rate on temperature.

aT
aVAe 0

SH

-aCT - T )m 0

aCT - T )em 0

from which the relation in Fig. 1 follows. Equati~n (1) is a.steadY state

relation, but if the initial temperature of a' piece or" material is Ti' (=jTm)

one can see that cooling will take place if the initial condition lies within" '

the shaded area of Fig. 1 and self-heating, if ·it does not. The upperbranch BC

may be regarded as giving the critical initial condi t i on cand the arrows show'·

the direction of the temperature change. SteadY solutions allowing



for conduction are known for slab, cylindrical, and spherical geometry,but

only for a unique initial temperature distribution within the material which

is not uniform. However"for the simple model described above we have as.sumed
. .' ,_ I"". ,"

that the temperature is', uniform and this can only correspond to a very low ratio,

of external thermal conductance to internal thermal conductances" i.e. a small

Biot No. (= Hr;K) where K is the conductivity of ,th',,"material and' r a

characteristic dimension (e;g:."'V/S).

If, say, a slab at uniform t emper-at-ur-e ia,placed in cool surroundings

and Hr;K is not small, the edges will cool more quickly than the centre.

The assumptions underlying Fig. 1 do not then hold. The assumption of an

initial uniform temperature cannot correspond to the assumption of any ",I c,';','; ':lW;;~';'

steady state solution and we are forced to seek a solution to our problem.. ... '.' - "' ...., ,.. '.

from non-steady state theory in order to find the safe, size ..and" temperat~e •."

APPROXIMATE THIDRY OF CRITICAL INITIAL CONDITIONS

Derivation of ,equations

The heat balance of unit volume of ~aterial 'is Written as

'., :

".".. ",

fe ...... ' (2)
-". ,

where t is time .

J is density

c is specific heat

x is distance from centre ''; r..

j is zero for a s Lab, 1 for a cylinder and 2 for a sphere

At the surface

condition

+x ::; - r and we shall assume the Newtonian cood fng' "", -','

=

- 2

- H{T - T )
o

" .

. . . ... (3)

" : '.'. '.'

. ,", ~ . '"

r' ' •. . ~,
"r , ...



We shall discuss the case where at t" = 0

for -r <x< r

This is appropriate when many small items are placed 'together in ajn l e ,

The conditions are shown diagrammatica~ly in Fig. 2. The central

temperature will initially rise and will subsequently fall if, cooling from"
"

the surface is strong enough.
,; '.

Fquation (1) 'can be rewritten as

d& J~<9 • d& rJL8+ -...l -t- ' (4)-
~J

..:.... .- ~j'<.-~'T j
where &= b..tr-~)

~
><-/.y-

cf A; ...~ &.1";" O-.-/rc=-

I-ct/\~
'"L.

'r ~ et:"

At the surface '.. '

d19 t- 'd-. @-+ S)0) =- 0 (5)
d'}

" ,.. . '...

where
~ =- rt-Y'/\-(

At t = o (6) .':

and we define ," ,.

and Qo
boundary

J
the

are defined with respect to T1 ' ',though wi,th' a mOd~ficat~o~,'Of'~,\/

condi tion both cou1:dbeCiefinelwi:th, re,s,pee,t toTo". T·is '., ,1 ' '

~:::::~~::~ ::i:: :;:::x::::::o~;~:~;h :::: ~~~~::~:rt:~~r~::;ee::g:;~}::~\
and· .the. matching, is' best made at: high t emperature , We'seek th",' critical'

values of d Le. J:.. ' "
, ,
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Merzhanov '
t>(, -700

cZ~ 0 for

No general analytic solution is known for equatLon '(2),'but

et a1 4 and Bazykin et a15 have obtained computer solutions for
, 6

These solutions have been reviewed by Merzhanov. The, case

which equation (1) applies has been widely' studied.

Friedman7,8 has earlier described a method which could be' used for this'

problem but it is more difficult to apply in some cases and relies on'

previously computed quantities, which are not a~ailablefor finite values

of e>(
• I

We shall proceed to obtain an approximate solution from which one ~an

derive the critical condition and to show that for o<:.,-'l- DO the results

agree to within 10 per cent with computed results ,and,that'they are'

correct for 0<. ~ 0 "

A 10 per cent error in dI~ corresponds to a 5 per cent error in

estimating the safe radius or about 1
0K, in the critical value '0£' T

1
so

the method is presumably acceptable for practical purposes for all values

of o: (and initially uniform t empenatur-es },

.' ,.

Approximate solution

The approximation we employ is to' tre~t
o ,.

:t
the conduction losses from 'an, ,

elementary volume as equal to those from an inert solid heat initially'in'

the same way. The .method , which coul.d R:' ,adapted to other initial conditions," . ,.1

'.
is as follows.

" .__ ....... '.- , .
"

We consider the solution, when "is zero, i.e, when the material is

series, sometimes as graphical'or tabular presentations.

This gives a solution G, va.z , G. ( 0<.. LI'.')- ) whi ch by virtue
1 1 .J'l)

linearity of the equations and boundary conditions is proportional

and we shall write this as -'4-'G
o

'(since Q. "~s,al'~ays negative),;
. 1 ~ ;

zero at ')- = 0 • 't-' is some times available as an analytic function,

inert.

of the

to Go
~is

sometimes as a

We use this solution to estimate the conduction cooling in' equation (4).

d's + -.l ~,9 (d\~ ~

~:J
c

- &0 d
J

"- -+-
~'j

"- ----
~ cit tJ

For an initially uniform temperature with cooling at the edges of the material

and self-heating at the centre, this approximation underestimates' the conduction

cooling of the centre itself, since the curvature of the 'G(x) curve is 'greater

than that of the inert solid.
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Equation (4) nOw becomes

• • • . •• (7)

We now turn to discussing equation (7). We shall assume that from

symmetry we know a priori where the temperature is' highest, i. e. where ..,

. instabili ty develops. Henceforth G and l...\:-' refer to.values at this position.

The approximate transient equation '"

super-critically high Q' where
o

the temperature rises to high values. From the nature of our appr.oximation

to the conduction cooling we shall underestimate :d'l. .so from the. point ·of·

Equation (7) will be used to find the value of c>~ , (in- terms of'Qo

and ()( ) which separates safe G where the temperature may at first rise
o

but subsequently falls from dangerous or

view of safety the results will be conservative.
8 Ih

Following Boddington who dealt with *" c,( tt- we solve

equation (7) to obtain

\
• • • • •. (8)

Figure 3 shows some typical variations. of Q with ~ for gradually

increasing d
and

is unbounded and must .r-each unity at some· value of 1:="

there is a maximum·temperature followed by a-fall.

must eventually tend, to 00 . because

For

For all d, G

J17.e- I).>Y cI~
for any finite or This, however, is a consequence of our approximation

and has no physical significance; it can be removed .by regarding ·the rate .

J: c9. r: -~Q _r CJ
of heat generation as J2... ~ 0 J? instead ofu€.. "andreplacing ~

by t.t +- dJ2.-r9~(~ ..
cf<; r,

- 5--



The maximun g occurs when

which combined with equat i on (8) gives

which expresses b as a function of the time '1'-....... when the peak occur-a.

. Lue wh u ..)f· .In Appendix I it is shown that this has 'a s ta't i onary vaue w en ~ 1.S zero

and this defines a lindt to the time and hence defines ~., .~the largest·.

for which c9 ~~ exhibits this type of behaviour.

There is a relatively narrow range of d ( d~ < 'd-< ~ 1.. ) where:' . ,'"

the constantly ascending temperature curve -has inflexiqns. and 'above. this,

.( S? ['J a progressively rising temperature without, inflexion.' t,

Expressions for d in terms of the time -at :which an ·,infle.xion, occurs' can

be obtained on similar lines to the above de~ermination of ~ " .and henc~

dl.. can be found. The algebraic determination of 0l -or l(" Ls-.

straightforward and leads to a parametric det'~rmination ofdCrr~

and C1("'t'....) but is somewhat cumbersome (see Appendix r). '. '

Clearly the definition of criticality is somewhat ,arbitrary. for this

approximate model though clearly we should expect 'J~to be a-low- estim~te.

A comparison of 61- with the computed solutions for a sphere' and ' a
slab show it also is too small (by about 15 ~'25 per cent) •.

-"

We week some other characteristic in our theory which will compare with '

the computed values and we can find one in seeking a sufficient .condition

for super-critical states.

- 6 -



A sufficient condition for criticality

From equation (8) it follows that

1- dt
>

so we have upper and lower limits to Q

Consider

(-

\ )r -J)ot' ,
d~ - 6)..) 1f'

__ . . .• (10)

Now

Q is always rising if

temperatures are reached as

_&.0\1--' ,
J e ' >- c9o\Y

cr-- ~ t ec9~ 'f

'and infinite

If/ is an increasing f'un ct i.on of '1'- so our condition can be shown in

Fig. 4- The conditions for a finite rising temperature ar.e satisfied in the

shaded area and the least value of ~ which gives ~:; posi tive as Q

approaches infinity is at the intersection X so that d "'?JI is a

sufficient condition for super-critical states and thus this choice for 0,--= cfJ
is given by

• • . • .• (11)

(12 )

- 7 -



This locus satisfies .• ._ . to! :i.
_~ • __ : '" •• : ...:.;~.", ,0· -

.Fquati.on (11) defines a time ~, . and equation (12) defines a cf'<.... in

terms of this ~ and we have upper and lower bounds fo'r this ,d~ from

, \

• . . . .. (13)

Our first approximation is to take the lower bound to obtain the critical

condition from

0= ((.!.-T ~ 6~\
L-

a result that relates de. directly and simply with the ,way the equival errt ,

inert hot body behaves. ~~/ is the rate of fall, of the central

temperature 'of the equivalent inert hot spot. ~~ ,is the adiabatic

induc~ion ~ime, so we can state an approxima~e criticality criterion for

sYmmetrical hot spots in words.

The numerical value of de..... is the reciprocal of the dimensionless

adiabatic'induction time and is equal to the rate of fall of the central

temperature at this adiabatic induction time.

It is readily shown from conventional conduction theory that for 0<..-?' 0

-'~/vjfr' v:-e.. - ~7L\l '-, (~~'0for a slab

for a sphere

and moreover is simpler, so for these pragmatic reasons we choose it' as our

criterion of criticality.

- 8 -



for a given 0[, and r-educes-Q
o

soequatio~ (13) is i-lot itself the

raises1The approximation' J 1'-~ ;:....

estimate of cr~ for a givenour Q
o

sufficient condition for criticality - only.an approximation, to that given

by equations (11) and (12).

<-r:
0,- calculated from equatioh (13) is within 10'per cent of the 'computed

resul ts for the slab and sphere ( K~ C)O). A'more detailed discussion

of the mathematical aspects of the above is given in Appendix I. The

comparison shown in Fig. 5 is with results computed for a slightly different

boundary condition, since only these are available •. ' 'This different condition

is the transient diffusion across 'a stolid/solid bo~~ary instead of a, ,

quasi steady constant relation between G and #/~' (equation (5) ) ~"

It gives a different value of Lf' but for ")-~(. the 'asymptotic forms

given above for * I are valid apart from a factor of _ 2 in the, actual

temperature difference as between the surface and the centre; "so

for "'t.C<-- ( (i.e. cf ""»/) the two pr-cbLems become identi cal "and we­

can, as we have done, use the one to obtain results for the other.

The special case ~~ 0

:<

When d......-~ 0 \+..:is readily shown to be

For slab, cylinder and spheres

l +-1

Thus

,and for large

i.e.

which is in effect a repetition of equation (1).

- 9 -
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Solution for various oL

To find de for r::J.-- other than very small or very large we make use

of conduction theory to find lj/ . With'equation (l:3) this·gives.the

required values of dl...- (et.)c.9"') which are shown ·in Fig. 6 for the sphere •.

The errors are likely to be greatest when Q is smallest· and the

region Q < 2· requires special study which is .beyond the scope of ,..,

this report.

- ••<

DISCUSSION

and

For any size of pile

Cl Provided this

and any inihal temperature we can ce.rcul ate. Q
o

d is less than dc . for .infinite 0( . we' can!

find the minimum cooling necessary for safety•. '

This approximate theory has been justified only by..comparison' with

computed results. We note that ;to Yc;-L £9., '\l,Jl.( >J<-) 'is ·skictly less "

than and this can be regarded as a change. in the s cale .of Q Buto
pneaen ce offor initial temperature distributions which' ane. uniform the

-'(Uc"t' ".rthe term .e. in the term for' '+ makes,OL vary only weakly

with Q
o

so errors'in the Q
o

soale' corre$pond to muchsrnaller errors

in <t "
This would not ,be so for an initial, ciistribution' 'of temperature which

is peaked in the centre and errors in d<... are then greater. In practice

this may happen if storage piles are built so- that. the outsides are made

up of items which have been exposed longer to the cool sunr-oundanga, This

obviously makes for safety and, for a given initial peak central temperature,

we should regard the results given here as' being on the safe side.

The application of equation (13) is relatively straightforward'and the

above treatment can readily be applied t.o other geometries.• e.g. cubical -or-.

rectilinear piles with little additionaldi·fficul;ty since "solutions for

4- (T:) are .ava.iLabl e in the literature for many such shapes. It' should

be noted that whilst the analytic form for tnes,e is' more complicated...than

for the simple geometries discussed here, we are usually. concerned with·

short times and. simplifications exist for ,thes,:, condi t i ona., The LapLace "

transform method of finding ~ is especially suited, for ,short times'·.

, ,

., .'

A table of 'H'"t') can readily be turned into a table of "fJ by. .a- .' ..

. simple numerical procedure and hence !I<9" ~ l <.{tet'JreadilY eval.uat ed

with '\ being replaced by 'rs A graph· of '4- must be ..differentiated,

with of course the possibility of graphical errors.

- 10 -



It can be seen fror equation (13) that it may sometimes be more appropriate

to consider Y<90 and (a.... as the relevant dimensionless parameters.

t.f/ is sometimes presented in tabular and graphical form. These may

be more usef'uL than analytic forms especially when ~ is neither very

small (high OL ) nor very large (low d<:- ). \f--' is often obtained as a

series for the immediate values of ~~ that arise if the. Biot No. ~

is small (small piles or low cooling. coefficients). This still gives 1jQ
o

explicity in terms of I!~ (as a series) so allowing a graph of CI(Qo) to

be drawn but it may be more convenient to use tables or graphs of ~

CONCLUSION

A theory is given for determining the safety of hot self-heating materials.

It can be applied to various symmetrical shapes of material and it allows safe

temperatures - or minimum cooling requirements - to be specified in terms of

the self-heating and geometrical properties of the material at risk.
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APPENDIX I

We have

The stationary values (Fig. 3) satisfy

i.e.

L--{
• • • • •• (1A)

Now

where '-V....... and 4-'~are functions of ~e.-.. the time for the stationary value.

We seek the' smallest value of YJ- (highest d ) for which a solution exists.

J ( \) -J) c "\f 1\_ - - __ -e. ~~

d.1:. 6 - t: 1\"1-
~ c9'00Y--;J

satisfying equation (1A) is that for which

at ~~ 0 for our boundary conditions

r-r--~ oc::>
I(

when ~........ = 0 •

and

~__ makes

Sin ce ~I -?> 0

"k-c I ~
there must be a ""'t-"""

so the amal.Ler l val.ue of l(!
I( *

~~ zero

This «:- can be found for a known ~

and then equation (1A) gives a critical J<..([):;.)

, * For this solution it makes no difference if is redefined as
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We now consider the inflexions which, from equation (7) mus~ satisfy

o (2A)

.... ~......

-c ,

# • , .:...;

(3A) '% .
"

~ (......r"'\.__ ("""7"-(.~) IfAt low values of \ . \...... ~ '+ is positive and so we consider the

positive sign only.
•

where Lf'
inflexion and

IIf and
II

\....{/ are functions of.

\----
cf

-&-' (~) ­
~J -

'- '

The smallest ;;;- giving a root of equation (5A) is obtained after

differentiation of equation (5A)

13-



LThus d has a minimum when

(t9c'\jlI-+Z)(7--Sc~ ()~

--

; ..". 'Z.. ~I ~ 6)'0 \f'( '-+"(( + ;t Ly II'
both sides being positive.

Hence

• • • • •• (6A)

and so

From equation (6A) one can find, fO~ a given ~ , lJ.o ~.:) .'
Hence, from equation 5(A) cfL can also be found ,as a function of ~ -so

. by choosing a series of values of ~ , d<... ?J1d' Qo·can be foundparamet~ical1y•.

Redefining ~ as '-f + S~~~ I~ complicates the treatment

by leading to (Y-' ~ (If) 'se-~u

4'" (Lfj"'- ~''f''I)
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