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THE SCALING OF DIMENSIONS IN HEAT CONDUCTION PROUBLENS

by
J. H, MoGuire

Summary

This note investigates the relation between the growths of
temperature in similar structures, of different sizes, heated under
comparable conditicns. It shows that the dimensions in which there
is no compenent of heat flow play no part in the thermal problem and
tlat, in the direction of heat flow, the times to attain any specified
tenperature at corresponding peints vary as the square of the ,
diliensional scales of the structures. The square law relstion is’
shivn to apply where the thermal propertics of the component materials
very with temperature and wherc, with one exception, the effects of
contained moisture arc considered. Various other effects are also
examined, '

The use of the B.S.476 time-~temperature furnace curve in the
conduct of fire-resistance tests precludes the application of the scaling
relation to similar structures, since it requires time to be a scaled
quantity. An cmpirical modificaticn of the relation to avoid this
difficulty, and the extension of the relation to similar structures of
matcrials with different thermal constants, are described in two further

notes,
“.. .! -
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This note investigsieg the rclation between the growths of
temperature in similar structurss of different sizes, heated under
comparable conditicns. Ttz colation permits the result of a time-
temperature problem tc te wredicted for a given structure, provided
the result cf a similer prodicm on a similar structure of another
scale is available. The amplication of the relation requircs the
use of a time scale dependert upon the scale of the structurce, in
order that the basic heat transfer equations may be satisfied.
sThere o prescribed +1mm-temperature function {other than a step
function) is applicd tc¢ the boundery of the structure the relation
cannot be used,

The relation applics to similar structures of different scales
having the same component materials. It is not invalidated where
some thermal processes other than pure conduction are involved, for
example, the evaporation of contained moisture and the convective--
rediative transfer at interfaces where there is imperfect thermal
contact,

In two later notes, the relation is extended to include the
use of the time-temperature furnace curve prescribed in B.S.476 for
the conduct of fire-resistance tests and the use of materials of -
different thermal properties in similar structures.

Scaling of dimensions in a pure heat conduction problem

In a large number of heat conduction prceblems the solution
required is in terms of" the time that must elapse before a specified
temperature is attained % =2 particular point under certain conditions,
and in this note suel. Simos wre related to the dimensional scale of the
structure involved, Tte cwele of temperature is essentially considered
to be invariant.

The relation 1=z woiived by applying scaling factors to several .of
the quantities in the differential equations governing the flow of heat
by conduction so that the equations remein satisfied, It i< shown,
in Appendices 1, 2 and 3, that this is so if time is scaled as %he
square of the scaling factor n applied to linear dimensions in which
there is a comonent of heat flow. Other quantities, including heat .
flux per unit area, also nced to be scaled, but’ this docs not affect the
solution of problems in which boundary condltlons and- results are in fterms
of ‘temperature.,

' Dimensions in which there is no component of heat flcw dc no® enter
into the thermal problem and it is shown that they may be scaled by sny
convenient factors,

The following is an example of how the square law could be applied

in solving a problem in which the flow of heat in a structure is by
conduction only, Suppose the first structure considered be a 10 inch
diameter colum, at least five feet hlgh and that its exterior temperature
is raised to and maintained at 1,000°C, _Suppose that aftcr % hour
the temperature sttained 3 1nches from the surface is 400°C. Then it
can be predicted that the temperature of 400YC would be attained at a
depth of 6 inches from the hested face of a similar structure, of
%1imeter 20 inohes, subjocted to the same conditions, in e tlne of 22 x 2=

ours.
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It should be noted that if boundary conditions are dependent on
time then in scaled versions of a problem, they must be dependent on
scaled time, The application of this statement can be illustrated by
considering a slightly modified boundary conditicn in the example
already quoted. Suppose that the tempersture of the heated face had |
been gaised to 1000°C at the beginning of the experiment and then to
1,500%C after half-an~-hour. Then the prediction concerning the -~~~
28" inch colum would have applied to the boundary condition>that” the
surface temperature were raised to 1000°C at the beginning ~f the
experiment and to 1,500°C after a time 22 x halfw-an hour = 2 hours
had elapsed, : '

Variations of thermal prooersies with temperature

The properties of a material affecting the process cf conductioen,
i.e, thermal conductivity (K), density () and specific hsat (8),
generally vary with temperaturc. This, however, would not affect the
validity of time-temmerature predictions made on the basis of the square
law rclation. The proof of this fact is given in Appendix 4.

Phenomena associated with heat conduction in practice

Most practical problems, described broadly as "thermal conductivity
problems®, involve more processes than that of pure heat conduction.
The following is a list of the more important associated processes which
might be involved, together with statements as to their influchce on the
validity of the square law relation,

(a) Presence of water

If water is present in e structure it affects transient
temperature distributicns by absorbing heat as its temperature is
raised and as it is converted to steam. It is shown in Appendix'5
that these two effects would not influence scaling, The fact that
water vapour occupies a greater volume than the same weight of water is
also compatible with scaling.

-I% is found, in fire-resistance tests, that water vepour migrates
frow one part of a structure to snother, Insofar as this is a diffusion
process, ‘it should agein scale according 4o the square law relation.

(b) Cavitics and imperfect thermal contzct at interfaces

In composiiz sirictures the thermal contact ot interiaces is
never perfect and thu heat transfer across the surfaccs invelves such
processes as radiation. In generzl, however, imperfect *the.mel
contact only emounts to the inclusicn of a small thermael resistance in
a structure which already has a high thermel resistance and its effect
on scaling may, therefore, be neglected.

Imperfect thermal centact is the limiting case of the presence of
cavities in a structure, ‘and where the heat flux through tho cavities is
comparable with the heat flux by conduetion, their effsct must Le taken
into account. In any cavity heat transfer will be by rediation and
convection as well as by conducticn, In Appendices 1, 2 and 3 it is shown
that heat flux per unit arep is a scaled quantity since it depends on
temperature gradient (%93y) - and i has been scaled, Radiative heat
transfer, on the other hand, is dependent on temperature difference and
- configuration factor and it would, in practice, be impossible to scale it
.in the ' manner required. The same may be said of sonvective heet transfer,

Where cavities exisu in a structure, thercfomc, their effect on
scaling may only be neglected if, from their geometry relative to the
structure, it cen be seen that they do not play a substantial part in heat
trensfer.

(e) ' Cooling to the atmosphére

_ As heat flux per unit area is a scaled quantity, the existence
in a structure of cooling to the atmosphere is incompatible with scaling.
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Cooling frequently plays a vital part in the thermal behaviour of nany
structures and it would be valuable if steps could be tcken to allow
scaling in these circumstances.

™o

'~ LT

Two susk’steps arc p0451ole, Firstly the geoling relation can
be experimehtally amended. The derivation of such zn amendment is to
be described in a later note where it is suggusted inef the power law
relating time and a dlwmension should be a littie gieoter than two.

Secondly, the surface of a structure io be tested could be treated
8o that its rate of ccoling is altered to represent that from the
structurz for which reszults zre to be predicted. The results would
not then refer to the cuxizinal unaltered structure. This is a serious

" limitation of the Secrnigna.

Coenclusions

If the times to attain specified temperatures at various points
" in a structure being heated by conduction are known, then the times
to attain the same temperatures in scale models of the structure may
be predicted, time being considered to scale as the squarc of linear
dimensions. .

Processes other than pure heat conduction are involved in many
practical problems such as these of fire-resistance. The more
- important.cnes have been considered and it has been shown that most of
them are compatible with the scaling described.

. The relation can be applied to meny fire-resistance problems,

;TWo serious limitations exist however, Pirstly, since time is a scaled
quantlty,ithe fumace temperature must follow a law based on scaled time.
Secondly; "all wall and floor fire-resistance problems involve cooling

. t0 the atmosphere, which does not fit in easily with the scaling relation -
.described. - In a later note the scaling relation will be experimentally
amended to allow predicticons in these circumstances,

A

Appendix 1 $euiing of three dimensional flow of heat by
conduction

. - The flow of hoeat by conducfion is governed by the following
equations:-. -
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where the symbols are derined in Appendﬂx 6
//
If x, y and z De scelied by the. *~ctcr nwhilst ¥, K, p and s be

1cft urscaled, then the equations will remain con31stent if modlfled as
follows - _
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Thus since x, y and z have become nx, and nz then t becomes
n?t and rate of flow of heat per unit area t’:@ or ¥, /ﬁ'& §s or FLAL‘JJ’

tmes). pecomes 1(F’9/J J’; - 1[ /ﬁ&}v- (F )(at correspanding

The quantity of heat prrzsent per unit volume (at corresponding
times) is unaltered and thus tre total quantity of heat present scales
as the volume i.e, as n5.

The total heat flux scales as the product (area x rate of flow of
heat per unit area) i.e. as n x 1 = n.
‘ n

Appendix 2. Scaling of two dimensional flow of heat
by conduction :

If there is no component of heat flow in the z (
dimension, then the flow of heat by conduction is governed by the !
follawing equations:-

az~mﬁ&h-_-m~LBMJ@g

Fz=~stJLd? e — — —(9)

and

v cfoc+ 63“’5;& - ps Sx.dy 2. ‘)9 - — --—-—(6)

where the symbols are defined in Appendix 6. '

If‘xandybescaledbynandzbym,whilste K, 7 and s be left
?nifaled then the equations will remain consistent 1f modified as
ollows:~ o
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Thus, since x and y have become nx and then t
. becomes nt and rate of f£low of heat per unit arear ;_ or |7A»JL

becomes 1 or 1/ ( at corresponding time$)
HEAERY /)

The quantity of hecat prcsent per unit volume (at corresponding
times) is unaltered and thus the total quantity of heat present scales
as the volume i.e. as n®m,

The total heat flux scales as the product (area X rate of flow
of heat per unit area) i.c. s nmx 1 = m,
n

Appendix 3, Secaling of one dimensional flow of heat
by conduction

If the heat flow is unidirectional and is along the x
dimension then the equations governing.the flow of heat by conduction
arei- )
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where the symbols are defined in Appendix 6.

If x be scaled n, y by g and 2 by m, whilst @, K, pand s be left
unscaled, then the cquations will remain consistent if modified as

follows:- _
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¢ P1 £ hoat Thus since x.has become nx, then t: become? n?t and rate
o} ow of heat per unit area becomea 1 at eorresponding
times). X Ja (h‘-/f)‘ (52.)

}

g The quantity of heat present per unit volume (at corresponding
t;mcs) remainsg walterad and thus the total quantity of heat present scales
&s the volume i.e, a5 o 2 i

The tofal hew’ fiux scales as the product {area x rate of
_ﬂow of heat per unit areo.) i.e. as mg.
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Appendix L, Variation of thermsl properties with
temperature

If, in Appendices 1, 2 or 3, thermal conductivity, Censit’
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and specific heat were functions of tciperature ,thcg in place of
and. s it would be necessary to write Kf(g), pFf (9)9\,,_41 sf "‘(99. !
Since-the quentity @is unscaled, these factors would appear unalteréd
in the medified equations and the consistency of the equations would _. ./~
e affected, Thus.variation'of these quantities with tenperk}-tgfe‘"‘
would not be incompatible with the.scaling as describeds = - -
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Aphendix 5. Presence of Water

The principal effect of the presence of water in o R
structure is that it absorbs heat as its temperature is raised and as

it is converted into steam. These two modes of behaviour are

described by the foilowing two equations:-

J1
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is the latent heat of steam

is the mass of water present per unit volume

and the remaining symbols are defined in Appendix 6,

BEquation (4

3) is of precisely the same form as one of the

conduction of heat equations and equation (14) is similar in that 1 and
{*’are not subject to scaling just as 8 , s andf) are not in equation (13).

It, therefo

re, follcws automatically that the equations will

remain consistent when scaled and that so far as the effect of absorbing
heat is concerned the weesence of water in a specimen will not prejudice
scaling,

KC.

X, ¥y and «

Appendix 6, List of symbols

Cartesian co-ordinates
Tine *
Temperature rise

Components ‘of heat flux, through defined
areas, in the directions x, y and z

?harmal'coqductivity

lﬁen;ify |

Specific heat

Latent heat of steam '

riass of weter present in a structure per
unit volume

Sceling factor applied to dimensions in
which there is a component of heat flow

Scaling factors applied to dimensions in
which there is no camponent of heat flow





