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Summary

This note investigates the relation be~leen the growths of
temperature in similar structures, of different sizes, heated under
comparnb.Le conditions. It shows that the dimensions in which there
1S no component of heat f'Low play no part in the thermal problem and
tlat, in the directio~ of heat flaJ, the times to attain any specified
t6cnperature at corresponJing points vary as the square of the
d~llensional scales of the structures. The square law relation is'
shown to apply where the thermal properties of the component materials
vary with temperature and wherc , with one exception, the effects of
corrtaaned moisture arc considercd. 'Various other effects are al~:o
examined.

The use of the B.S.476 time-temperature furnace curve in the
conduct of fire-resistance tests precludes the application of the scaling
relation to similar structures, since it requires time to be a soaLed
quantity. An empirical modification of the relation to avoid this
difficulty, and the extension of the relation to similar structures of
materials with different thermal constants, are described in two further
notes.
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This note inve~·tiu't0s the :,:,clation between the growths of
temperature in similar "tl·,;.~·"·u.;'·3S of different sizes, heated under
comparable cond.i.t i.ona , 'fL, .,:dation permits the r-esul.t of a time­
tcmperature problem ·~c l:,~. ~}:~"Y1i"ted for a given structure, provided
the result cf a s imilbY 1,.,'r'01"m on a similar structure of another

, scale is available. Th" -x!=,plication of the relation requires the
use of a time s caLe dependor.t upon the scale of the structure, in
order that the basic iI'oat transfer equations may be satisfied.
~here a ~rcscribed time-temperature function (other than a step
function) is applicd to the boundery of the structure the relation
cannot be used.

The relation applies to similar structures of different scales
having the same componont materials. It is not invalidated where
some thermal processes other than pure conduction are involved, for
example, the evaporation of contained moisture ~~d the convective-·
radiative transfer at interfaces where there is imperfect thermal
contact.

In two later notes, the relation is extended to include the
use of the time-temperature furnace curve prescribed in B.S.476 for
the conduct of fire-resistance' tests and the use of materials of
different thern1al.properties in similar structures.

Scali~f dime~ions iI! ..~':l!'e heat co~duction ~£!?lem

In a large number of heat conductri.on problems the solution
required is in terms of' tho time that must elapse before a specified
temperature is Eittaj.ueC: ·,t ~. T)~rticular point under certain condi t i.ons ,
and in this note oucl. ':;:e)1"'" ":8 related to the dimensional scale of' the
structure involved.. ~U: "('2.1e of temperature is essentially considered
to be invariant.

The r-eLatn.on b 0.,,:o.·i-,cc1 by applying scaling factors to several.of
thc quantities in til" oifferential equations governing the flow of heat
by conduction so t:lat the equations remain sat i.sf'Led, :r:t is ahown,
in Appendices 1, 2 and 3, that this is so if time is scaled as ';;he
square of the scaling factor n applied to linear dimensions in w:'.ich
there is a component of heat flaw. Other quailtities, including heat.
flux per unit area, also nced to be scaled, but'this doos not affect the
solution of problems in 'ilhich boundary conditions and results are in ter-ms
of ·t"mperature.

Dimensions in which there is no component of hea':; flc-.v· do no'; enter
into the th"rmal problem and it is shown that they may be scaled by any
convenient factors.

The follOWing is an example of how the square law could be applied
in solving a problem in which the flaw of heat in a structure is by
conduction only. Suppose the first structure considered be a 10 inch
diameter column, at least five feet· high, and that i~s exterior temperature
is raised to and lnaintaincd at 1,OOOoC. .Suppose that after i hour
the temperature uttaineri 3 inches from the surface in 400°C. Then :it
can be predicted that the temperature of 400°C would be attained at a
depth of 6 inches from the hce.ted face of a similar structure, of
diameter 20 inohes, su.bjoc';erl to the same conditions, in a time· of 2:~ x * =
3 hours. ~
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It should be noted that if boundary conditions are dcpendent on
time then in scaled versions of a problem, they must be dependent on
scaled time. The application of this statenent can be illustrated by
considering a slightly modified boundary conditicn in the example
already quoted. S~pose that the temperature of the heated face had ',
been ~aiaed to 10000e at the beginning of the experiment and then to .;
1 500 e after half-an-hour. Then the prediction concerning the .>J­

26 inch co'Lumn would have applied to the boundary condition-toot-the
surface temperature were raised to 10000e at the beginning :of the
experiment and to '1,500OC after a time 22 x half-an hour" 2 nours
had elapsed.

Variations of thennal J2!:~';ies with temperature

The properties, of a material affecting the process of conduction,
i.e. thermal conductivity (Ie), density <p) and specific h',at (3),
generally vary with temlJerature. This, however, would not affect the
validity of time-telnperature predictions made on the basis of the square
law relation. The proof of this fact is given in Appendix 4.

Phenomena associated with heat conduction in practicc

Most practical problems, described broadly as "thermal conductivity
problems", involve more processes than that of pure heat conduction.
The following is a list of thc more important associated processes which
might be involved, together with statements as to their influence on the
validity of the square law relation.

(a) Prescnce of water

If water is present in e. structure it affects transient
temperature di,stributions by absorbing hcat as its temperature is
,raiscd and as it.is ,convertcd to steam. It is shown in Appendix '5
that these two effects would not influence scaling. Tho fact that
water vapour occupies a greater VOlume than the same weight of water is
also compatiblc' witn scaling.

-It is founQ, ill fi~e~resistance tests, that water vapour migrates
·from one part of a ,,,cructure to Mother. Insofar as this is a diffusion
process, 'it shonlil again scale according to the square law relation.

Caviti8s and irrroCJrfeet thermal contact at interfaccs
===-_._-,--~_.. ,,--

In composLte scructures the thermal ccntact "t interi'llces is
never perfect and t ho heat transfer across the surfaces iYlvolves such
processes as radiatior.. In genercl, however, imperfect theL'mt.l
contact only amounts to the inclusion of a small thGrmal resistance in
a structure which already has a high thermal resistance and its effect
on scaling IT)EJ:y,' therefore, be neglected.

Imperfect thermal contact is the limiting case of the presence of
cavities in a structure; 'and where the heat flux through th'J cavities is
comparnble with the heat flux by conduction, their effect m,",,'~ 1:,0 -taken
into account. In any cavity heat transfer will be by radiation and
convection as well as by conduction. In Appendices 1, 2 and 3 it is shown
that heat flux per unit area'is a scaled quantity since it depends on
temperature gradient (()~x.) , and x. has been scaled. Radiative heat
transfer, on the otlwr p~d, is dependent on temperature difference and
configuration factor and it would, in practice, be impcssible'to scale it

.Ln the· manner required" The same may be said of convectnve heat transfer.

Where cavities ex:'s~ in a s tr-ucture , ther~::'o:":'C) their effect on
scaling may only be neglected if, from their geometry relative to the
s bructure , it can be seen that they do not play a subsserrbl aL part in heat
tI'anSfer.

(0) Cooling_to the atmosphere

As heat flux per unit area is a scaled. quantity, the existence
in a structure of cooling to the atmosphere is incompatible with scaling.
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Cool'i.ng frequently plays a vital part in the thermal behaviour of meny
structures and it would'be valuable if steps could be tc.ken to anew
~9alir~ in these circumstances•

....... '<, ......
~. .
TW~..:~.t steps arc pos sabLe, Firstly ';3he GCD1.tng :r:-elation can

be experimehtall,Y amended. The derivation of such an amendment :Ls to
be described in a later note where it is augge s ted t.:"8.t the power law
relating time and a 6.imension should be a little gr'''D:ter 'chan two.

Secondly. t ho ,ol.:.,f:,c8 ()~ a Rtructure to be tested could be treated
so that its rate of cooE:::,; is altered to represent that frcm the
structur'3 for whieh reg,~lt" :.:co to be predicted. The results would
not then refer to -0:18 n,:;::;;:'.rw:L unaltered struct"r0.. ThJ.s is £1. serious
limitation of the ~;eG:t';;:~ ;:,."c.

Oonc'Iusd.ona

If the times to attain specified temperatures at various points
in a structure .being heated by conduction are known, then the times
to attain the same temperatures in scale models of the structure IT,ny
be predicted, time being considered to scale as the square of linear
dimensions.

Processes other than pure heat conduction arc involved in many
practical problems such as these of fire-resistance. The more
important.,ones have been .considered and it has been shown that most of
them are ccmpatribIc wi th the. scaling described•

.: ." '. The relation can be applied to many fire-resistance problems•
.:;TWe serious liinitations exist however. Firstly, since time is a sca.Ied
quantity, ' ..the furnace temperature must follow a law based on scaled time.
Secondn.y; :'all waf.L and floor fire-resistance problems involve cool:lng
~o the atmosphere. which docs not fit in easily with the scaling relation

.described. In a later note the scaling relation will be experimentally
amended to allow predi"tions in these circumstances.

Appen6.lx..:....._.~~::.:c.lr:w; of three dimensional now of heat l!'y
c0nduction

equations: -:.
. The flc,w ,,:;' l·o'.,t by conduction is governed. by the following

and

"-: .. '-- (h)

~~)

-~~)

If x, y and Z be see.Led by tho. f;:,ctcr n whHst .i:.l, K, f and s be
kft ur...:>ca.led, then the eq.:.ations wi~l remain consistent if modifJ.ed. as
follows:- . . .

..
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'I

-- --- -(3 t)

_. ._- - ...- --(3c)

and

dh. ~:c ( J)l F. (' J'h. F t J ( ( df) II \a ,.;:~ 0 It:lC + j~;O"";rt",J .... 1.7. c)M. ,.. - FS. "oc.d ....g. dl\Z. c),,~t - '\t)
Thus since x, y and z have become me, ny and nz then t becomes '

n
2t

and rate of now of he,at, per unit area '~~~cf~ or Ft/1x..$t. or ~L4:z:....J.r. becomes.!. (F__ A ()~r}.. b:.~ h J..L.:!. {F. (Vat correspond:mg
tJ.:nes). n 7'(Jtd~. n v ~,/(}'J<./·n ~ x.dl'

The quantity of. heat pr aserrs per unit volume (at corresponding
ti.lll~S) is unaltered and thus tt~e total quantity of heat present scales
as the volume i.eu ilS n3•

. The total heat flux scales as the product (area x rate of flow of
heat per unit area) Le~ a e n2 x..!. =n,

n

Appendix 2. Scaling of two dimensional flow of heat
by conduction

If there is no component of heat flow in the z
dimension, then the flow of heat by conduction is governed by the
fol.1,Qwing equations:-

(
f,

and

where

fx. <r-K.J~ S~*
f ::.-Kd~ Jz....£!...1 ,..... J~

dt-~ ( ..d ,:tV J' ,( ( c J 9
d cJ oc 1-~, ~:. - p5 d x, dlJ-o d 1. -

x. va t1 .' a' d'"C
the symbols are defined in Appendix 6.

- ._- -'-' -- ~~)

-- - ~~)

If x and y be scaled by n aJ:ld ~ by m, whilst &, K, (.) and s be left
unsealed, then the equations will remain consistent if mCxfified as
follows:.
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(8')

- - - -(7tL)
-,~ (If.)

_._---_...''-.- Ill\. Fx.. = - K cf1I-'t.lm.~. ¥.
-~~, 'L' F ..... J Q J J~

. --\. 1"1\.. ;r:;' - ". l\,~. l"'-"Z. J1\.(t - - - - -.. -

dl\.T.+ .~~~r- d~l.-.- tls.J~ x.. Jht.d1)\l. ~~at ..--
Thus, since x and y have become nx and ny/ then t

becomes n2t and rate of flow of heat per unit areaF00.,Jz. or roy' -:f,,-Jz.
becomes 1 (e~~·.or 1 f,- /cr (,,) ( at corresponding timell). gl"O

-1-· -"'1'0:1(.0"n nx a .....

The quantity of heat present per unit volume.(at oorresponding
times) is unaltered and thus the total quantity of heat present scales
as the volume i.e. as n 2m. '

The total heat flux scales as the product (~rea x rate of flOll
of heat per unit area) i.e. as run x..1. = m, .

n

Appendix 3. Scaling of' one dimensional flo:!!,~Lheat

by conduction

If the heat flow is unidirectional and is along the x
dimension then the equations governing. the flow of heat by conduction
are: -

"~-(q)

and . . ,:.. .: "' .

dF, ', '. . - - r r" (' cJ p
J :,- (1)1. ,:-- fS rh .d~ ,cJ2..-;rt '- -~O)

where the symbols ~;e defined in Appendix 6.

If x be scaled n, y by g and Z by m, whilst @, K, Pand s be Lef't;
unscaled, then the equations will remain consistent if modified as
follows:-

and

of flow
times) •

:j~ F..<.,"'· ~ J1~ .Jrr.z. ~)(. ._-- .,M)
. d 3~ f:v. J (' ( (" de-
--,--- Jt. ~ - ps d 1\.1 O~'Y dl1\!: ~ . - - - - It-\

a 1\. .~ • a a. gil\.;' t \ "'.J
Thus since x has become nx, then t: become)! n2t and rate

of heat per unit- area ~J,becomes ~(f'-"-/JdJ2.)~at "orresponding

. The quarrtd,ty of heat present per unit volume (at curresponding
times) remains unal"ter"G. IL'O. -:hus the total quantity c:-f heat present scalesas the vo.lume i.e. as ~~. g ill o

The total h0""~ f':iux scales as the product (area x rate of
. flow of heat per unit area) i.e. as.!!!B.

'n

Appendix 4. Variation of thermal properties with
temperature

If, in Appendices 1, 2 or 3, thermal conductivity, d.ensH'(
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and specific heat were functions of tcqpcrnturc ,tlu::n in place of
Ir p and- s it would be necessary to write Kf(IJ) , pf'(ti)'M--J. sf "le\·
Since,the quantity6is unsealed, these factors would appear unalter;(d
in the modified equations and the consistency of the equations ·would ~;,./.

not be affected. Thus ,variation'of ,th~se quantities with temper~~
would not be incompatible with the,.scaling as described.. . ,

Aplocndix 5.' Presence of Water

The' p~~~~~~al'effect'of the presence of water in a
structure is that it absorbs heat as its temperature is raised and as
it is converted into s te arn, These two modes of behaviour are
described by the fol1craing two equations:-

dF,<.(' JF ( ,.'; ( IJ" ( ( d9
and ()~.'()~-()r~ :;o~...(,)z.. fO -p JL.Ot· Oz. It' ." - -

.)~< elf (. of.... r J r ( dt"J'-Ji:'" clx t" 11 ('0 + ~ cIz, :::. - 1. JC.. (/ J" ell:., "rt ." - .. -
Where 1 is the latent heat of steam

:.. I,'

i' is the mass of vlater present per unit volume

and the remaining symbols are defined in Appendix 6.

•• Equation (13) is of precisely the same form as one of the
conduction of heat equations and equation (14) is similar in that 1 and
f'are not subject 'to scaling just as & , s and£> are not in equation (13).

It, therefore, follcws automatically that the equations will
rernain consistent when scaled and that so far as the effect of absorbing
heat is concerned the ~0sence of water in a specimen will not prejudice
scaling.

..~ -"

KC.

X, Y and >:

t

e
F F and]'x, y z

K

f
s

1

n

m, g

~ppendix 6. List of symbols

Cartesian, co-ordinates

Ti.':lC .

Temperature 'rise

Oomponents 'of heat flUX, t.hrough defined
areas, in the directions x, y and z

Thermal' conductivity

Density

Specific heat

Latent heat of steam

ri".ss of ~f,t€',~ prosont in a structure per
unit volume

Scaling factor applied to dimensions in
which there is a component of heat flow

Sca.ling factors applied to dimensions in
which there is no ccmponerrb of heat flow




