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SilllJMARY

Merzhanov and Averson1 have recently reviewed thermal ignition theory and,

in particular, the various approximate theories for calculating the time at which

thermal instability leads to large rises in temperature when the surface of a

self-heating material is subjected to a constant thermal flux. Subsequently,

Bradley2 showed that his computer calculations corresponded in effect to a mean

between two simple conventional results, and Linan and Williams3 have derived the

same relation. This was of a form different from previous ones, viz:

'/1.f-e o

where Cf is a dimensionless flux

and eo is a dimensionless temperature rise dependent on 6 and the time,

which is thereby found as a function of ~.

This paper shows how a simple approximation to the conduction loss term in

the basic differential equation can lead analytically to this result, agreeing

within 1 per cent with Linan and William's result obtained by a different

theoretical development.
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The approximation described has already been used to obtain an analytic

cri ticali ty condition for simple hot spots4 and the main interest of this paper

is the application to surface ignition.
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1. INTRODUCTION

A material capable of self-heating may behave in various ways according to

how it is heated. If a small part of a large volume of such material is itself

heated to a much higher temperature than its immediate surroundings, it may not

be able to lose heat by conduction fast enough to prevent its temperature rising

significantly to produce ignition. A small volume of material, self-heating in

this way, can be described as a thermal 'hot spot.

If a large mass of self-heating material is held in sufficiently cool inert

surroundings but is not initially hot itself, the material may reach a steady

temperature above its surrounding. A runaway temperature rise in sufficiently

hot surroundings is variously described as a thermal explosion, or spontaneous

ignition.

If the material is heated more quickly, ignition can occur at the surface

and the interior of the material plays no part in the heating; its only role is

that of a heat sink.

These three kinds of behaviour have been reviewed in detail elsewhere1,5,6

and this paper is concerned primarily with one particular feature of the theory,

namely, the extension of a simple approximate method developed by Thomas4 for a

hot spot to a certain class of surface ignition problems. Like many of the other

approximate methods reviewed by Merzhanov and Averson1 the method is satisfactory

for the continuous heating of a surface by a constant flux, but fails for

continuous heating with the surface maintained. at a constant temperature. For

the constant flux condition the method readily yields results for the critical

condition which are in almost exact agreement wHh a formula proposed by Bradley2

to represent his computer calculations and which was later derived by an

approximate analysis by Linan and Williams3• Bradley considered a pulse of finite

duration and Linan and Williams a continuous flux. This latter treatment requires

one detailed numerical integration: what follows is an approximate but entirely

analytic and simple derivation of virtually the same result.

The interest in this paper is mainly in the demonstration of the wider scope

of the method of approximation rather than any new physical and chemical insight.



2. THEORY: APPROXIMATION AND ' INERT EQUIVALENT'

We consider a semi-infinite volume of material of constant and uniform

properties for which the differential heat balance is written as1,5

........ , (1)

where & =

is activation energy

is freCJ.uency factor

is density

is specific heat

is thermal conductivity

is time

is distance from the heated surface.

is universal gas constant

heat of reaction

is a reference temperature to be defined and evaluated below

<L e: ! cR{ ~ ;-~(R:rl J/'L '><­

\: K"(( ~'-
is absolute temperatureT
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where

and

We shall consider first a boundary condition

so that - 0
<,=

where
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The initial condition is

. . • • .. (3)

i.e. --
where for convenience QDo

Le·(9D

is defined as a positive quantity

is the dimensionless temperature excess over the ambient temperature of the datum

temperature defining ignition.

It must be remembered that 1";' is as yet unspecified and we now define it by

The imposition of some ignition criterion, say

solution of -the form

or

where ('t'e, """

-l-To _. 2..94: J+(.C(fc:I

~r\ •

&0 n~~"
O.OCleo (4)-

is the value of ~ at ignition.

e ~C1
~ CO -~ C etc gives a..

/02-

so obtainlng ~ and

From the nature of the definition of ~ in terms of the Arrhenius term one

can see that ~ is relatively insensitive to differences in 0'. That is,

significant theoretical differences in estimates of ~ may be tolerated in

practice because they may not imply much error in the estimate of ~ We now

proceed to obtaining an approximate solution to equation (1)-(4).

Because of the boundary condition, (equation (2)) it follows that, unless the

temperature has a minimum (and a maximum) internally, the maximum temperature is

at the surface. The former requires two positions where ~~.~'-iS zero but

without any formal discussion of this possibility we shall consider only the

possibility of the highest temperature being on the surface.

- 3 -



• • • • •• (5A)
,."

We now make the approximation that has been made by Thomas4 for hot

d~-
~ 2'2--

spots.

(6)

( 5B)·......

·......
e­

-.e

satisfies

and *'
where '~

so that ~
0"('

·lfJ is a temperature rise in an ine~t solid and we seek a boundary condition

ana1agous to equation (2) which is consistent with this formulation. We are in

effect regarding the conduction loss from the reacting material, ~ot anything else,
-.~

as unaffected by the :~eactivity, and it must be "remembered that ~ is not the

temperature in the same equivalent inert material heated in the same way.

Equation (1) can be differentiated
l;) - .

- ~(~) · . • • .• (7)

From eCluations (7) and (2) it follows that

i.e.

­'-

( 9)

(10)

• • • • .• (8)

·......

.......

- 4 -
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T- ~,) - Oel- J e.C)~~)
ds ""Z- (:) ~ ~

Appendix 1 deals with a flux varying as .-"t ( ~...,b) .

Equation (6) has the solution4
. \{/-So

c.Q

and

Hence



The equation for~'l is linear in terms of + ,e and 8 0 and some

development in terms of the Laplace transform is possible, but we shall not

pursue this here.

It may be pointed out here

all exact if ~ is defined by

•• ' -r • -, - •.:.•:~.~I t" :.::~~:
-:,.: ' :~ ;

., .. .' -~~

that the equata ons above, given equat i.on (1), are

J
'(c'~ cL7­
J 21- •

e

without involving the constraint that tt' is a solution for an inert solid. We

shall discuss some mathematical aspects of the approximation in Appendix 2.. .

From eCluation (10) we· see that an infinite temperature on the surface means

that - dyaZ, beginning as 0 could fa1.J. to zero and become negative. Heat

is then abstracted f:.~om the 'inert equivalent' at?-d ~ coutd. become negative.

For an inert solid it follows from Carslaw and J·aeger7.that, if tf" satisfies

equa t.i on (5B)

I-vrr
so that from eCluation (8)

'T >"9-o-1-e do;>.) Jj;>,
t.t'.,.~ - 0-

\f(f. i 't - (to..
;)

rt' o-- ~R -~J J'(-~ e &.-~ (12)

iff
••• 'iii '" d

Urr '0
1'""

~JT-.£J..L ~. \J'i' > • clA. (13)

.~ {1f ~~ .
I."l-'-~

'2- "&J>.
D ~

where C't..,..l ( is defined by

j
~ If'-c9..

e d.A
b

"= I

- 5 ~



3. pRITERION OF IGNITION

=/

Clearly on this model infinite temperatures result when

'?-

1 .'I--c.9.
e d,p.

c=>

• • • • •• (14)

and this defines the value of '?i;,... (= '7; ) required. From equations (8) and

(11) this condition is equivalent to

dlf'
--.c...

d"2
However, we so far only have an integral equation for defining Y- A

first approximation is

with eo defined by

(14) results in

(~~~
\/iT

~(~)

~5q·
I(oorr-

[)='>"";> ) equationand for large

• • • • .• (15)i.e. WJ~D~'
which from the discussion by Me~zhanov and Averson1 appears to be too high,

presumably because we have used an estimate for ~ •

Now equation (12) with ~~al to~ also gives an upper limit to &4-­
Clearly as e rises to infinity ~ inust fall rapidly. Extracting heat from a

surface at infinite rates leads to infinitely high rates of fall of surface

temperatures, though a priori we cannot distinguish between the behaviour of Fig.l

and Fig.2.

To obtain the behaviour following Fig.1 we would need a discontinuity in

~Id"2.. but OY~'\:."Lis continuous so without formality we presume that 4--'
falls to zero before ~~ is reached. Hence an alternative method of estimating

rt;~.<. is to take "f.'-=-O as our criterion. This is a better approximation than

~.O which is reached earlier (see below).
0<"

- 6 -



With t\ +-(} -= ~ in
I;io vr

and ~"I defined by &t:> ~

equation (12)

i.e. we solve

0=

Since the peak of the integrand en the r s hva , occurs when ~ -"? 1'"... we put

....... (16)

in the index of the exponerrti a.L term and obtain

--

....... (17)

This is the result being sought. We shall refer below to this value of 0 as 0"''-'
4. COMPARISON WITH OTHER RESULTS

(8 )

the right hand side leads

It is possible to write, from equation (6)

q- -= e- + €Ie ~ 17"-E'.13ct ~

but putting &-t-& -::: ~as an approximation on
o 171\ »:

(for 'f'....:;>O) to O~ JfiI'2..- . It is d (~'Z. which is specified so equation

is preferable.

The condition C~~.,:: 0 is similar to t~t used by some other writers 1 ,8,9.

In the notation of Merzhanov and Aver-son 1 it is 6:::.0. Used with equations (9)

and (10) it gives

as the criterion for

Jrt:,; 't - c9.,
-e dk\--=-

z>
infinite temperature rise.

- '7 -



8.
b

-t ' _. ' l

for typical values of

equation (14) this gives

e _'Y.'L
~-U

With the approximation of

which is a relatively high value of
i

The .condit~on ~~~ 0 is also of interest. This gives .~ higher value

of 0 i. e. a lower ignition temperature

6 '<'- (:~Ji!t):V'fe.,l/'f =

For ~'::::'"J.o, 6';..:= 2.96, which compares favourably with the·valuel!3

reviewed by Merzhanov and Averson 1 •

We have followed the conventions and/in the main~the de~ails of the notation

of Merzhanov and Averson and their procedures for dealing with the limiting case

of R~/E..-= 0 "

Bradley and Linan and Williams also deal with the case of high E: so that

their results like those of Merzhanov and Aver-son do not involve --rc; as an

absolute temperature - only as part of a temperature difference. However, many

of the variables used by Bradley, and Linan and Williams, i'nclude -r:; as an

absolute temperature (the results depend on: combinations not involving ~ ).

Table I shows some comparable notation.

Table 1

Comparison of notation

Terms as used by Equivalent in
Bradley if Linan and Williams the notation of

this paper

A K~ evt / '1--"-

eo "Ito
-r- 9r-1"J.. ~t.

(}("-r;) c-

E'le ~/fZ.T

-:z:.~ '}2--r;2. '" EJ(4,

5 (jY ~
~ K\;2.~fe ~

. .

'k~'
. . . . .... . . .. . '2:... . . .

o« -co R~
\E-~
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Bradley's

and for ~C7-o

solution lJ""B may be written in the notation of this paper as

~ ~ ~tte~/~ -=

; 20 this gives

Linan and Williams obtained the same result as Bradley except for a coefficient

0.65 which was obtained by numerical integration. They formulated the problem for

continuous heating, not a pulse as did Bradley.

In this notation their result is

Hence

Thus the results of Linan and Williams and of this paper agree even when using

a sensitive measure of 6' rather than the actual igniticn temperature.

These results all compare favourably with other estimates of 0 (see Merzhanov

and Averson1) but add little or nothing to accuracy and perhaps nothing to the

physical picture except there is a different dependence of 0 on be::> from all

other results except those of Bradley, and Linan and Williams. Another method giving

0"" (r@~)'("is described in Appendix 3·

The difficulties for an approximate treatment of the indefinite exposure to

constant temperature are discussed by Merzhanov and Averson whose own work shows

that the dependence of C(1~ on ~o for a continuous source is somewhat weaker
'l..-

than Eto . The essential diffic~lty is that the position of the ignition is not

known a priori and it cannot take place on the surface if this is defined as at

constant temperature.

5. DISCUSSION AND CONCLUSION

The method is subject to the same limitations as several other approximate

methods and the continuous constant surface temperature boundary condition cannot be

dealt with. The approximation of the transient heat loss in a reacting material to

that in an inert material with a modified boundary condition. gives, by a simple

- 9 -



development, results agreeing with more detailed theories and in particular it

agrees with the form of the critical parameter obtained empirically by Bradley

and with theoretical support by Linan and Williams for the constant surface flux

condition.
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APPENDIX 1

A varying surface flux

Equation (7) has the solution

-(~) ~ O(l)
(;2- ~

where now 6' varies with qJ'1:)
-

Let
bC~) elr-... ".

J' ~-'?--. -

Hence our required solution

Therefore, since the important par-t of the integral arises when ~ ~ ~~

and

Thus if

O(~5) /(',cl6-\~2.- (~ '> ~ \
\Jf1:-Jr~ ,.etC{ )

A~

-= ~ \(C\+\)

t'~+"¥7-)
- 11 -



and hence \

When as obtained previously,

It is this similarity in the forms rather than the difference between the

~onsta:nts (\\/'2-5/t and unity that is significant.

- 12 -



APPENDIX 2

We shall here examine SOme aspects of the approximationn

The 'Hot Spot' problem includes the surface heating case if

Firstly, we define an approximalion appropriate for the 'hot spot' and

write

,Then, exactly

-- +

and

-- 1ft ~~~o~~+~~~~~

- \ _ ('l'€-*-9dJ>..

J
.e'f--Jl", M ~

d. '2.
=:"

- 13 -



has a continuous zerowhere

1 - f-e i.f-&" etA

d ~2'f- initially increases from zero with

-- ,.. 1-

· ~f
It folows from the above that -:. 0

O"l..
i.e. at the axis of symmetry.

Hence at the axis of symmetry but not near boundary except

Since I.f'<:g;:. 6)0 and' since

time, we have for short times at the centre

/ --T
--

~-:rtV~5\*J~:*~
\

d'-P d~ d"f +-C '"---.. -
~ i'>-oT o?-~

d*'
1..

or "d.'t9 0'+-c::.. -1. -C" -....oy 6"2 b '2.- '\..
So we consider

d~ d~
Hence the approximation of CO '2,....'l.- to ~ 2........ is reasonable for short times.

On the otherhand inste~ of under-estimating the conduction losses we can over­

estimate them and put

or 1-( -'f'

and provided the initial boundary condition remains the same for ~ as for "r
we can define a ~ &vvet.--.. ~ ,

- 14 -



--

where

The sufficient condition for

K-~L.

. i t i (4-)
1.gn1. 1.on 1.8

c9o - '\f
.~ ~ e.

I- ~~Aj -e..
6.-

~T

f I .
i.e.

\ ~'" ~l(f)
-'l c.9o-~-e A ~ l -<- =-~

_~f
~

-e,

This gives no result (i.e. ~C}
d'T

is always same sign) 0

Hence this approximation has raised the' heat loss so much that all results

with it are subcrltical.

In'surface heating ~~~~~iS positive so we over-estimate heat loss

(under-estimate heat gain)' by our approximation and we· shall therefore make

estimates of the ignition time which are too long and our estimate of &0
will similarily be too large. For a given \- we under--eat imat e (!f by

the approximation.

- 15 -



APPENllIX 3

On the Linan -' Williams treatment: an integral method

Linan and Williams employ a method of expanding various terms as a series

, in C,ll/""'~.f which they treat as small to obtain asymptotic solutions

for large E and they derive the form of the solution which in our notation

is

A constant in the expression is evaluated by numerical integration.

As explained above, the conventional Frank-Kamenetskii approximation
Ii> T~ {fL, ~, 0to the Arrhenius law gives an equation which is appropriate for I", - Ie:.......,..

This equation does not, however,. then appear to permit expansion in a series

of powers of tT(T0J~Tc> I~ ,

Linan and Williams point out that the equation they derive for computation

can be written in integral form and it is on these lines that we proceed here.

It is possible to write down by the methods of Carslaw and Jaeger the

+

This gives G
heat generation

in terms of the surface gradient
III

rate C) so that here ;; write

~, til

__ ~\ =-0
0'2.- )",

- 16 -
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-
~.o f%(

~J"t" + -L d~
8~) - -Z:ik-_~)

Hence B= ~ ·4
~tfr \[Y-r. .'.t:o

~~ o U

Now here we can follow Linan and Williams and use the inert. soluti~~ eLas'

a basis for E} but on the right hand side we need the solution as a
(

function of ~

We employ

where ¢

This is in ef'f'ect the series used by Linan and Williams (they linearize (~)

~ 'L
uG

I)('lt.)

e and we have a term in

which is

.J2. :=:=-----

and the integration

in the last term.
I) .

Now because.e is used in the form

we can neglect ~ 19 7::.
~ ).

by comparison with ~~Z-

4-t\---}-.)
In our problem d r9 "'::=. _ is'

R

becomes

i.e. d ~.T cr'1:r-'l'--) ,--~, )cr:~ -60

If ~ ~ e. ..Jttr. S.J -r--)o.....e.. -e \,.J { ~

where, because ~is an increasing function of ~ , we are primarily

concerned with the region ?. r-. 1"

- 17 -



We have not expanded about the ignition temperature though we have

defined eo+-e in terms of it, but we now consider "r- ~~ '£:
and write

Hence we have as an approximation

where ~ -.::: «"-r

which is convergent at large ~ '

The right hand side can be integrated exactly

and hence

.J ...-e_ t
tp -e -=:. ·-O-(~,,~~t:-77"\'VL--+--:;r~7"'\e-

The denominator of the right hand side~ay=b{ re-wri tten as

;r."2- (..L etJJ~ "2- ~l
-= 6 ~ "-D,,+&. ciSJ \ "'lTt&6-l&,) eW~J

where .Go T6)~ the 'inert' temperature rise.

The second term _ \ ~

& 16ll c:Q.£> (

- 18 -
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inert material •

that is,

material

until

Je
the actual incremental temperature rise in a reactive~

is of order eot-5, times Je~ which occurs in an

This clearly is very close to any mathematical definition

.of runaway temperature rise so we can approximate

In obtaining an approximation we also neglect

finally obtain

This is Bradley's ·result.

- 19 -
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FIG.2.

8 AND <jJ' BEHAVIOUR






