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ABSTRACT 

This paper critically assesses the experimental tools and optimization techniques that can be applied to 

determine material pyrolysis properties intended for fire modeling. It is argued that while independent 

measurement of material pyrolysis properties using multiple specialized laboratory tests may be the most 

fundamentally correct way to determine these properties, due to practical considerations optimization offers 

definite advantages for fire modeling and will likely remain an integral part of material pyrolysis property 

estimation. The performance of four optimization algorithms that have been implemented in Gpyro is 

assessed in terms of efficiency (how quickly it converges to a solution) and accuracy (how close the 

converged solution is to the global optimum) by extracting 19 material pyrolysis properties from a set of 

synthetic cone calorimeter data. Widely-used genetic algorithm optimization techniques perform poorly in 

comparison to the shuffled complex evolution (SCE) algorithm, recently applied to material pyrolysis 

property estimation by Chaos et al. It is shown that SCE consistently converges to the same solution and is 

capable of reproducing material pyrolysis properties within ~1 % of the actual values used to generate the 

synthetic data set. This work suggests that SCE is capable of determining a unique set of material pyrolysis 

properties that correspond to the globally optimal solution.  
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NOMENCLATURE LISTING 

c specific heat (J/kg·K)  density (kg/m
3
) 

E activation energy (kJ/mol)    reaction rate (kg/m
3·s) 

h enthalpy (J/kg) subscripts 
h heat transfer coefficient (W/m

2·K) ∞ ambient 

H change in enthalpy (J/kg) 0 initial 

k thermal conductivity (W/m·K) 1 reaction 1 

m   mass flux (kg/m
2·s) 2 reaction 2 

q   heat flux (W/m
2
) A species A 

R gas constant (kJ/mol·K) B species B 

t time (s) c convective 

X mole fraction (-) C species C 

Y mass fraction (-) e external 

z distance (m) d destruction 

Z pre-exponential factor (s
-1

) f formation 

Greek g gas 

 thickness (m) p pressure 

 emissivity (-) v volatilization 

 

INTRODUCTION 

Since 2006, at least three comprehensive pyrolysis models (FDS [1], Thermokin [2], and Gpyro [3]) have 

been developed within the fire community and broadly disseminated. Despite independent development of 

these three models by separate groups, their mathematical and numerical formulations are quite similar. 

These three models provide nearly identical solutions when provided with matching material properties, 

with minor solution differences attributed to details of certain submodels (internal radiation, reaction 
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treatment, etc.). On this basis, it seems that consensus has been reached regarding the appropriate overall 

framework and mathematical formulation to simulate material decomposition and burning via 

comprehensive pyrolysis modeling. However, there is currently no consensus regarding how to 

appropriately apply various tools and techniques to determine the material pyrolysis properties that these 

pyrolysis models require as input to simulate a material‟s fire performance.  

Recognizing this deficiency, the US National Institute of Standards and Technology (NIST) has 

commissioned Worcester Polytechnic Institute (WPI), Southwest Research Institute (SwRI), and the 

Society of Fire Protection Engineers (SFPE) to develop the SFPE Engineering Guide for Estimating 

Material Pyrolysis Properties for Fire Modeling [4]. Once published, this Guide will provide badly-needed 

clarity and guidance in this area. The overall philosophy of the SFPE Guide currently under development 

can be summarized as “measure the material pyrolysis properties that you can, and estimate the rest using 

optimization”.  

Several of the required material pyrolysis properties can in principle be measured independently using 

specialized laboratory experiments. Fundamentally, this is the purest way to determine the required 

material pyrolysis properties. However, due to practical considerations that will be discussed later, 

measurement of independent material pyrolysis properties using multiple specialized laboratory 

experiments will likely be of limited use for fire modelers outside of a research environment.  

For this reason, it is expected that optimization will play an increasingly important role in material 

pyrolysis property estimation. In the context of the SFPE Guide and material pyrolysis property estimation 

in general, optimization refers to the process of solving an inverse problem. By working backward from a 

set of experimental data (e.g., mass loss rate and temperature measurements from the cone calorimeter), a 

set of „equivalent properties‟ can be determined by finding the input parameters that best reproduces that 

experimental data set when provided as input to a pyrolysis model. This optimization can be accomplished 

using several techniques, ranging from manual optimization to automated massively parallel search 

techniques such as genetic algorithms.  

MATERIAL PYROLYSIS PROPERTIES 

„Material pyrolysis properties‟ may mean different things in different contexts. Therefore, a simplified 1-D 

mathematical model of material heating and pyrolysis is presented below, and various material pyrolysis 

properties are then identified. Since this is difficult to do in a generalized way, a typical charring material 

with two reactions and three condensed phase species is used as an example. Other simplifications include: 

 Shrinkage or swelling (volume change) is negligible 

 Thermophysical properties are independent of temperature 

 In-depth absorption of radiation is negligible 

 Radiation heat transfer across pores is negligible 

 Gas phase and condensed phase are in thermal equilibrium  

 Two-step serial reaction mechanism with three condensed-phase species 

This two-step, three-component formulation is prototypical of wood: when wood is heated, a carbonaceous 

char is formed, and under additional heating (particularly in an oxidative environment) this char may 

further react to form ash or residue. For generality, the three condensed-phase components will be referred 

to as A, B, and C. One reaction converts A to B plus gas, and a second reaction converts B to C plus gas:  

gasBA     ;   gasCB   (1) 

Due to the creation and destruction of species A, B, and C by the reactions in Eq. 1, separate conservation 

equations must be solved to determine their local mass fractions: 
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Where dA   is the destruction of species A, fB  is the formation of species B, dB   is the destruction of 

species B, and fC   is the formation of species C. 

Since the condensed phase consists of three separate components (A, B, and C), it is necessary to define the 

following „averaged‟ quantities that appear in the conservation equations and boundary conditions:  

CCBBAA kXkXkXk   (3a) 

CCBBAA XXX    (3b) 

CCBBAA cYcYcYc   (3c) 

CCBBAA XXX    (3d) 

Where X denotes condensed-phase volume fraction and Y denotes condensed-phase mass fraction. Here, we 

see the appearance of twelve material pyrolysis properties: kA, kB, kC, A, B, C, cA, cB, cC, A, B, and C. Of 

these, only A (and possibly C) can be easily measured.  

The destruction rate of Species A and B are modeled as Arrhenius reactions: 
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Equation 4 introduces the material pyrolysis properties E, Z, and n that characterize the decomposition 

kinetics of each reaction. Each of these three parameters must be determined for each reaction, so six 

kinetic parameters must be determined for the specific case considered here.  

The formation rate of Species B, Species C, and gases can be calculated from reactant/product density 

ratios as: 
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Condensed-phase mass conservation states that the local rate of change in condensed-phase density is equal 

to the local volumetric rate of gas formation ( fg  ):  

fg
t
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


  (6) 

For the case where gaseous volatiles escape instantaneously to the exterior ambient with no resistance to 

flow or internal pressure build up, the local gaseous mass flux at any point inside the decomposing solid 

can be calculated from gaseous mass conservation as: 
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where  is the sample thickness and the z coordinate increases with depth into the solid, i.e. z = 0 

corresponds to the sample surface and z =  corresponds to the sample‟s back face.  

Finally, the condensed phase energy conservation is: 
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The heat of volatilization (Hvol) appearing on the right hand side of Eq. 8 must be determined for each 

reaction, so Eq. 8 introduces two additional material pyrolysis properties (Hvol1 and Hvol2). 

The boundary and initial conditions on the energy equation are: 
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And the initial conditions on the species conservation equation are:  
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In summary, 20 material pyrolysis properties appearing in the above equations must be determined: kA, A, 

cA, A, kB, B, cB, B, kC, C, cC, C, Z1, E1, n1, Hvo1l, Z2, E2, n2, Hvo12. Of these, only A can be easily 

measured directly, leaving 19 material pyrolysis properties that must be determined. It can be envisaged 

that the number of properties that must be determined increases rapidly with the „complexity‟ of the 

material under consideration. For example, if in-depth radiation heat transfer, radiation heat transfer across 

pores, or temperature-dependent material properties are considered, then the number of material pyrolysis 

properties that must be determined increases significantly. As the complexity of a modeling approach 

increases, the number of material pyrolysis properties that must be determined quickly becomes 

prohibitive. It is for this reason that a key to pyrolysis modeling for practical applications is to strike a 

balance between accuracy and complexity.  

EXPERIMENTAL TECHNIQUES FOR DETERMINING MATERIAL PYROLYSIS 

PROPERTIES 

In the previous section, the material pyrolysis properties that control a material‟s overall flammability 

within the context of a comprehensive pyrolysis model were identified for a prototypical two-reaction, 

three-component material. For that particular case, 19 material pyrolysis properties must be determined.  

Conventional flammability tests such as the cone calorimeter, lateral ignition and flame spread test (LIFT), 

fire propagation apparatus (FPA), etc. can provide „effective‟ values of empirical quantities such as thermal 

inertia (kc), ignition temperature (Tig), heat of gasification (Lg), etc. However, these properties do not 

appear anywhere in Eqs. 1–10 and for that reason these quantities are not useful for comprehensive 

pyrolysis modeling [1–3] including fire modeling with tools such as Fire Dynamics Simulator (FDS) [1] or 

FireFOAM [5].  

Specialized laboratory experiments, many of them standardized as ASTM test methods, are available to 

measure several of the material pyrolysis properties identified above. The SFPE Engineering Guide for 

Estimating Material Pyrolysis Properties for Fire Modeling [4] provides an excellent discussion of the 

various experimental techniques that are available.  

The primary categories of commercially-available instruments that could potentially be applied to measure 

the necessary material pyrolysis properties are: 

 Thermal analysis, i.e. thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), 

and simultaneous thermal analysis (STA). Material pyrolysis properties determined: Z, E, n, c, 

Hvol.  
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 Tests for thermal conductivity (ASTM E1530 guarded heat flow meter – GHFM) or thermal 

diffusivity (ASTM E1461 laser flash apparatus – LFA). Material pyrolysis properties determined: 

k (GHFM) or k/c (LFA).  

 Hemispherical directional reflectometer (HDR). Material pyrolysis properties determined:   

 Pycnometer (Pyc). Material pyrolysis properties determined:  

 Slab pyrolysis experiments (ASTM E1354 cone calorimeter, ASTM E2058 fire propagation 

apparatus, etc.)  

The material pyrolysis properties that can be measured (M) or inferred (I) from each instrument are 

indicated in Table 1. For all inferred (I) quantities, some type of regression analysis or optimization 

technique is necessary to determine the required properties. However, such techniques are not necessary for 

directly measured (M) quantities. 

 

Table 1. Material pyrolysis properties that can be Measured (M) or Inferred (I) from laboratory 

experiments:  thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), simultaneous 

thermal analysis (STA), guarded heat flow meter (GHFM), laser flash apparatus (LFA), hemispherical 

directional reflectometer (HDR), pycnometer (Pyc), cone calorimeter/fire propagation apparatus/similar 

(Cone/FPA). 

Property TGA DSC STA GHFM LFA HDR Pyc Cone/FPA 

k    M    I 

       M I 

c  M M     I 

k/c     M   I 

Z M / I  M / I     I 

E M / I  M / I     I 

n M / I  M / I     I 

Hvol  M M     I 

      M  I 

 

Two philosophically different approaches to determining material pyrolysis properties emerge:  

1. Measure (or measure/infer) as many material pyrolysis properties as possible using specialized 

laboratory instruments: TGA/DSC/STA, GHFM/LFA, HDR, and pycnometry.  

2. Infer all required properties from the cone calorimeter, FPA, or similar experiments using 

optimization. 

In both cases, the „accuracy‟ of the material pyrolysis properties should be assessed by comparing 

optimized model calculations to data from slab-type pyrolysis experiments such as the cone calorimeter or 

fire propagation apparatus. For Approach #1 (measure as much as possible) this could be considered a 

„quasi-blind‟ test; but for Approach #2 (infer via optimization), this is a „self‟ test. 

Approach #1 (measure as much as possible) is more scientifically rigorous than Approach #2 (infer via 

optimization). It is appropriate for fundamental studies of material flammability or pyrolysis where the goal 

is to delve into the controlling mechanisms of material flammability or to predict the outcome of small-

scale flammability tests (cone calorimeter, UL 94, etc.).  

However, independent measurement of material pyrolysis properties presents several challenges. 

Measuring thermal properties (thermal conductivity, specific heat capacity, and density) at temperatures 

above which a material begins to decompose (pyrolyze) is problematic due to off-gassing. Similar 

difficulties are encountered for materials that melt, shrink, or swell when heated. Pyrolysis models require 

thermal properties of individual components (i.e., Species A, B, and C in Eqs. 1–10) but it is not clear how 

thermal properties of individual components can be determined from experiments that measure thermal 

properties of a pyrolyzing sample containing unknown mass fractions of different components. Kinetics 

constants obtained from thermal analysis experiments at typical heating rates of < 1 K/s may not apply to 

755



  

heating rates of > 100 K/s encountered in fires. These measurements are cumbersome to conduct for „non-

simple‟ real-world materials (e.g., layered/laminated composites, inhomogeneous/anisotropic materials, 

sandwich panels, honeycomb core materials, etc.). Due to the error bars on each independently-measured 

material pyrolysis property, the predictions of a comprehensive pyrolysis model using these material 

pyrolysis properties may also be subject to considerable uncertainty. Nonetheless, Lattimer and Ouellette 

[6] and Stoliarov et al. [7,8] demonstrated that independently-measured material pyrolysis properties, when 

provided as input to a comprehensive pyrolysis model, provide good predictions of slab-type pyrolysis 

experiments for the materials they investigated. 

Approach #2 (infer via optimization) has been dismissed by some researchers as „just curve-fitting‟. Early 

studies on optimization for material pyrolysis property estimation pointed out that the problem is ill-posed, 

meaning that a unique solution does not exist and that multiple sets of different material pyrolysis 

properties may provide equally good fits to experimental data. This is a valid criticism, but it will be 

demonstrated later in this paper that improved optimization algorithms are capable of locating a unique set 

of material pyrolysis properties corresponding to the global optimum. Thus, material pyrolysis properties 

determined by optimization should be viewed as „equivalent properties‟ that provide optimal agreement 

between model calculations and the experimental data set for the particular set of modeling assumptions 

that were invoked. These modeling assumptions include the assumed reaction mechanism and decisions on 

whether or not to include phenomena such as temperature-dependency of thermal properties, in-depth 

radiation absorption, radiation heat transfer across char pores, shrinkage/swelling, etc. If the cumulative 

modeling assumptions accurately represent a material‟s behavior, then the equivalent properties should be 

true material properties. Therefore, the material pyrolysis properties determined by Approach #2 are not 

necessarily less accurate than those determined by direct independent measurement, particularly when one 

considers the difficulties identified earlier. Furthermore, pyrolysis and combustion of „non-simple‟ 

materials can also be simulated with Approach #2 using the equivalent properties concept. For practical 

situations where the goal is to apply fire modeling to predict fire development (i.e., how quickly will a fire 

grow and how big will it get), Approach #2 offers significant cost and time savings over Approach #1. 

Based on this discussion, it is concluded that for real-world applications of fire growth modeling, Approach 

#2 (infer via optimization) offers distinct advantages over Approach #1 (measure as much as possible).  

OPTIMIZATION METHODS FOR INFERRING MATERIAL PYROLYSIS PROPERTIES:  AN 

INVERSE PROBLEM 

Since the late 1990s, several workers have applied optimization techniques to solve inverse problems for 

material pyrolysis property estimation [9–33]. Some of these contributions are cataloged in Table 2 (not 

intended to be an exhaustive listing). One of the earliest fire-related efforts is that of de Ris and Yan [9] 

who, in 1997–98, developed a spreadsheet-based optimization method that determines a set of equivalent 

properties by maximizing the agreement between the calculations of a linearized version of Kung‟s 

pyrolysis model [34] and experimental data obtained from the fire propagation apparatus. In 1999, Kanevce 

et al. [10] applied a Newton-Raphson/steepest descent method to determine thermal properties, reaction 

kinetics, and heats of reaction for a phenolic composite under intense heating. One of the first applications 

of genetic algorithms (GA) to estimate kinetic parameters from thermogravimetric analysis was Şahin et al. 

[11] in 2001. In 2005, Zhao and Dembsey [12] applied the method of de Ris and Yan [9] to wood and FRP, 

and Theuns et al. [13] applied a downhill Simplex method to extract particleboard material pyrolysis 

properties from slab type pyrolysis experiments.  

In 2004, Rein and co-workers at UC Berkeley began applying GA to estimate material pyrolysis properties, 

first from TGA experiments [14,15], and later from slab type pyrolysis experiments such as the cone 

calorimeter [16]. As can be gleaned from Table 2, GA has become the most widely used algorithm for 

estimating material pyrolysis properties by optimization. However, Webster et al. [29,31] recently applied a 

stochastic hill climber (SHC) method to extract material pyrolysis properties from cone calorimeter 

experiments and concluded that the new approach provides better performance than GA. Similarly, Chaos 

et al. [32,33] determined that shuffled complex evolution (SCE) optimization [35] performs much better 

than GA for extracting material pyrolysis properties from FPA experiments.  

Since optimization is an integral part of material pyrolysis property estimation, it is critical to determine 

which of the available optimization methods provides the best performance for typical material pyrolysis 
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property estimation applications in terms of efficiency (how quickly it converges to a solution) and 

accuracy (how close the converged solution is to the global optimum). The latter is particularly important. 

In order to do this, three new optimization algorithms have recently been added to the pyrolysis model 

Gpyro [3] (as of Version 0.716). This now provides the user with four different choices of optimization 

algorithms for material pyrolysis property estimation:  

1. Vanilla genetic algorithm (GA) [3] 

2. Hybrid genetic algorithm/simulated annealing (GASA) [3] 

3. Stochastic hill climber (SHC) [29,31] 

4. Shuffled complex evolution (SCE) [32,33,35] 

Details of these algorithms are available in the Gpyro technical reference [3] and Refs. [29,31–33,35] and 

are not repeated here. All but SHC have been parallelized using message passing interface (MPI), making it 

possible to conduct a typical material pyrolysis property estimation run requiring tens of thousands of trial 

solutions in a few hours on a 16-core computer cluster (circa 2010).  

Although these algorithms have already been applied to material pyrolysis property estimation by others, 

their incorporation within Gpyro makes it possible to compare their relative performance for identical 

problems using an identical pyrolysis model formulation. Here, each of these algorithms is applied to a 

prototypical, but challenging, material pyrolysis property estimation problem to determine which algorithm 

provides the best performance in terms of efficiency and accuracy. 

Table 2. Representative contributions to the field of material pyrolysis property estimation.  

Ref. Year Authors Type Experiments Materials 

[9] 1998 de Ris & Yan Excel FPA Particle board, plywood 

[10] 1999 Kanevce et al. NR/SD Custom Phenolic composite 

[11] 2001 Şahin et al. GA TGA Ammonium pentaborate 

[12] 2005 Zhao & Dembsey Excel FPA Wood, FRP 

[13] 2005 Theuns et al. DSM Slab Particle board 

[14] 2005 Rein et al. GA TGA PU foam 

[15] 2006 Rein et al. GA TGA PU foam 

[16] 2006 Lautenberger et al. GA Cone, TGA Wood, PP 

[17] 2006 Lee Manual Cone Wood, PMMA, Foam 

[18] 2007 Lautenberger GA Cone, TGA Wood, PMMA, PU, intumesc.  

[19] 2008 Matala GA, Manual Cone, TGA Wood, PMMA, PVC 

[20] 2008 Saha et al. HGA TGA PET, LDPE, PP 

[21] 2008 Reddy et al. HGA TGA PP 

[22] 2008 Matala et al. GA TGA Wood, PVC, PMMA 

[23] 2008 Lautenberger et al. GA TGA, FPA Polyester composite 

[24] 2009 Lautenberger et al. GA Cone PMMA, PE 

[25] 2009 Lautenberger & Pello GA Cone, TGA Wood, PMMA, PU, intumesc.  

[26] 2009 Lautenberger & Pello GA Cone Wood 

[27] 2009 Bustamante GA TGA, Cone PU 

[28] 2009 Kim et al.  GA TGA, FPA Polyester composite 

[29] 2009 Webster SHC, GA Cone Carpet, FRP, phenolic panel 

[30] 2009 Matala et al. GA TGA, Cone PVC, PMMA, power cable 

[31] 2010 Webster et al. SHC, GA Cone Carpet 

[32] 2010 Chaos et al. SCE, GA FPA Corrugated, CPVC 

[33] 2010 Chaos et al. SCE, GA FPA PMMA, corrugated, CPVC 

DSM: Downhill simplex method 

Excel: Microsoft Excel „solver‟ function 

GA: Genetic algorithm 

NR/SD:  Newton-Raphson/steepest descent (modified Marquardt) 

SHC: Stochastic hill climber 

SCE: Shuffled complex evolution 
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SYNTHETIC EXPERIMENTAL DATA 

Optimization algorithms for material pyrolysis property estimation are assed here using a set of synthetic 

experimental data in lieu of actual experimental data. This makes it possible to determine how closely each 

optimization algorithm can reproduce the actual material pyrolysis properties that were used to generate the 

synthetic experimental data. Optimization methods have already been widely used to estimate material 

pyrolysis properties of real world materials, and it is not the intent of this work to demonstrate that this can 

be done, but rather to determine the optimization algorithms that are best suited for this purpose. 

Synthetic experimental data are generated for the three-component, two reaction paradigm described in 

Equations 1–10 using the material pyrolysis properties listed in Table 3. Material thickness is 8 mm and the 

back and the back face is perfectly insulated. A constant convective heat transfer coefficient of 10 W/m
2·K 

is assumed. Mass loss rate, surface temperature, and back face temperature are used as optimization targets 

for external heat flux levels of 25 kW/m
2
 and 50 kW/m

2
 (Fig. 1). The minimum and maximum values used 

to bound the range of allowable values in the optimization process is also indicated in Table 3. 

 

Table 3. Material pyrolysis properties used to generate synthetic experimental data. 

# Property Units 
Target 

value 

Minimum 

value 

Maximum 

value 

1 kA W/m·K 0.200 0.050 1.000 

2 cA J/kg·K 1500 1000 4000 

 A - 0.650 0.500 1.000 

4 kB W/m·K 0.150 0.05 1.00 

5 cB J/kg-K 1500 1000 4000 

 B kg/m
3
 200 100 400 

 B - 0.950 0.700 1.000 

8 kC W/m·K 0.100 0.050 1.000 

9 cC J/kg·K 1500 1000 4000 

 C kg/m
3
 50.0 20.0 100.0 

 C - 0.900 0.700 1.000 

12 log Z1 log s
-1

 8.70 7.00 11.00 

13 E1 kJ/mol 130.0 100.0 170.0 

14 n1 - 1.00 0.50 2.00 

15 log Hvol1 log J/kg 5.78 4.00 6.30 

16 log Z2 log s
-1

 10.70 8.00 12.00 

17 E2 J/mol 175.0 140.0 210.0 

18 n2 - 1.00 0.50 2.00 

19 log Hvol2 log J/kg 5.00 4.00 6.30 
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             (a)                 (b) 

Fig. 1. Synthetic experimental data: (a) 25 kW/m
2
; (b) 50 kW/m

2
. 
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MATERIAL PYROLYSIS PROPERTY ESTIMATION FROM SYNTHETIC DATA 

Efficiency (how quickly an optimization algorithm converges to a solution) and accuracy (how close the 

ultimate solution is to the global optimum) can be assessed from fitness evolution, i.e. a plot of fitness (a 

quantitative measure of how closely the best trial solution found so far matches the true solution) as a 

function of the number of function evaluations (the number of calls to the pyrolysis algorithm with 

different trial solutions/material pyrolysis properties). It should be pointed out that other workers have used 

fitness functions based on error minimization wherein lower fitness values correspond to better solutions, 

but the current work uses the fitness function given in the Gpyro technical reference [3] where a higher 

value of fitness corresponds to a better solution. A higher fitness corresponds to a better solution (set of 

material pyrolysis properties), but the numerical fitness value is arbitrary.  

Figure 2a shows the fitness evolution for GA optimization as a function of the population size. A 

population size of around 250 is optimal, with the fitness reaching a peak value of ~1500 after 25,000 

function evaluations. However, no additional improvement occurs through 120,000 total function 

evaluations, meaning that the solution has converged.  

Figure 2b shows the GASA fitness evolution. Although this algorithm initially converges less rapidly than 

the vanilla GA, except for a population size of 125, it does ultimately reach higher fitness levels than the 

vanilla GA. The highest fitness (~2,000) is obtained for a population size of 1,000, and it is possible that 

higher fitness values could have been reached with additional trial solutions. 

Figure 2c shows the SHC fitness evolution. This algorithm is characterized by very rapid initial 

convergence than either GA or GASA. For the optimal case with a mutation probability of 0.25 and a 

mutation severity of 1, after ~30,000 function evaluations the fitness reached a comparable level to that 

reached by GASA after ~100,000 function evaluations. Therefore, when properly optimized, the SHC 

algorithm is more efficient than GA or GASA as implemented in Gpyro. However it is not clear whether 

SHC or GA/GASA is more accurate since comparable fitness levels were reached for both.  

Figure 2d shows the SCE fitness evolution. While initial convergence is not as rapid as with SHC, a higher 

ultimate fitness level is reached. To assess the effect of the random number generator seed, ten different 

instances were run using different random number seeds. Each trace in Fig. 2d corresponds to one of these 

instances. It can be seen that the fitness evolution follows a similar pattern in all cases. This suggests that 

the SCE converges to a „good‟ solution occurs regardless of the initial guess or sequence of random 

numbers. Furthermore, as will be shown below, all ten instances converged to the same „good‟ solution – 

the global optimum.  

The four optimization methods are compared in Fig. 3 by plotting the fitness evolution from each method 

that gave the highest ultimate fitness. It can be seen that SCE provides the highest final fitness, followed by 

GASA and SHC which reached similar ultimate fitness levels. Vanilla GA reached the lowest fitness level. 

In terms of efficiency, SHC converges to a higher fitness level than any of the other methods over the first 

~5,000 function evaluations. However, by ~15,000 function evaluations, SCE reaches a higher fitness than 

that reached by SHC after 50,000 function evaluations, GASA after 100,000 function evaluations, and GA 

after 100,000 function evaluations.  

Table 4 shows the material pyrolysis properties corresponding to the best solution determined by each of 

the four optimization methods. Also shown are the target values and the percentage error of each method 

for each variable. The SCE approach has the lowest average percentage error of the four methods, followed 

by GASA, GA, and then SHC. 

Table 5 presents statistics from the 10 independent SCE trials that were conducted using different random 

number seeds. These statistics include the minimum, maximum, and average value of each parameter found 

over the 10 trials as well as the absolute and normalized standard deviation. It is shown that the solution 

always converges to a nominally identical parameter set corresponding to the global optimum. For all 

parameters, the normalized standard deviation is less than 1.5 %, and for all parameters excluding cC, it is 

less than 1 %. This indicates that for this prototypical but challenging test problem (involving simultaneous 

optimization of 19 parameters) SCE consistently converges to a unique solution corresponding to the global 

optimum.  
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Fig. 2. Fitness evolution: (a) genetic algorithm (GA); (b) genetic algorithm with simulated annealing 

(GASA); (c) stochastic hill climber (SHC); (d) shuffled complex evolution (SCE).  
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Fig. 3. Comparison of GA, GASA, SHC, and SCE optimization methods.  
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Table 4. Optimal solutions located by SCE, CA, GASA, and SHC. 

 Best solution values Best solution percentage error 

Variable Target SCE GA GASA SHC SCE GA GASA SHC 

kA 0.200 0.201 0.253 0.224 0.236 0.35 26.56 12.03 18.03 

cA 1500 1504 1979 1666 1757 0.30 31.91 11.05 17.17 

A 0.650 0.652 0.941 0.706 0.744 0.35 44.77 8.66 14.45 

kB 0.150 0.152 0.111 0.081 0.003 1.27 -26.33 -46.17 -98.04 

cB 1500 1532 1877 2842 1436 2.12 25.12 89.44 -4.28 

B 200 200 177 217 210 -0.02 -11.42 8.57 4.84 

B 0.950 0.955 0.795 0.876 0.863 0.53 -16.31 -7.75 -9.13 

kC 0.100 0.101 0.117 0.109 0.123 1.07 16.79 9.30 23.31 

cC 1500 1542 2182 1675 728 2.77 45.49 11.64 -51.44 

C 50.0 49.5 47.9 53.6 79.3 -0.91 -4.27 7.22 58.63 

C 0.900 0.902 0.931 0.873 0.982 0.22 3.49 -3.04 9.13 

log Z1 8.70 8.72 9.75 8.88 8.32 0.28 12.09 2.07 -4.38 

E1 130.0 130.3 141.7 130.9 125.7 0.23 9.02 0.73 -3.34 

n1 1.00 1.00 1.40 1.17 1.83 -0.04 40.45 16.55 83.12 

log Hvol1 5.78 5.78 5.67 5.62 5.73 0.07 -1.96 -2.71 -0.87 

log Z2 10.70 10.67 10.50 10.37 10.15 -0.29 -1.87 -3.08 -5.16 

E2 175.0 174.5 172.9 167.7 140.3 -0.26 -1.20 -4.17 -19.84 

n2 1.00 1.00 1.41 1.22 0.63 0.02 41.24 22.31 -37.28 

log Hvol2 5.00 5.00 4.83 4.32 5.76 0.05 -3.47 -13.57 15.29 

   Absolute average: 0.59 19.14 14.74 25.14 

 

Table 5. Statistics of optimal solution determined by SCE over 10 independent trials.  

Variable Target Minimum Maximum Average 
Absolute 

std. dev. 

Normalized 

std. dev. (%) 

kA 0.200 0.200 0.202 0.201 0.001 0.30 

cA 1500 1496 1511 1504 4 0.29 

A 0.650 0.649 0.654 0.652 0.001 0.22 

kB 0.15 0.152 0.154 0.152 0.001 0.41 

cB 1500 1501 1555 1531 15 0.98 

B 200 199 201 200 0.4 0.22 

B 0.950 0.951 0.964 0.955 0.004 0.38 

kC 0.100 0.100 0.103 0.101 0.001 0.74 

cC 1500 1517 1584 1545 22 1.49 

C 50.0 49.5 49.7 49.6 0.0 0.09 

C 0.900 0.900 0.906 0.902 0.002 0.18 

log Z1 8.70 8.70 8.84 8.72 0.04 0.50 

E1 130.0 130.0 131.7 130.3 0.5 0.39 

n1 1.00 0.99 1.02 1.00 0.01 0.68 

log Hvol1 5.78 5.78 5.79 5.78 0.00 0.03 

log Z2 10.70 10.59 10.78 10.67 0.05 0.49 

E2 175.0 173.4 176.2 174.6 0.7 0.42 

n2 1.00 1.00 1.00 1.00 0.00 0.09 

log Hvol2 5.00 5.00 5.01 5.00 0.00 0.05 

 

DISCUSSION AND CONCLUSIONS 

Due to its balance between efficiency and accuracy, shuffled complex evolution (SCE) optimization is 

recommended for general use in material pyrolysis property estimation. As implemented in Gpyro‟s 

companion material pyrolysis property estimation program, SCE consistently performs better than the 

761



  

genetic algorithm, genetic algorithm/simulated annealing, and stochastic hill climber algorithms for the test 

problem involving synthetic experimental data considered here. These findings are consistent with Chaos et 

al. [32,33] who concluded that SCE offers advantages over GA for material pyrolysis property estimation.  

Early studies on material pyrolysis property estimation using optimization pointed out that the problem is 

ill-posed, i.e. multiple sets of different material pyrolysis properties may provide equally good fits to 

experimental data so a unique solution does not exist. However, for the test case involving synthetic 

experimental data considered here, SCE consistently converges to the same solution and is capable of 

reproducing material pyrolysis properties within ~1 % of the actual values used to generate the synthetic 

data set. This suggests that SCE is capable of determining a unique set of material pyrolysis properties that 

correspond to the globally optimal solution.  
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