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ABSTRACT 

In the paper, we evaluate the reliability of a successful evacuation using a CFD fire simulation tool and an 
evacuation model. Obviously, it is not possible to perform Monte Carlo analysis in a reasonable amount of 
time because of the high computational costs. Hence, we utilize an adaptive response surface method based 
on moving least squares in order to compute the reliability. To further decrease the necessary number of 
numerical evaluations, a preceding sensitivity analysis yields information about the variance of the results 
and the relevance of the input parameters and hence helps to identify a surrogate model of optimal 
prognosis. The preliminary scan of the random space for the sensitivity analysis can also be used to obtain 
information about the approximate location of the design point so that further support points can be 
concentrated in this relevant area. Using this information for the subsequent reliability analysis leads to a 
faster convergence. The methodology described will be utilized to evaluate the reliability of a typical 
example in fire protection engineering. 

KEYWORDS: reliability, risk assessment, performance-based design, egress, life safety, CFD, ASET, 
RSET. 

INTRODUCTION 

Protection of the health and life of the occupants in case of a hostile fire is the main safety objective of Fire 
Protection Engineering. This objective is achieved by providing for a safe evacuation from the building 
before the various effects of the fire inflict casualties on the occupants. This requirement of successful 
evacuation is manifested in nearly all of today's fire codes in countries all over the world. In Germany, this 
objective is satisfactorily shown by complying with the deemed-to-satisfy prescriptive codes and standards 
which contain basic material and constructional requirements. Yet, architecture has become increasingly 
complex during the last decades as advancements in structural engineering as well as material sciences 
have made it possible to realize such buildings. On many occasions, these advancements have outrun the 
prescriptive requirements as large atria and other complex geometries cannot be realized in accordance 
with the codes. In such cases, shortcomings to the requirements are compensated for with so-called 
performance-based engineering methods as part of a holistic fire safety concept on an individual basis to 
maintain the required safety level. 

In a performance-based approach for life safety, the time needed for safe egress, known as required safe 
egress time (RSET), is compared to the time until untenable conditions are reached within the 
compartment, known as available safe egress time (ASET). The RSET is usually calculated by evacuation 
models which exist in different ranges of complexity. The ASET can be obtained by applying performance 
criteria which account for the various effects of the fire on the occupants, e. g. the height or the optical 
density or toxic effects of the smokeless lower air layer. The different fire effects are simulated using so-
called zone or CFD models using representative fire scenarios and design fires which are derived from 
values for fire loads, fire spread velocity, heat release rate etc. These values are usually assumed as 
deterministic, even though they are subjected to major uncertainties. 

METHODOLOGY 

As the approach described above is usually applied using deterministic values of an uncertain variable, 
engineers tend to estimate values on the safe side and thus might end up with overly safe and expensive 
solutions. The aim of this paper is to compute the reliability of a safe evacuation using a CFD model and a 
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simple evacuation calculation. As a Monte Carlo simulation of a CFD model is not possible due to the high 
computational costs, a response surface method based on moving least squares was chosen to minimize the 
number of necessary solver evaluations. 

To further decrease the necessary number of numerical evaluations a preceding sensitivity analysis yields 
information about the variance of the results and the relevance of the input parameters and hence helps to 
identify a surrogate model of optimal prognosis. The preliminary scan of the random space for the 
sensitivity analysis can also be used to obtain information about the approximate location of the design 
point so that further support points can be concentrated in this relevant area. Using this information for the 
subsequent reliability analysis leads to a faster convergence. 

Sensitivity Analysis 

In order to perform a sensitivity analysis of the variance of the input vs. the output variables, a preliminary 
scan of the random hyperspace has to be performed using all random variables considered. The points of 
the scan can either be chosen randomly or systematically, using common design of experiment (DoE) plans 
such as the Central Composite design [1]. The input data can then be linked to the corresponding output 
quantity and simple, global sensitivity analysis can be performed: 

Correlation Analysis 

A first analysis is performed to identify the significant contributors to explain the output variability. This is 
done by linear and rank correlation analysis and a subsequent test of the ijt -value against a chosen 
significance level / 2tα  of the Student's distribution. If / 2| |ijt tα>  the null hypothesis that there is no 
significant correlation is rejected in favor of the alternative hypothesis that a significant correlation occurs 
[2]. This test can mainly be used to identify the significant variables and the occurrence of a linear 
correlation or a rank correlation if the data is rank transformed [3]. 

Stepwise Regression 

In order to find an optimal surrogate model, also interaction and correlation effects between the input 
parameters have to be considered in order to find the global contribution to the prediction accuracy of each 
variable. This is done by considering the adjusted coefficient of determination [2] 

2 2 211 (1 ), [0,1]
( 1)adj adj

nR R R
n k
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= − − ∈

− +
 (1) 

of a simple linear and/or rank regression model where n is the number of samples and k the number of 
parameters so that (k + 1) denotes the degrees of freedom. R² is the coefficient of determination usually 
applied to larger datasets. 2

adjR  penalizes for the number of variables when considering smaller datasets 
(such as a DoE). 

The stepwise regression approach by Draper [4] uses this methodology by subsequently adding variables to 
the regression model and performing a global F-test as described in Ref. [2], looking at the change in the 
coefficient of determination ( 2

adjRΔ ) [5]. 

Applying these methods usually yields that a few variables are unimportant as they have no or very little 
effect on the variance of the output. Hence, for further analysis they can be chosen as a deterministic value 
by using i.e. the mean value. A variable and thus dimensional reduction of the reliability problem can 
significantly reduce the number of necessary solver evaluations in the design of experiment scheme. It 
should be noted that all variables to be removed should also be checked qualitatively before removal as the 
methods described above only provide a purely mathematical approach. 
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Reliability Analysis 

Surrogate Model 

Reliability analysis will be carried out using a surrogate model which is deduced from the support point 
values of the design of experiment evaluations. Common response surface methods such as by Bucher [6] 
utilize least square regression to fit a polynomial model in the form 

ˆ ˆ ˆ( , )f = = +x β y Hβ ε  (2) 

to the support points and subsequently uses the analytical equation found in first order reliability method 
(FORM) to evaluate the failure probabilities. Herein, H is a matrix of n functions and β̂  is a vector of n 

free coefficients to be fitted by minimizing the error component ε  [7]. β̂  can be found (proof omitted) by 

1ˆ ( )T T−=β H H H y . (3) 

The downside of this approach is that only global trends can be considered and information at the 
computationally expensive support points is only approximated. A very high order polynomial meets the 
interpolation conditions but tends to have an over-fitting effect between the supports [1]. 

The approach followed herein is a moving least square (MLS) approach which is based on an enhancement 
of the above concept of least squares by Lancaster and Salkauskas [8] by incorporating location 
information to increase the accuracy of the approximation. The approach utilizes a weighting of the 
Eucledian distance of each support point input vector xmi to the input parameters x of the evaluation point 
so that 

( , ) (|| ||),i mi i miw w= −x x x x  (4) 

All weights are then compiled into a location dependent weighting matrix W(x) which can be introduced 
into Eq. 3 so that 

1ˆ ( ) [ ( ) ] ( )T T−=β x H W x H H W x y . (5) 

Unfortunately, this leads to a location dependency of the coefficients β̂  so that no closed-form global 
equation can be found. A MLS formulation has to be found for every evaluation point. 

The weighting function described in Eq. 4 is a radial function which must be greater than zero, symmetric 
around the support point, and monotonically decreasing. Usually, cubic polynomials [9] or Gaussian curves 
[4] are utilized, but both do not fulfill the Kronecker-Delta properties  

(|| ||)i mi ijw δ− ≈x x  (6) 

required for interpolation [10].  

An approach outlined in Refs. [11,4] uses a nearly interpolating weighting function by introducing 
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with 

2 2(|| ||) (|| || ) , 1r mi miw ε ε−− = − +x x x x  (8) 

where ε is a regularization parameter to stabilize the problem numerically. In order to provide near-accurate 
solutions ε has to be chosen as small as possible, but within machine precision. An ε in the range of 10-5 is 
usually sufficient [4]. 

Adaptive Importance Sampling 

As described above, the fitted coefficients of an MLS approach are now location dependent and thus no 
closed-form global expression is available. Hence, Proppe [12] recommends the use of adaptive importance 
sampling (AIS) instead of FORM. The basic idea is to reduce the variance ˆ

fpσ  by introducing a weighting 

function hx  into a Monte Carlo simulation so that the sampling points are concentrated in the failure 
domain fΩ . hx  is adapted in subsequent iteration steps by only considering the points that fell into the 
failure domain. Further adaptations of hx  lead to a smaller variance and hence better results. AIS is 
described in detail in [13]. Ibidem, empirical sensitivity factors are derived by looking at the total shift of 
the mean vector in hx  compared to the joint density function fx . The sensitivity of each variable can be 
regarded as the contribution to the total shift. 

Adaptivity 

As the reliability evaluation is performed using the surrogate model and not the real (CFD, evacuation) 
model, some inaccuracies between approximation and model can occur, especially for highly non-linear 
problems in the regions without close-by support points. Hence, in a next step the support points will be 
updated around the mean vector from that last adaptation of hx . These support points in the relevant region 
along with a smaller variance, also provided by hx , yield a very good approximation of the limit state 
hyper-surface so that usually only a few additional support points are necessary. The advantage of this 
approach is that all previous evaluations can be re-used in the next step surrogate design so that no 
“expensive” information is discarded. The local approximation quality in the failure area stays high due to 
the nearly-fulfilled interpolation conditions. 

The difference between the iterations can be used as a convergence criterion. If the change in ,ˆ f ip  is less 
than 2.5 % compared to , 1ˆ f ip −  of the previous iteration step, the algorithm is terminated. 

APPLICATION TO A FPE PROBLEM 

In the following, the described methodology will be applied to a simple, but representative example from 
fire protection engineering. The main focus of the problem is to evaluate to reliability of a save evacuation 
from a simplified assembly room. This is usually shown if the RSET is smaller than the ASET so the limit 
state of the reliability problem can be simply taken as 

ASET RSET( )g t t= −x  (9) 

which a failure domain ( ) 0f gΩ ≡ ≤x . Both times stem from an evacuation model and a CFD simulation, 
respectively, and will be evaluated with various random variables shown in the following. 

Stochastic Model 

Evacuation 

Human behavior is not only highly subjected to uncertainties but also dependent on various parameters 
which, again, are dependent on the evacuation model used. Herein, we will use a simplified estimation 
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method called ‘capacity model’ described in detail in [14]. The model assumes that a door has a certain 
outflow rate in the unit ‘persons per second per metre door width’. Hence, two important variables are the 
number of persons and the flow rate. The door width is considered deterministic, as requirements and 
standards for doors exist. Additional stochastic variables are the run time of the occupants from their 
starting point to the door and the pre-movement time. The latter denotes the time from the fire start until the 
occupants start evacuating. 

Unfortunately, stochastic models rarely exist in the relevant literature and even deterministic values can be 
difficult to find. Table 1 shows the stochastic models used herein which are usually based on deterministic 
sources (given in Table 1) and an educated guess of the occurring variance, where it is usually assumed that 
the variables have a standard deviation of 10–20 % about the mean. For simplicity, all models are assumed 
to be normally distributed. 

 
Table 1. Stochastic models and underlying references. All variables are assumed to be normally distributed. 

Variable Mean Std. dev. Unit Based on 
Pre-movement time 60 12 s [15,16] 
Walking speed 1.2 0.12 m/s [14,15] 
Number of occupants 300 30 occupants [17,18] 
Outflow capacity 1.39 0.139 occ./m/s [17,14] 
Heat release rate 2.5 0.25 MW [19,20,21] 
Time to 1 MW (tg) 300 50 s [22–34] 
CO yield 0.1 0.02 g/g [25,26] 
Soot yield 0.05 0.01 g/g [25,26] 

 

Fire Scenario 

Similar difficulties occur finding stochastic models for a fire scenario. A common approach used herein is 
the so-called t-squared scenario where the heat release rate (HRR) increases quadratically in the fire growth 
phase. The growth rate is controlled by the time tg which denotes the time of the quadratic increase of the 
HRR until 1 MW. The growth stops when the maximum HRR is reached and then remains at a steady 
plateau. This scenario is schematically shown in Fig. 1.  

The stochastic variables found in this scenario are the time to reach 1 MW and the HRR. The fire load 
controls the length of the fire and, therefore, is not relevant to the life safety scenario as that time is usually 
far greater than 20 minutes in which all evacuation processes of the fire compartment have to be completed 
[18]. The stochastic models are shown in Table 1. 

Two additional parameters included are the yields for soot (ySoot) and carbon monoxide (yCO) which are 
values from the CFD model FDS [27] to control the smoke generation and the toxicity of the burning 
material. 

 
Fig. 1. Schematic course of the HRR in the fire scenario.  
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Thresholds for Untenability 

When using performance-based methods for life safety design, thresholds have to be defined in order to 
establish a tenability limit in the fire simulation (ASET). These thresholds have been widely discussed in 
the literature such as [25,14,15]. Herein, we will use an optical density threshold of 0.1 m-1 and will also 
look at the combined cumulative exposure to toxic fire effluents (FED of 0.3). The definitions of these 
criteria can be found in detail in the literature cited above. 

A subject to discussion is usually the location within the fire simulation where the threshold criteria is 
recorded. Usually this is done by looking at slice files in a height of 2.0 m or 2.5 m to incorporate some 
safety. If the tenability limit is qualitatively reached in the greater part of the compartment the ASET is set 
[28]. Herein, we use a less arbitrary strategy which also stabilizes the variance of the results. A volume of 
multiple CFD cells is chosen spanning about 5 m² and a height between 1.6 m and 2.0 m to account for 
various heights of the occupants. Subsequently, all cell values of the threshold criterion within the volume 
are averaged. This smoothes the data, which can be very noisy due to physical and numerical issues, to a 
certain evaluable level. Additional smoothing can be performed by using a time low pass filter like moving 
averages [10]. The optical density is recorded centrally in the compartment as people need orientation here. 
The toxicity levels are recorded near the exits. This is due to the fact that the toxicity levels will be reached 
later than the visibility threshold [29] and people are expected to be near the exits by then. 

The RSET limit from the evacuation simulation is much easier to find and is said to be reached when the 
last occupant has left the compartment. 

Scenario 

The compartment considered is a simplified example of a 200 m² rectangular assembly room. In the design 
scenario, it is assumed that a fast growing (t-squared) fire develops in a bar during a reception with several 
occupants present. The room is in accordance with the German code for assembly buildings up to 200 m². 
Rooms larger than 200 m² require a smoke and heat exhaustion (SHE) system, so this example can be 
regarded as the worst case scenario for compartments smaller than 200 m². The room has two emergency 
exits on both sides, each with a required width of 1.2 m. The effect of a SHE system on the reliability is 
discussed later. 

Optical Density 

As the fire and evacuation simulation are not coupled they can be each regarded as self-contained models. 
Hence, a design of experiments using the central composite design was carried out independently with five 
variables for the CFD simulation and with four variables for the evacuation simulation as previously shown 
Table 1. Central composite design is a radial scan around the mean and is shown in Fig. 2 for two 
dimensions. The variable h is an arbitrary factor of the standard deviation σ which is chosen according to 
the estimated failure probability. As the MLS can be unstable in the extrapolated space it is advised to 
chose h rather large. 

In total, 25 simulations had to be carried out for the fire simulation and 25 for the evacuation simulation. As 
the models are not coupled and no interaction between the simulations is needed, calculations can be 
carried out simultaneously on multiple machines or a high throughput (HT) cluster. 
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Fig. 2. Central composite design scheme for two dimensions. 

Sensitivity Analysis 

A sensitivity analysis between the input and the output of both models was performed as described above. 

For the fire simulation, it was found that the maximum HRR and the toxic yields are irrelevant when 
looking at the visibility. This seems obvious as visibility is unrelated to the toxic effluents. Only the time to 
1 MW (tg) and the soot yield were found statistically significant as shown in a bar plot in Fig 3. The 
stepwise regression confirms these findings so that for subsequent steps only the two significant variables 
will be considered, reducing the DoE from 25 to 9 simulations. 

The analysis of the evacuation simulation did not lead to a variable reduction, as all variables were 
statistically significant. Yet, it was found that the walking speed has only limited influence while the 
number of occupants is the most influential variable. The capacity and the pre-movement time also have a 
high influence on the total variance of the RSET as shown in Fig. 4. 

 

 
Fig. 3. Coefficients of correlation of the fire variables. 
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Fig. 4. Coefficients of correlation of the evacuation variables. 

Reliability Assessment 

The surrogate model will be constructed for both fire and evacuation simulation using the response surface 
formulation described above. Even though a weighting matrix W(x) including all support points has to be 
constructed for every evaluation point; the assessment is very fast so that a high number of samples can be 
evaluated with the surrogate also leading to fast convergence of the AIS algorithm. 

In a first step, random samples are drawn from the stochastic model using a random or pseudo-random 
number generator. The parameter sets are then fed into the surrogate to determine the response and 
subsequently evaluated with the AIS algorithm. Due to the high number of evaluation points on the 
surrogate and the high failure probability, a second step in AIS is not required in this calculation. 

In a second step, a new design of experiments and thus additional support points are evaluated at the new 
mean and with the decreased variance of the adapted weighting function 2 ( )h x . Subsequently, an updated 
surrogate is constructed and a reliability analysis is carried out. 

This process is repeated until the failure probability stabilizes, meaning that the difference between the 
current and the previous iteration is less than 2.5 %. The results of the iterations are shown in Table 2. 

 
Table 2. Results of the optical density reliability assessment. 

Surrogate # AIS # Error pf 
1 1 -- 0.6683 
2 1 0.0028 0.6664 

 

Toxicity 

All the steps applied for the visibility were repeated for assessment of the failure probabilities when a less 
conservative toxicity criterion is used instead of the visibility criterion. Usually, visibility criteria are used 
for life safety design as an optical density of less than 0.1 m-1 implies a very low level of toxic gases [14] 
and thus can be regarded as a very conservative criterion. 

Looking at the toxicity will provide us with information about the implicit level of safety between the two 
criteria as toxicity thresholds can be regarded as an ultimate limit state. They imply that upon reaching the 
threshold level, the remaining occupants are in great danger of becoming unconscious and thus are likely be 
severely harmed or even die in the fire. 

In order to reduce the necessary solver runs, the data from the first scan of the random space can be re-used 
as all variables were included. The data is simply evaluated for the new threshold and then can be analyzed 
with the methods described and applied above. As the evacuation simulations are not changed and all 
variables are included, all previously evaluated support points can be included in the analysis to provide a 
better surrogate accuracy right away. 
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The sensitivity analysis for the fire simulation with regard to toxicity levels yields that the CO yield 
becomes relevant for this problem, while the soot yield falls below the significance bounds. This 
mathematical solution is also physically correct as the soot yield only accounts for smoke production while 
the CO yield is directly linked to the generation of toxic effluents. Again, the time to 1 MW (tg) is the most 
significant variable for the problem while the heat release rate can be neglected in this particular problem. 

The reliability evaluation is a little more complicated as the AIS algorithm needs several iterations to 
converge on the first surrogate. Additionally, two surrogate adaptations are needed to converge as the 
probability of failure is very low in this problem. The iterations are shown in Table 3. 

 
Table 3. Results of the FED reliability assessment. 

Surrogate # AIS # Error pf 
1 1 -- 2.68 × 10-7 
1 2 -- 7.55 × 10-7 
1 3 -- 7.01 × 10-7 
1 4 -- 6.97 × 10-7 
2 1 0.30 9.04 × 10-7 
3 1 0.02 9.22 × 10-7 

 
In order to verify that the response surface method proposed has properly found the point of the highest 
probability density in the failure domain and to show the approximation capabilities of MLS, an additional 
evaluation of the fire and evacuation simulation was performed using the design point location obtained 
from the last AIS iteration. The fire simulation returned an ASET value of 256.2 s compared to an RSET 
value by the evacuation software of 254.5 s leading to a deviation from the theoretical design point (ASET 
= RSET) of only 1.7 s. The approximation values using the last surrogate (but without the design point 
evaluation) at the design point were 255.6 s for the fire simulation and 254.9 s for the evacuation 
simulation as shown in Table 4. Hence, it is assumed that the algorithm converged correctly with a very 
high accuracy of both, approximation accuracy and overall solution. 

 
Table 4. Convergence of the reliability evaluation and the approximation quality. 

 Model (s) MLS (s) ΔMod.,MLS 
Evacuation 254.5 254.9 0.2 % 
Fire 256.2 255.6 0.2 % 
ΔASET,RSET 0.6 % 0.3 %  

 
The sensitivity analysis based on the shift between the mean vector and the design point for the total 
problem is shown in Fig. 5 and strongly supports the results of the preceding sensitivity analysis. The most 
influential parameters for the toxicity evaluation are tg (67 %) and the number of occupants in the room 
(16 %), accounting for over 80 % of the variability. 

 

 
Fig. 5. Relative sensitivities of all variables in the toxicity analysis. 
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Conditional Probabilities 

The failure probability found for the optical density seems very high considering a life safety analysis. Yet, 
the failure probabilities should always be regarded as conditional probabilities, as the hostile fire is not a 
regular event for a building to be designed for. To compare the safety level against, for example, structural 
integrity, one has to look at the reference period which for the latter is usually one year. Data given in 
[19,20] shows that for assembly facilities, the annual fire ignition probability is about 2-2 per year. Also 
considering a manual intervention of the occupants who control about 50 % of starting fires, the seemingly 
high failures probabilities per fire are nearly compliant with the usability requirements of [30] when 
referenced to the one year period as shown in Table 5. The results using the optical density as a criterion 
are in the same order of magnitude range as the findings of Magnusson et al. [16] who use a layer height 
threshold of 1.6 m. 

Table 5. Comparison between failure probabilities considering the reference 
 period and reliability index for one year. 

 pf per 
fire 

pf,fi per 
year 

Reliability 
index βfi 

Visibility 0.6664 0.0067 2.5 
Toxicity 9.2 × 10-7 9.2 × 10-9 5.6 

 
The results for the toxicity assessment show that even the conditional probabilities per fire are lower than 
the ultimate limit state requirements from [30]. Considering the fire frequency and the manual intervention, 
the annual failure probability is in the range of the ultimate requirements of high risk buildings (βreq = 5.2) 
such as assembly facilities. 

DIRECT CONSIDERATION OF FIRE PROTECTION MEASURES 

The analyses above only consider the mentioned scenario using two different assumptions about the 
threshold criteria. Due to the low numerical costs, the methodology described also enables to perform a full 
system risk analysis of fire protection systems using event trees, as described in Refs. [31,32]. Previously, 
the failure probabilities for the various scenarios were based on parametric curves, on assumptions of the 
distribution of tg or the corresponding α, respectively [16,33].  

Usually, the success of a fire protection measure leads to success of the life safety without further 
consideration, while a failure of all measures leads to failure also without further consideration of the actual 
scenario. The methodology proposed herein allows the direct consideration of the measures and the 
scenario using state-of-the-art numerical tools. This will be exemplary applied for a smoke and heat 
exhaustion system in the following sections. 

Impact of a Smoke and Heat Exhaustion System 

Herein, we want to show the impact of a smoke and heat exhaustion (SHE) system that is activated by a 
smoke detector which is located centrally in the fire compartment. The SHE system is modeled as one 
opening, also centrally located in the compartment with an area of 4 m² which is assumed to be fully 
available within 10 s after the smoke detector alarm. Conservatively, the stochastic model of the pre-
movement time is not updated with the detection times coming from the smoke detector. The results of the 
SHE system scenario can be seen in Table 6. 

 
Table 6. Results of the optical density reliability assessment with a SHE system installed. 

Surrogate # AIS # Error pf 
1 1 -- 0.2913 
2 1 0.0154 0.2868 

 
The results show that the SHE system decreases the failure probability by a factor of 2.3. This implies that 
installing a SHE system increases the life safety by a factor of greater than two when performing as 
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designed. Yet, only considering the SHE system performs as designed might overestimate the level of 
safety reached as all technical system are subject to possible failure.  

Hence, it is assumed that the SHE system has a probability of failure of 10 %. This number is based on 
Ref. [20] and not only considers that malfunction of the SHE system, but also the failure of the smoke 
detector, the wiring etc. More detailed analysis on these sub-systems can be performed in analogy to the 
event tree model but is omitted herein for the sake of simplicity. Further information on detailed modeling 
of the various fire protection systems can be found, i.e. in Ref. [34]. 

To consider the possible malfunction of the SHE system in a global risk analysis, an event tree is compiled 
as shown in Fig. 6. It is found that the total annual probability of the failure of smoke-free egress 
considering the possible malfunction of an SHE system is 0.0033 compared to 0.0029 if it is considered to 
always work as designed. Hence, the real benefit of the installation of the SHE system in this particular 
scenario is a factor of 2.0.  

 
Fig. 6. Event tree for the consideration of malfunction of the SHE system.  

Performing sensitivity analysis, the SHE system failure probability was varied (0.05–0.3) to determine the 
impact on the system failure probability in the given ranges above based on data from Ref. [20]. In this 
case, the system failure probability ranged from 0.003–0.004. Generalizing, the theoretical range between 
always performing (pf = 0) and never performing (pf = 1) obviously yields a system failure probability range 
from 0.0029–0.0067. 

Factors for other fire protection measures such as sprinklers, fire detection systems etc. can also be derived 
by applying the methodology described and subsequently can be compared to find the most effective fire 
protection measure for the particular case. A consideration of the potential cost allows for a simple and 
effective cost-benefit analysis. Introducing consequences for the various scenarios derived in the event tree 
additionally allows for a quantitative risk-analysis as described in Refs. [33,36]. 

RESULTS AND DISCUSSION 

The methodology presented allows for a very fast evaluation of the reliability using complex and 
numerically expensive computational models such as CFD tools with a very low number of necessary 
evaluations in comparison to other techniques such as Monte Carlo simulation. The advanced and quasi-
interpolating surrogate model allows for a precise approximation of the real limit state hyper-surface 
without loss of information due to global approximation. This technique also allows for all support points 
to be included in every iteration and thus will not omit previously evaluated supports in consecutive 
iterations. It should be noted that the algorithm will work quite well for many models and is even capable 
of a good representation of complex and noisy limit state hyper-surfaces with the constraint that enough 
support points are present. The evaluation of support points is mostly limited by the high computational 
costs. 

A fully risk-based evaluation and comparison of fire protection measures as well as the understanding of 
the whole fire protection system provides a crucial benefit for a more cost-effective and more risk-specific 
fire safety design. Utilizing state-of-the-art fire and evacuation models provides more accurate information 
about the life safety. A preceding sensitivity analysis yields valuable information about the variables with 
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the most severe impact on the limit state and thus allows the designer to find the potentially most 
appropriate measures. 

In conclusion, it should be noted that the results herein are based on very limited available data for the 
stochastic models and the system components; educated assumptions for some parameter uncertainties, 
distributions, and component failure probabilities had to be made as detailed data is currently missing. Yet, 
according to Hubbard [35] estimating distributions is more appropriate than estimating deterministic 
values, as more information is gained. The high impact of the fire initiation probability can be exploited in 
order to fulfill reliability requirements [30] as appropriate data is hard to obtain and highly varies. AHJs 
should be aware of this fact, when assessing probabilistic design proposals. 

Correlation between the input variables (i.e. between the yields) was also omitted. Additionally, the 
t-squared fire scenario was utilized which is known to be rather conservative and toxicity assessment using 
CFD models is still constricted due to the limits of today’s pyrolysis modeling. Nevertheless, this approach 
proposes a method to assess probabilities based on complex models with reasonable numerical costs and 
can be used as a decision aid and optimization tool for future fire safety design. 

A general transferability of the results found for the particular scenario herein cannot not be made as the 
probabilities found are closely connected to the stochastic model, the geometry, and the design fire used. 
The toxicity reliability is also rather high as the FEDs were recorded near the exits where an inflow of fresh 
air from the outside is present and might reduce the concentration of toxic effluents.  

Additionally, it should be added that the FED model from the FDS simulation software [27] was used 
instead of the full model described by Purser [14]. The FED model built into FDS omits the consideration 
of hydrogen cyanide (HCN). HCN is known to have a toxic potential which is approximately 20 times 
higher than the toxic potential of CO. This also leads to the low failure probabilities. Including HCN will 
lead to far higher failure probabilities, as it can be seen in Ref. [29]. 

Yet, the analyses of multiple representative geometries and occupancies can yield some general 
information on the current safety levels and the most critical input variables and system components. 
Quantified values for generally acceptable safety levels and the corresponding maximum allowable 
(system) failure probabilities for probabilistic life safety analysis are still missing, even though first 
publications on the topic exist [33,36].  

In the future, multiple scenarios will have to be investigated to assess the impact of fire protection 
infrastructure such as fire detection systems or sprinklers. This allows for a complete evaluation of an event 
tree to identify critical paths based on state-of-the-art models. Additionally, new input data can be 
incorporated and existing data can be updated with secondary outcomes of the previous simulations. 
Herein, the times until the smoke detectors alert were recorded and will be used for future considerations of 
the pre-movement time. 
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