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SUMMARY

Merzhanov and Avers on1

have recently reviewed thermal ignition theory and,
in particular, the various approximate theories for calculating the time at which
thermal instability leads to large rises in temperature when the surface of a
self-heating material is subjected to a constant thermal flux. Subsequently,
Bradley2 showed that his computer calculations corresponded in effect to a mean
between two simple conventional results, and Linan and Williams3 have derived the

same relation. This was of a form different from previous ones, viz:

G < &

o

where O— is a dimensionless flux

and 99 is a dimensionless temperature rise dependent on Cj- and the time,

which is thereby found as a function of ‘5—‘

This paper shows how a simple approximation to the conduction loss term in
the basic differential equation can lead analytically to this result, agreeing
within 1 per cent with Linan and William's result obtained by a different

theoretical development.
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The approximation described has already been used to obtain an analytic
criticality condition for simple hot spots4 and the main interest of this paper

is the application to surface ignition.
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1. INTRODUCTION

4 material capable of self-heating may behave in various ways according to
how it is heated. If a small part of a large volume of such material is itself
heated to a much higher temperature than its immediate surroundings, it may not
be able to lose heat by conduction fast enough to prevent its temperature rising
significantly to produce ignition. A small volume of material, self—heating in

this way, can be described as a thermal 'hot spot.

If a large mass of self-heating material is held in sufficiently cool inert
surroundings but is not initislly hot itself, the material may reach a steady
temperature above its surrounding. A runaway temperature rise in sufficiently
hot surroundings is variously desecribed as a thermal explosion, or spontaneous
ignition.

If the material is heated more quickly, ignition can occur at the surface
and the interior of the material plays no part in the heating; dits only role is
that of a heat sink. '

These three kinds of behaviour have been reviewed in detail elsewhere1’5’6

and this paper is concerned primarily with one particular feature of the theory,
namely, the extension of a simple approximate methed developed by Thomas? for a
hot spot to a certain class of surface'ignition problems. Like many of the other
approximate methods reviewed by Merzhanov and Aversop1 the method is satisfactory
for the continuous heating of a surface by a constant flﬁx, but fails for
continuous heating with the surface maintained at a constant temperature. For
the constant flux condition the method readily yields results for the critical
condition which are in almost exact agreement with a formula proposed by Bradley2
to represent his computer calculations and which was later derived by an
approximate analysis by Linan and Williams?. Bradley considered a pulse of finite
duration and Linan and Williams a continuous flux. This latter treatment requires

one detailed numerical integration: what follows is an approximate but entirely

analytic and simple derivation of virtually the gsame result.

The interest in this paper is mainly in the demonstration of the wider scope

of the method of approzimation rather than any new physical and chemical insight.



2. THEORY: APPROXIMATION AND 'INERT EQUIVALENT'

We consider a semi-infinite volume of material of constant and uniform

properties for which the differential heat balance is written as? »9

=

>2™

where 9 — "—E_%Z__(T—T‘)

— e —ERT
\ = <
. fc ‘ ,—("7.

<~ = @#Eé_é/m' ‘/"-x_
TR

L

where T is absolute teﬁlperature
_ri is a reference temperature to be defined and evaluated below
E is activation energy
ﬁ is universal gas constant
Q is heat of reaction
% is frequency factor
f is density
C is specific heat
"( is thermal conductivity
/t is time
and @?% is distance from the heated surface.

We shall consider first a boundary condition
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The initial condition is

T=To = T, s O

i.e. 8 - ___90 GJ\ ,b"':..o

where for convenience 80 is defined as a positive quantity

i.e. .@D = %LQ—(’( "_—(_;)

is the dimensionless temperature excess over the ambient temperature of the datum

temperature defining ignition.

It must be remembered that 'T; is as yet unspecified and we now define it by

1T <
or | 9 — ;Lo—ﬁ. ceoene (4)
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where | ( 5w 1S the value of “T" at ignition.

o

The imposition of some ignition criterion, say 9-—9 oo ~aL—§«- O etc gives
—

solution of the form
&= &(&)
80 obtaining —T‘- and cl‘j\—»'
From the nature of the definition of (_’f in terms of the Arrhenius term one
can see that .T,' is relatively insensitive to differences in & . That is,
significant theoretical differences in estimates of (¥ may be tolerated in

practice because they may not imply much error in the estimate of *'l_' . We now

proceed to obtaining an approximate solution to equation (1)-(4).

Because of the boundary condition, (egquation (2))‘”11: follows that, unless the
temperature has a minimum (and a maximum) internally, the maximum temperature is
at the surface. The former requires two positions where o ézq"is ZEero buj:
wi‘.;hout any formal discussion of this possibility we shall consider only the

possibility of the highest temperature being on the surface.
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We now make the approximation that has been made by ’l‘homa&u4 for hot apots.
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where L{/ satisfies

and L(/ is J— (9|> a$’ “t_ =0
so that éajff — Agﬁﬁgi. — .....; (6)

o ST
L}/ is a temperature rise in an inert solid and we seek a boundary cendition
analagous to equation (2) which is consistent with this formulation. We are in
effect regarding the conduction losg from the reacting material, not anything else,
as unaffected by the r~eactivity, and it must be remembered that q/ is not the

temperature in the same equivalent inert material heated in the same way.

Equation (1) can be differentiated

d% 3% _ o[\ _ Sae o
T yTor 27 bz) (62) """"

From equations (7) and (2) it follows that
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Appendix 1 deals with a flux varying as (\f ( M?U)- ‘ S

Bquation (6) has the solution4
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The equation fou:‘CJL /'dz is linear in terms of *(/ , B  and ec, and some
development in terms of the Laplace transform is possible, but we shall not

pursue this here.

It may be pointed out here that ,Ehe equations above, given equation (‘I), are
O AR
all exact if \J' is defined by 39S Y
1 L)
o2

©

without involving the constraint that t{/ is a solution for an inert solid. We

shall discuss some mathematical aspects of the approximation in Appendix 2.

From equation (10) we-see that an infinite temperature on the surface means
that “3%2, beginning ° as & could fall to mero and become negative. Heat

is then abstracted from the 'inert equivalent® and \‘/ could  become negative.

For an inert solid it follows from Carslaw and J-aeger7_that, if q/ satisfies

equation (5B) . T : - |
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Y y-a

6



3. CRITERION OF IGNITION

Clegrly on this model infinite temperatures result when

OTL// S
e td/e\ = / cenene (14)

=

and this defines the value of i (=<7 g ) required. From equations (8) and
(11) this condition is equivalent to '
¥ = o
S 2
However, we so far only have an integral equation for defining HC, . A

first approzimation is

(o 9\

with 80 defined by 5
T

and for large 85"5?)equation (14) results in

. (25 -

|

i.e.

—— ceee.. (15)
g = \T |6~

which from the discussioh by Merzhanov and Averson! appears to be too high,

presumably because we have used an estimate for L[/

Now equation (12) with ei:@q%al to 36‘,}5 also gives an upper limit to & .
Clearly as e rises to infinity \(/ must fal?- rapidly. Extracting heat from a
gurface at infinite rates leads to infinitely high rates of fall of surface '
temperatures, though a priori we cannot distinguish between the behaviour of Fig.i

and Fig.2.

To obtain the behaviour following Fig.l we would need a discontinuity in
<X
/a 2 but aqz(d/a 2> is continuous so without formality we presume that
falls to zero before ¢ F'e‘ is reached. Hence an alternative method of estimating

(}’ is to take f/=O© as our criterion. This is a better approximation than

L&
% = (O which is reached earlier (see below).
T



With &'{"6":'- ;\T___nﬁ—rr}_‘ in equation (12)

and E}:ﬁ defined by 8‘9 = 2—43’_![’?&_-
r

i.e. we gsolve

0= Q’S\r‘“‘*-—i < LT"‘E T —a M
"

Since the peak of the integrand on the r.h.s. occurs when 2\‘\? C\r"ﬁ we put

HF:’____ E’T‘ (\ — T =™ ceenene (16)
L D Ty

in the index of the exponential term and cbtain

L - 25 Qm)tf

ey T 2T

3
f“& i\__ - 901(((, (17)

This is the result being sought. We shall refer below o this value of () as (5:[.
4. COMPARISON WITH OTHER RESULTS

It is possible to write, from equation (6)

4= &+ 89, — irre.gam

but putting 9{*{9 Mas an approximation on the right hand side leads

for\%‘)o) to (5?'*-— DZ‘ « It is ‘)%Z which is specified so equa‘tlon (8)

is preferable.

The condition ( ; 2 T ls similar to tha‘t used by some other wr1ters1’8 9

)
In the notation of Merzhanov and Averson| it is (5——0 Used with equations (9)

T o« o
J P P TS P
o

as the criterion for infinite temperature rise.

and (10) it gives
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With the approximation of equation (14) this gives

r }
Lo -2\
2 ° e-i

which is a relatively high value of O’ for typical values of @b

The condition E—Y— ig also of interest. This gi\fes a higher value

of {§J i.e. a lower 1gn:Lt10n 'bemperature

(zﬁl Yot — 1238

For é;::o(zo, 6,:(. T 2.96, which compares favourably with the-values

reviewed by Merzhanov and Aversonl.

We have followed the conventions a.nd)in the main the details of the notation

of Merzhanov and Averson and their procedures for dealing Wi“l‘.i’l the limiting case

of Rﬁ/}f__:‘o

Bradley and Linan ard Williams also deal with the case of high E so that
their results like those of Merzhanov and Averson do not involve 1o as an
abgolute {emperature — only as part of a temperature difference. However, many
of the variables used by Bradiey, and Linan and Williams, i'nélude_ Vo as an
absolute temperature {the results depend on- combinations not involving (o ).

Table I shows some comparable notation.
Table 1

Comparison of notation

Terms asg used by Equivalent in

Bradley 3¢ Linan and Williams the notation of
this paper

A KEQ‘F/C{"‘
S, T/

Rt
(P. q/k<(o)l

E'/e = /R

zﬁq(z-“r& bl/ﬁl
o
P oax |[VREERE

o any
=




Bradley's solution CSES may be written in the notation of this paper as

o~ @et - [Fe

and for Eib 20 +this gives

8%%3, = 213337

Linan and Williams obtained the same result as Bradley except for a coefficient
0.65 which was obtained by numerical integration. They formulated the ﬁfoblem for

continuous heating, not a pulse as did Bradley.

In this notation their result is

- T S
F]TZi — O0-b5 -—ll—- égﬁb

r—l--»

RJ2

- Oe
\/ﬁg‘

Thus the results of Liran and Williams and of this paper agree even when using

Hence

osl

a sensitive measure of 65— rather than the actual ignition temperature.

These resulis all compare favoursbly with other estimates of S (see Merzhanov
and AversonT) but add little or nothing to accuracy and perhaps nothing to the
physical picture except there is a different dependence of S on éEk, from all

other results except those of Bradley, and Linan and Williams. Another method giving

(7T1§k?) is described in Appendix 3.

The difficulties for an approximate treatment of the indefiniie exposure to
constant temperature are discussed by Merzhanov and Averson whose own work shows
that the dependence of 6719 on E} for a continuous source is somewhat weaker
than E} « The essential difficulty is that the position of the ignition is not
known a priori and it cannot take place on the surface if this is defined as at

constant temperature.

5. DISCUSSION AND CONCLUSICN

The method is subject to the same limltations as several other approximate
methods and the continuocus constant surface temperature boundary condition cannot be
dealt with. The approximation of the transient heat loss in a reacting material to

that in an inert material with a modified boundary corndition.gives, by a simple

- 9 -



development, resulis agreeing with more detziled theories and in particular it
agrees with the form of the critical parameter obtained empirically by Bradley
and with theoretical support by Linan and Williams for the constant surface flux

condition.
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APPENDIX 1

A varying surface flux

Equation {7) has the solution =

_(g_;_el = ST — S:cs(;\)_ e dh

where now 6 varies with q/(rb

~ L -
Lot ‘ w/ _ _L_ oM™ GQ?\
& = Jr

Hence our required solution

'U(:O:'\(;ﬁ"%"

iy

K}'S
.L —-\(@"m) \((é) :

Therefore, since the important part of the integral arises when 'A -— ﬁtl,g

“((’"@ = (F: MQH S

- Lk@g)t 0_((9 ("'ﬁl (i_: >QJ

0O = 'AYC\(V wS> O

T Tfﬁm

(a4 (,b“‘.’ VL
lle2) =
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: 32
\‘/‘/ T [(wh) \

D | i)™

and hence Cj—-

(

| 5 .
When =0 O“/<(‘/+z (‘_ﬁ;) T 2 obtained previously,
J > o
imen W — CO CS/ e \
=

It is this s1m11ar1ty in the forms rather than the difference between the

consta.n‘bs (“/?/)/1. and unity that is 51gn1flcant

- 12 —




APPENDIX 2

We shall here examine some aspects of the approximation.

The 'Hot Spot' problem includes the surface heating case if (/ ) — &

Firstly, we define an aspproximaiion appropriate for the 'hot spot! and

T _
o= B, -+ J %1914’(\-

write

Z

(= 5(* ‘94.\3

@-
9 =3¢
'Z

Then, exactly

and

i 2
\k"éla
a2
N 'T' 3 fﬂlD:>
l,_..f 2 U
D



Tt folows from the above that —- = where é_— has a continuous zero
i.e, at the axis of symmetry. ' “
Hence at the axis of symmetry but not near bounda.ry except where \F is low,

&%: 5i9 _ bl«_(/ ] %’_&f a?%d«}owv
)T 27" > L 2R

Since Lk‘(( (.99 and since a ‘yz initially increases from zero with

time, we have for short times at the centre

CDZ ? c 3 ___%_7:_9
-—-'-1<-<-%_‘2°<-—5_?”+q“_ 22

o 2 2 . I
? T
o & o4 .
Hence the approximation of (::o-g} 0 >z~ is reascnable for short times.

On the otherhand instead of under-estimating the conduction losses we can over-

estimate them and put

? D% L(/—-@o e AA
3¢ 2 - 2 (MJ
o7 D2
or @i’ B_”-‘_\g — acp _\
v 52 >z ((~7)

So we consider

| > S=2*
(
or éﬁf‘ -:a-\w._» LS bae ’\(':1%‘__
DT
and provided the initial boundary condition remains the same for ‘?' as for 7~

we cahn define a L‘/ s el M
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L

?

ko (D)

~BRT

where A - " Q% %“ al
| kc&’t_ﬁ—

The sufficient condition for ignition is

o T

] .
1e€e ..fT Q-
{h -

Jo

This gives no result {(i.e. et is always same sign).
QT
Hénce this approximation has ra.lsed the heat loss sc much that all results
"with it are suboritical. ' -
. g/».. NI

- In surface heating o2 1s positive so we over—estimate heat loss
(under-estimate heat gain)' by our approximation and we-shall therefore make
estimates of the ignition time which are tuvo long and our estimate of 8‘.,
will similarily be too large. ¥For a given % we under-estimate @& by

the approximation,

- 15 =



APPENDIX 3

On the Linan — Williams treatment: an integral method

Linan apd Williams employ a method of expanding various terms as a series
in CTT]/LTQ)IFEEZE which they treat as small to obtain asymptotic solutions

. for large E and they derive the form of the solution which in our notation

6w« o

A constant in the expression is evaluated by numerical integration.

is

As exblained above, the conventicnal ?rank—Kamenetskii approximation
"to the Arrhenius law gives an equation which is appropriate for Fi71> /E; —> O

This equation does not, however, then appear to permit expansion 1n a series

~of powers of CT'/—[') LWE'

Linan and Williams‘point out that the equation they derive for computation
can be written in integral form and it is on these lines that we proceed here.

It is possible to write down by the methods of Carslaw and Jaeger the

‘—?"A,Q\--}\) |
—(28&
C%—) Nt

| é _ 157— - ('2.—&—2{)1
/ T m ,, i N ‘.2_-?; 2—{— | _e HT—
dis a/(zf\ —

N

expression

O =T

O

A
T o

o

Thls glves @ Jin term,s“of the surface gradient %‘E)u -and the volumetric
heat generation rateCDv so that here we write

ol ©

= €

3o\ -
T o2k
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. j QC‘I)" z/{('r-%)
Hence @-:o-‘: Q'JF+._'_ C&} d‘z, L 4

o = - (T /T

Now here we can follow Linan and Williams and use the inert.solution GL as
a basis for & but on the right hand side we need the solution as a

i
function of -2

)
- 06 —+ PI 2/ + (29 Sy
C TTme N\ 27 52%) 2

& =6 +% +(32)=" + 98 -<) 2"

where ¢ is the excess of the surface temperature over that for an inert solid

We employ

This is in effect the series used by Linan and Williams (they linearize( -37,_)

in the last term. &N
o z 6\
Now because & 1s used in the form € and we have a ‘term in EW-™)
we can neglect %7‘9 z which is L‘;"Z..,
T 1 'Z.J— A
by comparison with 2*2_ C
W -8 & A
-
In our problem 3

3= - T°

and the integration

2
o f -i
wﬁ — Oz — /
€«<9° &b o T TNy g,
6 T

becomes

-6, 0@ £ e uzt

© uk:cffr-kﬁ—uh>_q

T I
T o0& o 25w ~Oe
¢ e -Q_/l/c J F -~ L L L
where, because J.s an increasing function of }; , W& are primarily

concerned with the region A"'q\
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We have not expanded about the ignition temperature though we have

defined 90-{-—6 in terms of it, but we now consider ‘[ —A<&ZT

and write
4o 4 - (48] o

Bence we have as an approximation

B.- 2657 og -4 g(%)f%c

‘e/o du éeqs (o{fs € .e/kt.dﬁa

where E’ — (z\__?\

which is convergent at large f A

The right hand side can be integrated exactly

and hence
8, ~ZsiT ~3 l
e W Ve ko
(&)
o ( T Joe 3 ( T*Jﬁ"}
—_ L |
€ - Y2 =3
S —~+
The denominator of the right hand gide % e re—writte%?s
\/,L
oV J_ AINT o 46
cQJT (ﬁ- 8 +8 O, oL 46
—
where &, = 20 the 'inert' temperature rise.
Sor =
The second term . \ M can be neglected so long as

Qi AO

a6 <= 8 £8,
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that is, until the actual incremental temperature rise in a reactive W
material 39 is of order 601—81 times 58‘, which occurs in an
inert material. This clearly is very close to any mathematical definition

of runaway temperature rise S0 we can approximate

26, — H‘—‘z—@ 2 —2¢ OL@ o) \
Vs + S = =
e e 7 < o G| 0 6

In obtaining an approximation we also neglect O’/{—' and

-
5 -(Ta)"

This is Bradley's result.

finally obtain
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