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FACTORS AFFECTING FIRE LOSS -
MULTIPLE REGRESSION MODEL WITH EXTREME VALUES

by
. Ramachandran

SUMMARY

In this paper, a multiple regression model with extreme observations is
developed and illustrated with an example. The classical model needs to be
modified to take into consideration the biases due to the use of large values
rather than values covering the entire range of the fire loss variahle. The
presence or absence of sprinklers and the height of the building, i.e. single
storey or multi-storey, are the two qualitative factors studied in this note.
The total floor area is the third independent variable included ir the analysis
which is of a quantitative character. Judged from extreme losses, sprinklers

appear to reduce the expected damage considerably.

The model uses extreme observations individually; regression parameters
are estimated from two sets of extremes, viz. the largest and the second largest
and their replicated values over six years. The parameters have different
values depending upon the rank of the extremes. In a later study it is hoped
to estimate a single (constant) value for each regression parameter by carrying

out a more complicated analysis combining the information on all large losses.
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LIST OF SYMBOLS

x Financial loss (in units of £'000)
z Logarithm of x (dependent variable)
v, Independent variable; takes the value

+ 1 1if the building is sprinklered, or
- 1 if the building is not sprinklered

Vs Independent variable; takes the value
+ 1 if the building is multi-storeyed, or
- 1 if the building is single storeyed
Total floor area in units of 100 sq ft
3 Logarithm of total floor area (in units of 100 sq ft); independent
variable
M Expected value (average) of 2z over its entire range; an average
for all sizes of buildings
o Standard error of z over its entire range
fkv Expected value of 2z for a given set of values for Vi Vo and vy
o Standard error of 2z for a given set of values for v, , v, and
v 1 2
vy (residual)
t The standardised loss
z(m) The mth largest observed loss from top (m = 1 is the largest)
t(m) The standardised mth largest loss from top
B *Characteristic' (modal) value of 1
(m) (m)
A(m) Value of the tintensity functiont! of the parent distribution at Bm
a(t) (Cumulative) distribution function of
g(t) Density function of 1
n Sample size; number of fires per year (excluding small ones)
h The reduced mth extreme
m
§m The expected value (average) of Y
6}1 The standard error of Yp
;m The expected value of Z(m)
djnz The standard error of Z(m)
,30 The constant term in the regression model
/31 The regression parameier pertaining io sprinklers
[32 The regression parameter pertaining to storeys
/33 The regression parameter pertaining to the total floor area




_LIST OF SYMBOLS (cont'd)

pom, /31m’ /o, end ﬂ_’,m are the same as /Jo, ﬂ1’ /32 and ﬂB respectively

but pertain to the regression with the mth extreme observations.

!
/2 om The constant term in the actual regression with the mth
extreme observations
emjk Residual error in the regression
2 (m) jk The n'l largest loss in the jth year (j = leess6) for the ak
J sub population (k = Te...4)
v1mjk, v2mjk and v3mjk are the same as v1' Vs and, v3 respectively

but pertain to the mth largest loss in the jth year for the kth sub population,
1
vam Expected value of 2z for a given set of values for Vi Vo and v3

as estimated by the regression with the mth extreme observations

T
f*”vmjk Value of M vn estimated by substituting v and vy

Tmik, '2mjk mik
in the regression equation

The weighted residual standard error in the regression with the

mw
mth extremes

M Estimate of M based on the mth extremes

vm v

, th
‘r;m Estimate of cf% based on the n extremes
ftx The expected value of x
. th .

c(m A composite constant term for the m  regression

E The process of taking the expected value
Var The process of taking the variance, viz. the square of the

standard deviation
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FACTORS AFFECTING FIRE LOSS -
MULTIPLE REGRESSION MODEL WITH EXTREME VALUES

by

G

1.

Ramachandran

INTRODUCTION

1.1 The Eroblem

. 1,2
In previous papers

the author discussed the application of the
statistical theory of extreme values for analysing large fire losses.
In this note the problem of multiple regression with extreme values is
investigated with a view 1o assessing the relative contributions of
various factors to fire losses, In this preliminary study only three
factors are included, but it is hoped to extend these techniques to

perform a combined analysis and also to include more factors.
1.2 Data

Data on large losses and the hazards in which these fires occurred
are available for a number of years. However, information on fire
protection devices and other particulars of buildings involved in large
fires is available only for 1965 and later years. For this reason the
methods developed are applied to large losses during the period 1965 to
1970. The textile industry has been chosen for purposes of illustration.

All the values and conclusions given in this paper refer only to this indusiry.
FACTORS

2.1 Qualitative factors

Certain factors associated with the building are qualitative in
character, eg. the presence or absence of sprinklers. Sprinklered buildings
may be expected to differ from those without this protection in regard to
the extent of spread of fire., In the same way, single storey and multi-
storey buildings are deemed to be two distinct populations, The two factors
mentioned above subdivide the major indusitrial group into four categories
of buildings. For an application of the extreme value theory the number of
fires in a year in any category should be large and this requirement restricts

the rmumber of categories.



The top iwo losses in each of the four sub groups of the textile
industry during 1965 to 1970 were corrected for inflation with 1965 as
the base year. The corrected figures are given in Tables 1 and 2 in
Appendix 1 together with their logarithms (to base 10). In the case of
sprinklered buildings the figures refer to fires in which sprinklers
operated. The probability of non operation will be taken into account

in a subseguent study of costs and benefits of sprinklers.

The presence or absence of sprinklers would be denoted by the

variable V. If the tuilding is sprinklered, v, has been assigned the

value 41 and the value -1 if the building was n0t1pr0vided with sprinklers.
Similarly the value +1 has been -assighed to the variable Vs if the

btuilding was multi-sioreyed and the wvalue -1 if it was single storeyed.

In Appendix 1 the values of v, and v, are also shown for the four sub
groups. The interaction between the twoc factors is not included in this study.

2.2 Quantitative factor

It has bheen established that the fire loss depends upon the size of the
3,4

building or value at risk « The loss figures need adjustment taking into
consideration the differences in the sizes of buildings. Previous studies
indicate that fire loss has a power relationship with the size of the

34

Hence the logarithm of loss, viz., 2z has a linear relationship

the logarithm of the total floor area of the building.

building
with the variable vy
The wvariable v3 is quantitative in character. The values of v3 are also

shown in the tables in Appendix 1.

NUMBER OF FIRES
3.1 Sprinklered and non-sprinklered buildings

Every year fire brigades in the United Kingdom attend about 1100 fires
in buildings engaged in the textile trade5. About 45 per cent of these -
fires are in sprinklered buildings. But, according o a survey conducted by
the Station some years ago, about one third of fires in sprinklered buildings
are neither attended by fire brigades nor reported to the Organisation.

Hence about 750 fires occur in sprinklered buildings in the textile industry
against 600 fires in buildings without sprinklers.
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3.2 Single storey and multi-storey buildings

According to a survey conducted by Building Research Stationé, about
43 per cent of industrial buildings are single storeyed. Also if the size
of a building is doubled the frequency of fires could be expected to increase
by a factor of‘Jﬁﬂ 3. If these faciors are taken into consideration the
number of fires in multi-storeyed buildings would be about twice the number
in single storey buildings. Hence the estimated figures for the number of

fires in a year are those shown in column 2 of the table in Appendix 2.
EXTREME VALUE PARAMETERS

4a1 The mth extreme of the standardised variable

In a previous note it has been shown that if x is the fire loss the
transformed variable 2z = log x follows a probability distribution of the
texponential type'1. It may be assumed specifically that 2z has a log
normal distribution with mean r& and standard deviation ¢~ . Consider now

the standardised variable

t = —&Z— ......-(T)

which has a normal distribution with zero mean and unit standard deviation.
The fire losses in a particular year constitute a sample and if they are

h
arranged in decreasing order of magnitude the mt largest value of t from

_ Pmy M eeen (2)

Ym) = o

top is given by

where z(m) is the logarithm of the mth largest loss. The probability

density of t(m) is2

. NG -mY. . —me
Uonbew) = g2y A dt,  eee )
where
¥y, = 4 (t(m) - Bm) eeeses (4)



The parameters Am and Em are solutions of

Gn (Bm) = 1 - % ard ceveee (5)

A = ﬁ g, (3) ceeen. (6)

where C(t) ard g(t) are the {cumulaiive) distribution function and
density function of the standard normal variable + and n denotes the

sample size, 1l.e. rumber of fires in a year.

4.2 Values of the parameters

It may be assumed that during a short period of six years there was no
appreciable increase in the number of fires and hence an average value of n
can be used in the analysis. About 50 per cent of the fires were small ones
which did not spread beyond the appliance of origins. Disregarding these as
cases of tinfant mortality' the large losses have been deemed to come from
samples of sizes n shown in the third column of the table in Appendix 2.
The values of Am and Bm for m =1 and 2 are also shown in this table;

these values were obtained from (5) and (6) using tables of the normal

probability integra17.

4.3 Variance and expected value

From (2) and (4)

var (t(m)) var (Z(m)) /'gg

& s

2, 2
o /Am ceosee (T)

2
" m2
reduced variable Yy Hence an estimate of the standard deviation & of

where is the variance of Z(m) and agm' the variance of the

the parent distribution is given by

—ae 10 venvee (8)
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Also the expected value is

E(zy) - M
P

I

* (a))

Em‘l‘"

It
o
+

cessee {9)

where Em and ;m are the expected mean values of 2, and I respectively.

From (9)

M=z -0/ ++ 7 veeses (10)

REGRESSION MODEL

5.1 The problem

For a given Vi, V ard v the dependent variable 2z has an expected

2 3
value M _ and (residuval) standard error g, « Also,

/v(.v = .+ BV, + o,V + BV ceseas {11)

The location parameter ﬁ& and scale parameter ¢ mentioned in the
previous section take the wvalues rtv and d’& in the regression model.
The problem is to estimate the regression parameters po, /51, /32, /33
and .f; using the mth large values z(m) and the associated values of

Vi Y, ard v3 .

5.2 The regression parameters

Consider the regression model
- a V. : (12)
Z(N)J/\ - Fa-“m +/3‘7"‘ "MJ.K+p’2_vwv'2-7"'jk+[53mv3mjs<+ewk Teeete

where Z(m)jk is the mth largest value in the jth year {j = 1-6) for

and v are

th .
the k  sub population (k = 1....4) and Vingk' Vomik 3mik

the associated values of Vi, V and v The expected value of the residual

2 3°

2
error e is zero., If the residual variance E(ezmjk) is denoted by R o

Jjk

-5 =



it is known that R2 is proportional to Gg , the variance of
m nz

Z(m) as defined in the previous section. But from (7), para. 4.3,

N b P ™ 2
Tz = v T, /4~M ceeees (13)

Since the values of Am (Appendix 2) differ from one sub population

to another, a weighted regression needs to be performed minimising

2~
:A —f"")\[k 0""1 /BIM Irwy k. 731,“ 2m) K ﬁ37.\ ‘3ka) reeees (14)

where Amk reters to the kth sub population. The normal equations are
shown in Appendix 3. By solving these equations estimated values of

' ( ) . .
Jom, p1m, ’B2m and ﬂ_’;m are obtained. For the example considered in
this note the following estimates were obtained.
Table 1

Regression parameters

Extremes 2
(m) /éom Pim Pon R R ow
1 0.9813 | -0,3262 ! 0.,0617 | 0.,4262 | 0.7629
2 1.5664 | ~0.3094 | 0.1972 | 0.1556 | 0.4987

5.3 The weighted residual variance due to regression

For a given set of values Vi Vo and v3 the mJGh largest loss (from

the top) usually written as _E(z(m)/v1, Vo v3) would be given by

/
/\‘Vm = ﬂom -f—/3lmv’ +ﬁ,_mvz_ +ﬁ3mv3 ceaees (15)

If L' .. is the value estimated by substituiing in (15), the
/v Gk

observed values v, v2mjk and v, . (of Vs v, and v3) corresponding

mjk’ 3mjk
to the observed value z(m)jk of the dependent variable, i.e. log loss,

the weighted residual variance is given by

4 3
R = LZA:kZ (zéﬂ,dk—/k'vmi,() ceeees (16)

-6 -



For the example considered, the values shown in the last column

of Table 1 were obtained.

5.4 The variance of the parent regression

Following the derivation of (8) in para. 4.3 it can be easily seen

that

2 2
o, = me/(rm2 ceaaes (17)

Since R2mw is based on a large number, i.e. 20 degrees of freedom,
the following asymptotic value52 may be used for the variance ¢rg of

m
the reduced variable y,

% < 1.6449

it

TF = 0.6449

Expression (17) gives an estimate of the wvariance agv of the
2
parent distribution and may be dencted by T ym since it is based on
the mth largest observations of the dependent variazble. The following

estimates were obtained.

2
= 0.4638 )
T v Y eene. (18)
)
2
G yp = 0.7733 )

5.5 The location parameter of the pareni regression

From (9), para. 4.3,

E [Z(rn) /V,,U.J__‘V37 - fb\\r'

e

Ve

= (Mion "/“‘v)/tﬁ,m

= B,. 4+ Im
so that ™
Ay " H_h LI N
ﬂv‘f‘vM‘_(vw('B-m"{"R) (19)

as in (10), para. 4.3. Using (15) in para. 5.3, expression (19) can be



rewritten as

/%V‘ = /30,“ 3w Y +/3sz2. + ﬁ’3.,,‘ Vi cereee (20)
where
e I N .y—'.w‘
Bura = Pow = Ty (B, + 7 eeens (21)

The expected values ym of the reduced variable y, are as follows2

0.5772

=
Il

0.2704

~
n
I

The values of /5om are given in Table 2 for the four sub populations.
(The parameter /30m would have a cconstant value in the case where the

average numbher of fires per year was the same for all the sub populations)
Table 2

Values of /30m

m
Sub population
1 2

~ single storey -0,8027 ~0.4145
Sprinklered

~ multi-storey -0.9569 ~0.6389

-~ single storey -0.7502 -0.3380
Non sprinklered

- multi-storey -0.9094 -0.5685

5.6 Simplified form

In view of the differences in the annual frequencies of fires in the
four populations, there are four regression equations for each extreme.
Since vy and Vs take the values +1 or -1 the equations can be

reduced to the following simple form with just v, as the independent

3

variable.

flin = Efz/,’:}] = o+ B, Y, ceeeen (22)

where

dn — [.307“ + By Vi "‘ﬂ:u».":’/ cesees (23}

The values of ¢/ are given in Table 3.
™~

-8 -



Table 3

Values of

m
Sub population
1 2
single storey -1.1906 -0.9211
Sprinklered
multi-storey —-1.2214. ~0.7511
single storey ~0.4857 -0,2258
Non sprinklered
multi—-storey -0.5215 -C.0619

5.7 Conversion of results to original units

The set of parameter values /3om’ Pim? Fon and /33m for

any m (m =1 or 2 in this case) are estimates of the regression

parameters /30, f%, f32 and /33 shown in (11), para. 5.1. Hence

there are two estimates of the regression parameters. ., For a given total

floor area (x3) in wnits of 100 sq fi the expected value of‘f«vm car he

obtained from (22) by choosing ary appropriate ¢ ahd /= ard puttin
& m m g

vy = log,IO x3 « For a log normal distribution the expected value

(8)

the original units is

M - N

/« in
x

cesees (24)

where r\ and ¢ are the mean and standard deviation of z = logex_.

In the calculations, 10 has been used as base for

b4

r

the logaritnm of

loss in units of £'000. Hence the expected loss in the original scale

as estimated by the mth extreme observations is

k
kiom * 5

f“‘x = 1000 x e

where k = 1oge1o = 2.3026

2 2
o

vm

eeeses (25)

Figures 1 and 2 depict the relationship (25) between the expected loss

and total floor area for n = 1 and 2.

at 1965 values.

The expected (or mean) loss is



6.

5«8 Interpretation of resultis

For a given total floor area, the expected loss in a single storey

" building does not appear to differ very much from the expected loss in

a multi-storey buildiﬁg.- Perhaps, in a multi-storey building the horizontal
spread of fire is restricied by better compartmentation but fire spreads
vertically upwards. It is apparent that sprinklers reduce the expected
loss to a considerable extent. From Fig. 1, for example, the expected

loss in a building of total flecor area 100,000 sq ft would be about £20,000
if the building were not sprinklered but sprirnklers would reduce the loss

to &£4,000. The difference between the effect of sprinklers shown by

Fig. 1 and Fig. 2 is due to random fluctuations.

5.9 Cost—Benefit of sprinklers

The problem considered in this paper is the expected reduction in loss
due to sprinklers in a fire. This expected value is one of three ingredients
in an assessment of the economic value of sprinklers, Probability of fire
starting and probability of sprinkler heads not operating are-the other
two components. All these factors would be included in a cost benefit study
of sprinklers (at the national level) which is beyond the scope of this
paper. When all these factors are evaluated and the cost of installing and
maintaining sprinklers is taken into account, it will be possible to determine
a critical size for each major group of industrial and commercial buildings,
above which it would be economically justifiable ito provide sprinklers.

In buildings emaller than the critical size the costs would be expected to

exceed the benefits.
DISCUSSION

6.1 The location of the extreme

Like the average, median or mode the mth extreme loss in a risk

category reflects the relative damage in this category. The observation
with m = 1 is the largest and m = n the smallest in a sample of n fires.

is the median., For a normal distrib-

uticn the average, median and mode coincide; the m-th extreme is situated

The obseryation with the rank m =

s il

at a distance from these central values.

6.2 The need for a modified model

For a multiple regression analysis assessing the contributions from

various factors to the expecied damage, only large losses are available at

- 10 -



present. Hence the problem studied in this paper is to estimate the
regression parameters by using extreme observations. Repeated observations
(over years) of an extreme with any chosen value of the rank m could be
used for this purpose. But such estimates would be biased since the entire
range of the fire loss variable has not been covered. In the meodified
model presented in this paper adjustments have been made to correct.

these biases.

6.3 Reasons for a single multiple regression

The main population has been divided into sub populations and extreme
losses from each category have been considered in the analysis. Tﬁe years
provided replicated observatiens on the extremes. The model requires
information on the number of fires per year in each sub population. This
number has to be large and hence restricts the number of sub populations
and the parameters that could be included. It is possible to perform a ’
separate regression analysis for each sub population but this would also
restrict the number of parameters unless data over a large number of years
are used. Otherwise the number of degrees of freedom for the residual

error would be small, For these reasons a single multiple regression

analysis was carried out for each extreme (m).

6.4 The parent and the extreme

It was assumed that the parent protability distributions of the sub
populations are log normal with a constant standard error CT; . Expression (17)
shows the relationship between o ard the (weighted) residual error me
obtained in the regression. The formula also involves the standard error
Cﬁ; of the reduced or standardised mth extreme. The expected value/M_v
of the parent and the expected value f“!vm estimated by the regression
are related through expression (19). This expression , apart from the
mean §m of the reduced extreme and Cf;m , includes parameters Am and Bm
the values of which depend upon the annual frequency (n) of fires. Thus
the model takes into consideration the differences between sub populations
in regard to the frequency of fires. The problem of confidence limits for

the expected value and regression parameters is being investigated separately.

6.5 Combined regression

The values of the regression parameters vary from one large loss to
another, i.e. m = 1 to 2 , as shown in Tables 1 to 3 ard Figs 1 and 2.

This variation is due to random fluctuations in the observations. It

- 11 -



would be better to estimate an overall mean value for each parameter /3 S0
that this mean and hence constant value could be used to assess the
contribution of the concerned factor. PFor this purpose a combined regression
analysis would have to be carried out using a number of extremes, say,

m = 1 to J1 jointly and taking into consideration the variances as well

as co-variances of the residual errors., This involves complicated
computations which it is hoped to attempt in the near future. The model
could also be generalised to include more factors like source of ignition,

age of the building etc.

6.6 Similar study

Nelson and Hahn9 have discussed the linear estimation of a regression
relationship from censored data using order statistics. In this paper

similar estimation procedures are considered using extreme order statistics.
T CONCLUSIONS

As illustrated in this paper it is possible to modify the classical multiple
regression model 1n order to assess the contributions of various factors as
revealed by extreme observations. The model takes into consideration the biases
due to the use of extremes and the variation in the frequency of fires from one

sub population to another,

For a given total floor area, the expected loss in a single storey building
does not appear to differ significantly from the expected loss in a multi-storey
building. On the other hand, sprinklers reduce the expected loss to a considerable
extent. For example, in a building with a total floor area of 100,000 ft2
the 'gain" would be £16,000 per fire. Figures 1 and 2 show the expected gain due
to sprinklers for buildings of different sizes (total floor area). These
qualitative and quantitative conclusions are based on the top two extremes only

and it is hoped to improve the estimates by performing a comprehensive regression

analysis combining the information on a mumber of extremes.
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APPENDIX 1

Table 1

m = 1 (largest)

Loss

Sub population Year (£E$?O) ligjox v, Vs V3
1965 11,0 | 1.0414 | +1 | =1 | 2.1761
1966 38.0 | 1.5798 | +1 | =1 | 1.7782
Sprinklered 1967 54,5 | 1.7364 | #1 | =1 | 2.4914
~ single storey | ,o0g 52,1 1.7168 | #1 | 1 | 2.0212
1969 12.5 | 1.0969 | +t | =1 | 2.2430
1970 | 40.0 | 1.6021 | +1 | =1 | 2.4472
1965 | 333.0 | 2.5224 | +1 | +1 | 3.2765
1966 85.7 1.9330 | +1 | +1 | 3.6532
Sprinklered 1967 | 260.0 | 2.4150 { +1 | +1 | 3.3802
- multi-storey | yo68 | 168.6 | 2.2269 | 41 | +1 | 3.6233
1969 83.3 | 1.9207 | 41 | +1 | 3.1847
1970 | 265.6 | 2.4242 | +1 | +1 | 3.5441
1965 | 1900.0 | 3.2788 | =1 | =1 | 2.9154
1966 | 136.1 | 2.1339 | =1 | <1 | 1.6812
Non sprinklered | jg67 | p43,6 | 2.3867 | =1 | =1 | 2.7404
—- single storey | 4948 | 400.0 | 2.6021 | =1 | =1 | 3.3181
1969 | 333.3 | 2.5228 | =1 | =1 | 3.4314
1970 | 148.0 | 2.1703 | =1 | =1 | 2.8173
1965 | 1000.0 | 3.0000 | =1 | +1 | 3.3381
1966 | 380.9 | 2.5808 | -1 | +1 | 3.3125
Non sprinklered 1967 | 939:0 | 2.9727 | =1 | +1 | 4.0614
- multi-storey | 1968 | 434.7 | 2.6382 | =1 | +1 | 3.2095
1969 | 916.6 | 2.9622 | -1 | +1 | 3.3512
1970 | 149.6 | 2.1750 | =1 | +1 | 2.6021

- 14 -




Table 2

m=2
: Loss . =
Sub population Year | (£'000) - v v v
< 1og10 xt 1 2 3
1965 10.0 | 1.0000 | +1 | -1 | 2.2923
1966 1.4 1.0569 | +1 | =1 | 1.7482
Sprinklered 1967 43.6 | 1.6395 | +1 | =1 | 2.6532
- single storey | 4448 36.5 | 1.5623 | +1 | =1 | 2,0212
1969 | 21.7% | 1.3369%] +1 | =1 | 2.1236
1970 26.4 | 1.4216 | +1 | =1 | 1.9031
1965 | 275.0 | 2.4393 | +1 | +1 | 3.1225
1966 73.3 1.8651 | +1 | .+1 | 3.8573
sSprinklered 1967 50.0 | 1.6990 | +1 | +1 | 3.6355
=~ multi-storey 1968 79,1 1.8982 | +1 | +1 | 3.0792
1969 a1.6 1.6191 | +1 | 1 | 1.5563
1970 | 209.6 2.3214 | +1 | +1 | 3.06%1
1965 | i41.o 2.1492 | =1 | =1} 2.0969
1966 135.2 2.1310 | =1 | =1 | 2,0792
Non sprinklered 1967 99.0 1.9956 1 1 2.3979
- single storey | 4968 | 347.8 | 2.5413 | -1 | -1 | 3.033¢
1969 166.6 2.2217 | =1 | =1 | 2.4771
1970 46.4 | 1.6665 | =1 | =1 | 2.6628
1965 | 445.0 | 2.6484 | -1 [ +1 | 3.1538
Non sprinklered 1966 | 294.2 | 2.4686 | -1 | +1 | 3.1126
_ multi-storey 1967 | 272.7 2.4357 | =1 | +1 | 2.7782
1968 | 347.8 | 2.5413 | =1 | +1 | 2.6990
1969 | 750.0 | 2.8751 | =1 | +1 | 4.1329
1970. | 140.0 | 2.1461 | =1 ' +1 ] 3.1206

* Bstimated (median value of 5 years)
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APPENDIX 2

Extreme value parameters

, . m= 1 m= 2
Sub populaticn Estgﬁated

of fires | * | M B 4 By

(1) (2) (3) | (4) (5) (6) (7)
Sprinklered - single storey 250 125 [2.7375 {2.4089 12,5000 |2,1444
~ multi-storey 500 250 12.9750 |2.6521 i2.7375 |2.4089
.an sprinklered - single storey 200 100 |2.6700 |2.3264 12.4200 |2.0538
— multi-storey 400 200 12.8800 [2.5759 |2.6700C 2.3264
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APPENDIX 3

The problem is to minimise
) = f A" 7 ( Z -
QM' - Py ™k ("'\)JK o~ 1Y% try K "’ﬂz.h, 2m) K /33,.,., SMJK')

Differentiating Qm successively with respect to plom B Loy
’ 1

and 3o and equating each derivative to zero the normal equations are
z gé ! b & 2 ¢
s : L
k::AMKJL_( ZO“)J‘k B gﬂ%é; AMK +ﬁ,mé "“kel:! K
ké[q Z{ ZMK t ﬁ37‘~ gA""\K Z 3'MJ K
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Kénhkdé%mu,( V"“Jk - gﬂ ZFVIMJK' + ﬁ”w Z A"m)( g{ ’MJ‘\’
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Inserting the values of vy and v, the four equations reduce to

(1) é A | Z, = /émé b+ Bp LA+ By =R ]
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The four sub populations are denoted by the subscript k as follows:

Sprinklered, single storey
Sprinklered, multi-storey

AR oR W
I

1
2

= 3 Non sprinklered, single storey
4

Non sprinklered, multi-storey

The terms Emk and ;3mk are the averages for the sub population k, i.e.

6
- 1
‘mk T 3B % ijk

[

6
- 1
Vaok T 8 i Vimjk

()
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25 al3

Non-sprinklereld single storey

Sprinkiered
single storey
Non-sprinkiered
multi-storey

Sprinklered multi-storey

Expected loss—£ thousands

o1 2 RN SR | t 11 ¢t 93] 1 L1 orrrael 1 J_Lll“l.
1 10 100 1000 10 000
Total tloor area~ft?thousands

Figure 1 Total floor area and loss (m=1)

T FTTI}

8

T T TTI]

Non-sprinklered multi-storey

Non-sprinklered Sprinkiered
singlzpstorcy multi—storey

e}

Expected loss—£ thousands

Sprinklered single storey

0O-1 1 1) 1 p1esed L 1 ¢t pparl i I EENE] 11t t 13131
1 10 100 1000 10000
Total floor areo-ft2thousands

Figure 2 Total floor area and loss (m=2)
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