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ABSTRACT 

The experimental data on the hydrogen flame length normalized by the nozzle diameter are correlated with 

the dimensionless product of the density ratio (hydrogen density in the nozzle exit to the density of 

surrounding air) and the Mach number to the power of three. The current up-to-date experimental data on 

hydrogen flame length are used to build the correlation that covers laminar and turbulent flows, buoyancy- 

and momentum-dominated releases, subsonic, sonic and highly under-expanded supersonic jets. The 

density and velocity of hydrogen in the nozzle are taken either directly from experiments or calculated by 

the under-expanded jet theory published elsewhere. The correlation is validated in the range of hydrogen 

storage pressures from nearly atmospheric up to 90 MPa and nozzle diameters from 0.4 to 51.7 mm. The 

predictive capability of this dimensionless correlation exceeds that of previously published work based on 

the Froude number only. 
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NOMENCLATURE LISTING 

b hydrogen co-volume (m
3
/kg) T temperature (K) 

C speed of sound (m/s) U velocity (m/s) 

d diameter (m) Greek 
Fr Froude number  specific heats ratio 

g acceleration of gravity (9.81 m/s
2
)  Pi (3.14) 

KSuth Sutherland constant (K)  density (kg/m
3
) 

LF hydrogen flame length (m)  dynamic viscosity (Pa
.
s) 

m  mass flow rate (kg/s) subscripts 

M Mach number F flame 

MH2 hydrogen molecular weight (kg/mol) N nozzle 

Re Reynolds number S surroundings 

RH2 hydrogen gas constant (J/kg·K)   

 

INTRODUCTION 

Emerging hydrogen and fuel cell technologies and infrastructures, including storage at up to 100 MPa, pose 

new challenges to fire safety. One of them is the prediction of hydrogen flame length from highly under-

expanded jets. Experimental data published decades ago are mainly for subsonic releases of hydrogen or at 

pressures far below 100 MPa. Dimensionless flame length correlations suggested at that time were based 

on the use of the Froude number (Fr) in one or another form [1–3]. 

Recently Fr-based correlations [4,5] were expanded to high pressure hydrogen jet fires. The general idea of 

this technique is to correlate experimental data with the modified Fr number that is built on a so-called 

notional or effective nozzle diameter instead of the real nozzle diameter. However, the size of the notional 

nozzle diameter depends on the theory applied to calculate it including a number of simplifying 

assumptions. For example, a constant flow velocity is assumed at the notional nozzle while in fact at high 

pressures there is a strong supersonic flow on the periphery immediately downstream of the Mach disk and 

a practically stagnant flow in the middle of the jet. Besides, only a limited number of their own 

experimental data were used by authors to support their correlations. 
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In 2009 the dimensional correlation for a hydrogen jet flame length in still air was published [6]. The flame 

length of 95 hydrogen jet fires was correlated with a new similarity group that includes the product of mass 

flow rate and nozzle diameter to exclude dependence on the model-dependent notional nozzle parameters. 

The original under-expanded jet theory [7] was used to calculate mass flow rate in the nozzle based on 

hydrogen storage pressure and temperature. The correlation [6] was updated in 2010 to include 123 

experimental hydrogen flame length data points [8]. It demonstrates better predictive capability in the 

momentum-controlled regime, which is the most appropriate for hydrogen leaks from high pressure 

equipment, compared to the Fr-based approach [4]. 

The aim of this paper is to improve our understanding of underexpanded hydrogen jet fires and develop a 

correlation for the non-premixed flame length in a dimensionless form. The correlation should cover the 

whole spectrum of hydrogen releases including laminar and turbulent jets, buoyant and momentum jets, 

and expanded and under-expanded jets.  

DIMENSIONLESS CORRELATION 

Dimensionless Groups 

Previous flame length correlations were based on Fr number and validated mainly against experimental 

data on subsonic buoyant jet fires with a limited number of data on momentum-dominated jets at moderate 

pressures at the source. However, experimental data indicate that the flame length has to be a function of 

not only the Fr number but also the Reynolds (Re) number and the Mach (M) number. It is impossible to 

build a universal correlation based on only one of these dimensionless numbers. Indeed, the simple idea 

that an experimental jet flame length can only be correlated by the Fr number [1–4] does not work well in 

the momentum-controlled regime when more experiments have been recently analyzed [8]. The recent 

correlation [6] reproduces experimental data for momentum-dominated highly under-expanded jets within 

20 % and drops the predictive accuracy to 50 % for subsonic jets. Thus, both types of correlations are not 

closing the problem for the whole range of jet conditions. There is a need for a dimensionless group that 

would better predict hydrogen jet fire length for various conditions and flow regimes. 

It follows from the dimensional correlation LF = 76·( m ·dN)
0.347

 [6] that the dimensionless flame length 

LF/dN is practically independent of the physical nozzle diameter dN and depends on density N and velocity 

UN of hydrogen in the nozzle. Thus, the following dimensionless group is suggested in this study to 

correlate with the dimensionless flame length LF/dN 
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where the speed of sound for non-ideal gas was corrected as a function of temperature in the nozzle using 

Eq. 2, where  is the hydrogen specific heats ratio (1.41), RH2 is the hydrogen gas constant (4124 J/kg·K) 
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The form of dimensionless group given in Eq. 1 suggests for subsonic flows (M < 1) the dependence of the 

non-dimensional flame length on the nozzle Mach number only. Indeed, the hydrogen density in the nozzle 

N is a constant for subsonic flows (with the assumption of constant temperature). Hence, the ratio of 

hydrogen density in the nozzle exit to the density of surrounding air N/S is a constant too. For choked 

flows (M = 1) the dimensionless flame length depends only on the hydrogen density in the nozzle N that 

increases with the storage pressure. 

The dimensionless group given in Eq. 1 can be rewritten in terms of Re and Fr numbers as follows 
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where Re and Fr are determined through parameters of hydrogen flow in the nozzle 
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and the hydrogen dynamic viscosity (Sutherland constant for hydrogen was chosen as KSuth = 72 K and the 

dynamic viscosity 293 = 8.76 × 10
-6

 Pa
.
s) 

2/3

293
293

293




















 N

SuthN

Suth
N

T

KT

K
 . (5) 

From Eq. 3 it follows that at a constant temperature of hydrogen in the nozzle the dimensionless flame 

length depends on both Re and Fr numbers not only the nozzle Fr number as in former correlations. 

Description and Interpretation of Experiments 

Some of the experiments described in this section do not provide all the necessary information for our 

calculations. For instance, only in a few experiments was the container temperature history during blow-

down provided [4,9]. In order to calculate flow parameters in cases when experimental temperature was not 

provided, it was assumed that the initial temperature in the container was 273 K. The temperature in the 

nozzle was then calculated using the under-expanded jet theory [7] for under-expanded jets and taken equal 

to storage temperature 273 K for subsonic releases. Calculations using the under-expanded jet theory [7] 

showed that a decrease of hydrogen temperature in a tank by 50 K would increase the density in the nozzle 

by only 10 %. 

Hawthorne et al. [10] in 1949 reported results of two experiments with vertical subsonic hydrogen jet fires: 

one with 4.76 mm diameter rounded nozzle gave LF/dN = 134 (Re = 2,870; Fr = 92,000); another with 

4.62 mm diameter sharp-edged nozzle had LF/dN = 147 (Re = 3,580; Fr = 158,000). The velocity at the 

nozzle was calculated using the values given for Fr. The density at the nozzle was assumed to be 

0.0899 kg/m
3
 and the temperature 273 K. 

In 1977 Shevyakov and Komov [2] published a study on hydrogen subsonic flames in tubular burners of 

1.45–51.7 mm diameter. The visual length of on-port flames was measured in a darkened room. The 

correlation LF/dN(Fr) was developed to cover both buoyancy- and momentum-controlled regimes. For each 

experimental point, the diameter, flame length and flow velocity were provided. The hydrogen density of 

0.0899 kg/m
3
 and the hydrogen temperature of 273 K were assumed in the nozzle. 

In 1984 Kalghatgi [11] published jet flame lengths for more than 70 tests with subsonic and sonic releases 

of hydrogen into still air through nozzles with diameter from 1.08 to 10.1 mm. Each burner was a straight 

tube mounted at the end of a settling chamber of internal diameter 152 mm. The mass flow rate was 

provided for each measurement and exit flow parameters (Mach number, velocity, temperature and density) 

were calculated by Kalghatgi using the Liepman and Roshko approach [12]. In this study we assumed that 

hydrogen temperature in a tank was 273 K and that the density in the nozzle was 0.0899 kg/m
3
 for subsonic 

flows. The flow velocity at the nozzle was calculated from the experimental mass flow rate provided using 

the equation )/()4( 2
NNNN dmU    . For under-expanded jets an initial temperature in the container was 

assumed to be 273 K and the hydrogen density at the nozzle was calculated using the under-expanded jet 

theory [7]. 

In 2005 Mogi et al. [13] published experimental data for horizontal hydrogen jet flames from convergent 

nozzles of 0.1–4 mm diameter and spouting pressures 0.01–40 MPa. The release from four compressed 
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hydrogen storage tanks with internal volume of 0.046 m
3
 each, was done 1 m above the floor and 1 m away 

from a wall. For each test, the hydrogen mass flow rate and spouting pressure were provided. The 

temperature in the tank was assumed to be 273 K. Then, hydrogen density and flow velocity in the nozzle 

were calculated using the under-expanded jet theory [7]. 

Schefer et al. [4] published in 2006 a study on spatial and radiative properties of open vertical hydrogen jet 

flames for subsonic and high pressures releases up to 17.2 MPa. They performed a blow-down of two 

cylinders of 0.049 m
3
 each with initial pressure 17.2 MPa, through a 7.6 m straight section stainless steel 

tubing of 7.94 mm diameter. The blow-down time was about 100 s. There was a 3.175 mm diameter 

manifold orifice near the cylinder outlets. Shocked flow conditions were reached at the exit of the 7.94 mm 

diameter tube early in the blow-down. The tank pressure had dropped sufficiently to have a subsonic flow 

40 s after the start of the release. Two sets of data were presented for the flame length:  

 Releases performed using a blow-down at an initial pressure of 17.2 MPa through 7.94 mm 

diameter tubing. Transients of data during the blow-down at the tubing exit were provided for the 

7.94 mm test: pressure, mass flow rate, and jet velocity. The temperature in the container was 

assumed to be 273 K. The under-expanded jet theory [7] was then used to calculate hydrogen 

density and temperature at the nozzle exit. For the subsonic release at the end of the blow-down, 

the hydrogen density at the nozzle was assumed to be 0.0899 kg/m
3
. For this particular set of data, 

M ≠ 1 for under-expanded releases. This could be explained by an inaccuracy in data provided on 

the jet exit velocity and/or by the assumption of constant temperature at 273 K in the tank. 

 In the same paper, subsonic releases from 1.91 mm were presented and the mass flow rate and exit 

velocity were given along with the flame length. The density of the hydrogen at the nozzle was 

assumed to be 0.0899 kg/m
3
. 

In 2007 Schefer et al. [14] measured hydrogen jet flame lengths in tests at pressures up to 43.1 MPa and for 

a nozzle diameter of 5.08 mm. Their own notional nozzle theory [14] accounting for departures from the 

ideal gas behavior was applied to ensure the applicability of lower-pressure engineering correlations based 

on the Fr number and a dimensionless flame length, when substituting flow parameters and diameter in the 

nozzle by those at the notional nozzle. The experimental set-up was composed of eight cylinders of volume 

0.617 m
3
 each and filled at 43.1 MPa. A stagnation chamber located between cylinders and exit was used to 

maintain a low exit flow Mach number. The experimental data provided, i.e. stagnation chamber pressure 

and temperature history, exit mass flow rate, flow velocity at the nozzle, were used in this study to calculate 

the hydrogen density at the nozzle using the under-expanded jet theory [7]. 

In 2008 Imamura et al. [15] conducted a series of experiments to understand the thermal hazards of 

hydrogen jet flames and more specifically temperature field of hot currents in the downstream region. They 

used hydrogen release system composed of a hydrogen cylinder, a stop valve, a regulator, an air-operated 

ball valve and a nozzle located 1 m above ground. Experiments investigated the dependence of flame shape 

on the spouting conditions: nozzle diameters were 1, 2, 3 and 4 mm and spouting pressures 0.5, 1.0, 1.5, 

2.0, 2.5 and 3.0 MPa. The hydrogen flame was visualized by spraying NaCl aqueous solution. 

Experimental measurements of jet flame length as a function of diameter were provided. The given 

spouting pressure was measured at the pressure transducer close to the nozzle. With the assumption about 

the temperature in the container to be equal to 273 K, the underexpanded jet theory [7] was applied to 

calculate flow parameters, i.e. velocity and density, at the nozzle. 

In 2009 Studer et al. [16] published results of their experimental study on hydrogen jet fires. Hydrogen was 

stored in a 0.025 m
3
 Type IV tank at 10 MPa and released horizontally through a 5 m long flexible pipe 

with internal diameter of 15 mm. The pipe was mounted 1.5 m above the ground and the hydrogen was 

ignited immediately after release by an electric spark. Pressure and temperature were recorded in the pipe 

just prior to the nozzle but were not given in the publication [16]. The authors investigated releases through 

orifices of 4, 7 and 10 mm. The experimental data on pressure history, jet flame length and time of 

sampling were published elsewhere [17]. With assumption of hydrogen temperature in the tank of 273 K it 

was possible to calculate the flow parameters at the real nozzle using the under-expanded jet theory [7]. 

In 2009 Proust et al. [9] used a Type IV tank with 0.025 m
3
 capacity pressurized up to 90 MPa to study 

hydrogen jet fires. Hydrogen was released horizontally 1.5 m above ground via a 10 m long pipe with 

internal diameter 10 mm, and ignited by a continuous propane-air burner. The pressure was measured at the 

head of the tank, the temperature was measured inside the tank using K-Type thermocouples and the mass 
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flow rate was deduced from measurements of a numerical weighting device where the tank was located. 

The jet flame length was measured for orifice diameter 1, 2 and 3 mm. The experimental set up was similar 

to [16] and there were some doubts about the accuracy of the mass flow rate provided. By this reason the 

experimental data on pressure and temperature were used in this study to calculate the mass flow rate and 

other flow parameters at the nozzle by use of the under-expanded jet theory [7]. It was found that calculated 

mass flow rates were in an excellent agreement with the experimental data provided. 

The correlation in coordinates the dimensionless flame length, LF/dN, and the similarity group 

(N/S)
.
(UN/CN)

3
 is shown in Fig. 1. The summarized experimental and calculated data are presented in 

Table 1. Experimental data used to build Table 1 include: container or spouting pressure, when applicable, 

real nozzle diameter, flame length, mass flow rate or velocity in a nozzle. Other parameters in Table 1 were 

calculated based on the experimental data with use of the under-expanded jet theory [7], when applicable, 

and the described above assumptions. 
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Fig. 1. The dimensionless correlation for hydrogen jet flame length. 
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Table 1. Experimental and calculated data. 

Experiment 
P 

(MPa) 

a

Nd , 

(mm) 

a

N

F

d

L








 mN 

(g/s)
N 

(kg/s) 

TN 

(K) 

UN 

(m/s) 

CN 

(m/s) 
N

(Pa·s)
Fr Re M 

Hawthorne, 1949 – 4.76 134 3.0E-02 0.090 273 66
a
 1261 9.39E-06 4.96 3.48 0.05 

Hawthorne, 1949 – 4.62 147 4.0E-02 0.090 273 85
a
 1261 9.39E-06 5.20 3.57 0.07 

Shevyakov, 1977 – 51.70 26 2.3E-01 0.090 273 4
a
 1261 9.39E-06 1.46 3.28 0.00 

Shevyakov, 1977 – 51.70 30 3.2E-01 0.090 273 5
a
 1261 9.39E-06 1.75 3.42 0.00 

Shevyakov, 1977 – 51.70 33 3.7E-01 0.090 273 6
a
 1261 9.39E-06 1.86 3.48 0.00 

Shevyakov, 1977 – 21.00 48 1.2E-01 0.090 273 12
a
 1261 9.39E-06 2.82 3.37 0.01 

Shevyakov, 1977 – 21.00 61 1.9E-01 0.090 273 19
a
 1261 9.39E-06 3.24 3.58 0.01 

Shevyakov, 1977 – 21.00 78 3.6E-01 0.090 273 36
a
 1261 9.39E-06 3.79 3.86 0.03 

Shevyakov, 1977 – 15.30 72 1.0E-01 0.090 273 19
a
 1261 9.39E-06 3.39 3.45 0.02 

Shevyakov, 1977 – 15.30 82 1.5E-01 0.090 273 28
a
 1261 9.39E-06 3.73 3.62 0.02 

Shevyakov, 1977 – 15.30 102 2.2E-01 0.090 273 42
a
 1261 9.39E-06 4.07 3.79 0.03 

Shevyakov, 1977 – 10.75 94 9.0E-02 0.090 273 36
a
 1261 9.39E-06 4.08 3.57 0.03 

Shevyakov, 1977 – 10.75 116 1.5E-01 0.090 273 59
a
 1261 9.39E-06 4.51 3.78 0.05 

Shevyakov, 1977 – 10.75 138 2.3E-01 0.090 273 89
a
 1261 9.39E-06 4.87 3.96 0.07 

Shevyakov, 1977 – 6.00 122 4.0E-02 0.090 273 48
a
 1261 9.39E-06 4.59 3.44 0.04 

Shevyakov, 1977 – 6.00 128 7.0E-02 0.090 273 86
a
 1261 9.39E-06 5.10 3.69 0.07 

Shevyakov, 1977 – 6.00 163 1.1E-01 0.090 273 139
a
 1261 9.39E-06 5.52 3.90 0.11 

Shevyakov, 1977 – 4.00 139 3.0E-02 0.090 273 84
a
 1261 9.39E-06 5.26 3.51 0.07 

Shevyakov, 1977 – 4.00 166 5.0E-02 0.090 273 150
a
 1261 9.39E-06 5.76 3.76 0.12 

Shevyakov, 1977 – 4.00 195 1.0E-01 0.090 273 265
a
 1261 9.39E-06 6.25 4.01 0.21 

Shevyakov, 1977 – 1.45 233 1.0E-02 0.090 273 238
a
 1261 9.39E-06 6.60 3.52 0.19 

Shevyakov, 1977 – 1.45 217 2.0E-02 0.090 273 432
a
 1261 9.39E-06 7.12 3.78 0.34 

Shevyakov, 1977 – 1.45 230 4.0E-02 0.090 273 771
a
 1261 9.39E-06 7.62 4.03 0.61 

Kalghatgi, 1984 – 1.74 210 1.9E-01
a
 0.090 273 954 1261 9.39E-06 7.67 4.17 0.71 

Kalghatgi, 1984 – 2.95 233 6.7E-01
a
 0.090 273 1147 1261 9.39E-06 7.66 4.51 0.91 

Kalghatgi, 1984 – 6.10 182 8.3E-01
a
 0.090 273 339 1261 9.39E-06 6.22 4.27 0.25 

Kalghatgi, 1984 – 4.06 238 1.2E+00
a
 0.090 273 1079 1261 9.39E-06 7.40 4.59 0.80 

Kalghatgi, 1984 – 10.10 156 1.6E+00
a
 0.090 273 238 1261 9.39E-06 5.70 4.33 0.18 

Kalghatgi, 1984 – 1.08 171 3.0E-02
a
 0.090 273 391 1261 9.39E-06 7.10 3.58 0.29 

Kalghatgi, 1984 – 1.74 172 1.0E-01
a
 0.090 273 502 1261 9.39E-06 7.11 3.89 0.37 

Kalghatgi, 1984 – 2.95 163 1.8E-01
a
 0.090 273 306 1261 9.39E-06 6.45 3.91 0.23 

Kalghatgi, 1984 – 4.06 172 3.5E-01
a
 0.090 273 323 1261 9.39E-06 6.36 4.07 0.24 

Kalghatgi, 1984 – 4.06 209 7.0E-01
a
 0.090 273 646 1261 9.39E-06 6.96 4.37 0.48 

Kalghatgi, 1984 – 4.06 238 1.2E+00
a
 0.090 273 1079 1261 9.39E-06 7.40 4.59 0.80 

Kalghatgi, 1984 – 5.03 183 4.5E-01
a
 0.090 273 270 1261 9.39E-06 6.11 4.08 0.20 

Kalghatgi, 1984 – 5.03 239 1.7E+00
a
 0.090 273 991 1261 9.39E-06 7.24 4.65 0.73 

Kalghatgi, 1984 – 6.10 180 8.3E-01
a
 0.090 273 339 1261 9.39E-06 6.22 4.27 0.25 

Kalghatgi, 1984 – 6.10 211 1.8E+00
a
 0.090 273 735 1261 9.39E-06 6.89 4.60 0.54 

Kalghatgi, 1984 – 6.10 225 2.2E+00
a
 0.090 273 899 1261 9.39E-06 7.07 4.69 0.66 

Kalghatgi, 1984 – 8.30 170 1.5E+00
a
 0.090 273 320 1261 9.39E-06 6.04 4.37 0.24 

Kalghatgi, 1984 – 8.30 185 1.9E+00
a
 0.090 273 419 1261 9.39E-06 6.27 4.49 0.31 

Kalghatgi, 1984 – 8.30 191 2.5E+00
a
 0.090 273 552 1261 9.39E-06 6.51 4.61 0.41 

Notes: 
a
 - experimental data. 
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Table 1 (continued). Experimental and calculated data. 

Experiment 
P 

(MPa) 

a

Nd
, 

(mm) 

a

N

F

d

L









 

mN 

(g/s) 
N 

(kg/s) 

TN 

(K) 

UN 

(m/s) 

CN 

(m/s) 
N 

(Pa·s) 
Fr Re M 

Kalghatgi, 1984 – 10.10 145 1.2E+00
a
 0.090 273 179 1261 9.39E-06 5.45 4.21 0.13 

Kalghatgi, 1984 – 10.10 160 1.8E+00
a
 0.090 273 268 1261 9.39E-06 5.80 4.38 0.20 

Kalghatgi, 1984 – 10.10 168 2.0E+00
a
 0.090 273 298 1148 8.21E-06 5.89 4.49 0.24 

Kalghatgi, 1984 – 1.08 313 5.0E-01
a
 0.486 226 1151 1151 8.20E-06 8.10 4.87 1.00 

Kalghatgi, 1984 – 1.74 376 1.3E+00
a
 0.478 226 1151 1151 8.20E-06 7.89 5.07 1.00 

Kalghatgi, 1984 – 2.95 322 1.8E+00
a
 0.240 226 1150 1150 8.20E-06 7.66 5.00 1.00 

Kalghatgi, 1984 – 4.06 270 1.9E+00
a
 0.130 226 1149 1149 8.21E-06 7.52 4.87 1.00 

Kalghatgi, 1984 – 1.08 259 3.0E-01
a
 0.292 226 1150 1150 8.20E-06 8.10 4.65 1.00 

Kalghatgi, 1984 – 1.74 195 3.5E-01
a
 0.134 226 1149 1149 8.21E-06 7.89 4.51 1.00 

Kalghatgi, 1984 – 1.74 305 8.3E-01
a
 0.318 226 1150 1150 8.20E-06 7.89 4.89 1.00 

Kalghatgi, 1984 – 1.74 376 1.3E+00
a
 0.478 226 1151 1151 8.20E-06 7.89 5.07 1.00 

Kalghatgi, 1984 – 2.95 254 9.5E-01
a
 0.127 226 1149 1149 8.21E-06 7.66 4.72 1.00 

Kalghatgi, 1984 – 2.95 322 1.8E+00
a
 0.240 226 1150 1150 8.20E-06 7.66 5.00 1.00 

Kalghatgi, 1984 – 4.06 267 1.9E+00
a
 0.130 226 1149 1149 8.21E-06 7.52 4.87 1.00 

Kalghatgi, 1984 – 5.03 255 2.5E+00
a
 0.115 226 1149 1149 8.21E-06 7.43 4.91 1.00 

Mogi, 2005 10.1
a b

 0.40 1475 1.2E+00
a
 10.344 220 1228 1228 8.02E-06 8.58 5.80 1.00 

Mogi, 2005 12.5
a b

 0.40 2500 2.5E+00
a
 12.650 218 1248 1248 7.98E-06 8.60 5.90 1.00 

Mogi, 2005 13.0
a b

 0.40 2500 5.0E+00
a
 13.125 218 1252 1252 7.97E-06 8.60 5.92 1.00 

Mogi, 2005 5.0
a b

 0.80 1125 2.7E+00
a
 5.450 223 1189 1189 8.12E-06 8.26 5.81 1.00 

Mogi, 2005 10.6
a b

 0.80 1625 5.5E+00
a
 11.220 219 1236 1236 8.01E-06 8.29 6.14 1.00 

Mogi, 2005 13.0
a b

 0.80 2500 2.0E+01
a
 13.590 217 1256 1256 7.96E-06 8.30 6.23 1.00 

Mogi, 2005 3.0
a b

 2.00 925 7.3E+00
a
 3.570 224 1174 1174 8.15E-06 7.85 6.01 1.00 

Mogi, 2005 10.0
a b

 2.00 1450 2.0E+01
a
 11.456 219 1238 1238 8.00E-06 7.89 6.55 1.00 

Mogi, 2005 110
a b

 2.00 2300 8.5E+01
a
 12.530 218 1247 1247 7.98E-06 7.90 6.59 1.00 

Mogi, 2005 4.5
a b

 4.00 1000 3.0E+01
a
 5.540 223 1190 1190 8.11E-06 7.56 6.51 1.00 

Mogi, 2005 7.0
a b

 4.00 1288 5.6E+01
a
 8.496 221 1213 1213 8.06E-06 7.57 6.71 1.00 

Mogi, 2005 10.0
a b

 4.00 1500 1.0E+02
a
 11.920 219 1241 1241 7.99E-06 7.59 6.87 1.00 

Schefer, 2006 – 1.91 150 2.0E-02
a
 0.090 273 88

a
 1261 9.39E-06 5.55 3.17 0.06 

Schefer, 2006 – 1.91 187 3.0E-02
a
 0.090 273 117

a
 1261 9.39E-06 5.80 3.30 0.09 

Schefer, 2006 – 1.91 215 4.0E-02
a
 0.090 273 175

a
 1261 9.39E-06 6.15 3.47 0.13 

Schefer, 2006 – 1.91 220 6.0E-02
a
 0.090 273 258

a
 1261 9.39E-06 6.49 3.64 0.19 

Schefer, 2006 – 1.91 225 8.0E-02
a
 0.090 273 346

a
 1261 9.39E-06 6.74 3.77 0.26 

Schefer, 2006 11.2
a
 7.94 544 5.7E+01

a
 5.790 223 1233

a
 1192 8.11E-06 7.29 6.84 1.03 

Schefer, 2006 4.7
a
 7.94 363 2.3E+01

a
 2.520 225 1231

a
 1167 8.17E-06 7.29 6.48 1.06 

Schefer, 2006 1.9
a
 7.94 277 6.9E+00

a
 1.070 226 1078

a
 1156 8.19E-06 7.17 6.05 0.93 

Schefer, 2006 1.2
a
 7.94 223 2.1E+00

a
 0.090 273 644

a
 1261 9.39E-06 6.73 4.69 0.51 

Schefer, 2006 0.1
a
 7.94 191 1.1E+00

a
 0.090 273 446

a
 1261 9.39E-06 6.41 4.53 0.35 

Schefer, 2007 26.2
a
  5.08 1969 3.6E+02 12.380 215

a
 1140

a
 1236 7.90E-06 7.42 6.96 0.92 

Schefer, 2007 16.6
a
 5.08 1722 2.3E+02

a
 9.190 195

a
 1079

a
 1145 7.32E-06 7.37 6.84 0.94 

Schefer, 2007 9.7
a
 5.08 1378 1.4E+02

a
 5.940 187

a
 1056

a
 1092 7.09E-06 7.35 6.65 0.97 

Schefer, 2007 4.5
a
 5.08 965 6.4E+01

a
 2.880 189

a
 1052

a
 1071 7.14E-06 7.35 6.33 0.98 

Schefer, 2007 1.7
a
 5.08 669 2.8E+01

a
 1.120 192

a
 1059

a
 1066 7.24E-06 7.35 5.92 0.99 

Schefer, 2007 0.7
a
 5.08 472 1.1E+01

a
 0.450 196

a
 1067

a
 1070 7.35E-06 7.36 5.52 1.00 

Notes: 
a
 - experimental data; 

b
 - spouting pressure. 
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Table 1 (continued). Experimental and calculated data. 

Experiment 
P 

(MPa) 

a

Nd
, 

(mm) 

a

N

F

d

L









 

mN 

(g/s) 
N 

(kg/s) 

TN 

(K) 

UN 

(m/s) 

CN 

(m/s) 
N 

(Pa·s) 
Fr Re M 

Imamura, 2008 1.0
a b

 1.00 347 5.3E-01
a
 0.596 226 1152 1152 8.20E-06 8.13 4.92 1.00 

Imamura, 2008 3.0
a b

 1.00 686 1.6E+00
a
 1.766 225 1161 1161 8.18E-06 8.14 5.40 1.00 

Imamura, 2008 0.3
a b

 3.00 253 1.6E+00
a
 0.210 226 1149 1149 8.20E-06 7.65 4.95 1.00 

Imamura, 2008 0.9
 a b

 3.00 430 4.7E+00
a
 0.630 226 1152 1152 8.20E-06 7.65 5.42 1.00 

Imamura, 2008 1.9
a b

 3.00 540 9.6E+00
a
 1.282 226 1157 1157 8.19E-06 7.66 5.74 1.00 

Imamura, 2008 0.4
a b

 2.00 274 9.0E-01
a
 0.265 226 1150 1150 8.20E-06 7.83 4.87 1.00 

Imamura, 2008 1.2
a b

 2.00 499 2.7E+00
a
 0.787 226 1154 1154 8.19E-06 7.83 5.35 1.00 

Imamura, 2008 2.5
a b

 2.00 645 5.3E+00
a
 1.562 226 1159 1159 8.18E-06 7.84 5.65 1.00 

Imamura, 2008 0.2
a b

 4.00 241 1.8E+00
a
 0.138 226 1149 1149 8.21E-06 7.53 4.89 1.00 

Imamura, 2008 0.6
a b

 4.00 373 5.4E+00
a
 0.414 226 1151 1151 8.20E-06 7.53 5.37 1.00 

Imamura, 2008 1.2
a b

 4.00 455 1.1E+01
a
 0.823 226 1154 1154 8.19E-06 7.53 5.67 1.00 

Proust, 2009 1.9
a
 3.00 577 9.0E+00

a
 1.259 189

a
 1057 1057 7.14E-06 7.58 5.75 1.00 

Proust, 2009 74.2
a
 3.00 1933 2.5E+02

a
 25.120 225

a
 1418 1418 8.17E-06 7.83 7.12 1.00 

Proust, 2009 14.8
a
 3.00 1377 6.6E+01

a
 7.960 206

a
 1166 1166 7.64E-06 7.66 6.56 1.00 

Proust, 2009 4.8
a
 3.00 791 2.3E+01

a
 3.058 190

a
 1077 1077 7.19E-06 7.60 6.14 1.00 

Proust, 2009 11.0
a
 3.00 1220 5.0E+01

a
 6.271 201

a
 1135 1135 7.49E-06 7.64 6.45 1.00 

Proust, 2009 3.0
a
 3.00 675 1.5E+01

a
 1.968 188

a
 1062 1062 7.13E-06 7.58 5.94 1.00 

Proust, 2009 69.8
a
 2.00 2551 1.1E+02

a
 24.280 224

a
 1402 1402 8.13E-06 8.00 6.92 1.00 

Proust, 2009 25.1
a
 2.00 1977 4.6E+01

a
 11.837 218

a
 1238 1238 7.97E-06 7.89 6.57 1.00 

Proust, 2009 10.2
a
 2.00 1186 2.1E+01

a
 5.830 202

a
 1134 1134 7.52E-06 7.82 6.25 1.00 

Proust, 2009 5.4
a
 2.00 794 1.2E+01

a
 3.215 197

a
 1099 1099 7.40E-06 7.79 5.98 1.00 

Proust, 2009 86.9
a
 1.00 3129 3.2E+01

a
 27.790 222

a
 1446 1446 8.09E-06 8.33 6.70 1.00 

Proust, 2009 49.8
a
 1.00 2567 2.0E+01

a
 19.300 226

a
 1346 1346 8.19E-06 8.27 6.50 1.00 

Proust, 2009 25.2
a
 1.00 1696 1.1E+01

a
 11.730 221

a
 1247 1247 8.06E-06 8.20 6.26 1.00 

Proust, 2009 13.6
a
 1.00 1329 6.6E+00

a
 7.170 213

a
 1178 1178 7.84E-06 8.15 6.03 1.00 

Studer, 2009 8.3
a
 4.00 1397 7.0E+01

a
 4.490 224 1182 1182 8.13E-06 7.55 6.42 1.00 

Studer, 2009 4.1
a
 4.00 912 2.8E+01

a
 2.660 225 1168 1168 8.16E-06 7.54 6.18 1.00 

Studer, 2009 2.9
a
 4.00 765 1.8E+01

a
 1.810 225 1161 1161 8.18E-06 7.54 6.01 1.00 

Studer, 2009 1.1
a
 4.00 528 5.4E+00

a
 0.728 226 1153 1153 8.20E-06 7.53 5.61 1.00 

Studer, 2009 5.8
a
 7.00 979 1.0E+02

a
 3.260 225 1172 1172 8.15E-06 7.30 6.52 1.00 

Studer, 2009 2.0
a
 7.00 574 3.2E+01

a
 1.272 226 1157 1157 8.19E-06 7.29 6.10 1.00 

Studer, 2009 1.4
a
 7.00 515 2.1E+01

a
 0.927 226 1155 1155 8.19E-06 7.29 5.96 1.00 

Studer, 2009 1.1
a
 7.00 447 1.6E+01

a
 0.748 226 1153 1153 8.20E-06 7.29 5.87 1.00 

Studer, 2009 0.7
a
 7.00 379 1.1E+01

a
 0.498 226 1151 1151 8.20E-06 7.29 5.69 1.00 

Studer, 2009 6.3
a
 10.00 685 1.8E+02

a
 3.540 224 1174 1174 8.15E-06 7.15 6.71 1.00 

Studer, 2009 3.0
a
 10.00 474 6.4E+01

a
 1.973 225 1162 1162 8.18E-06 7.14 6.45 1.00 

Studer, 2009 1.2
a
 10.00 358 2.6E+01

a
 0.799 226 1154 1154 8.19E-06 7.13 6.05 1.00 

Studer, 2009 0.6
a
 10.00 267 1.1E+01

a
 0.800 226 1154 1154 8.19E-06 7.13 6.05 1.00 

Studer, 2009 0.3
a
 10.00 216 6.1E+00

a
 0.267 226 1150 1150 8.20E-06 7.13 5.57 1.00 

Studer, 2009 0.2
a
 10.00 168 2.0E+00

a
 0.154 226 1149 1149 8.20E-06 7.13 5.33 1.00 

Notes: 
a
 - experimental data; 

b
 - spouting pressure. 

 

DISCUSSION 

There are three distinguished parts in the dimensionless correlation in Fig. 1 from the left to the right: 

„traditional‟ buoyancy-controlled part that is represented by data on subsonic releases of Shevyakov et al. 

[2] and Hawthorne et al. [10]; „saturated‟ momentum-dominated part represented by subsonic release tests 

by Kalghatgi [11] and Schefer et al. [4] where dimensionless flame length is essentially a constant; and 

finally a third part that stands for choked and under-expanded jet fires. 
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It is clear that there is no saturation of dimensionless flame length at value LF/dN = 230 observed in 

numerous previous studies with expanded jets. Currently reported experiments exhibit much higher values, 

e.g. LF/dN = 3000 [9]. Analysis of change in dimensionless groups (Re, Fr, M) value shows that for under-

expanded jets, the dimensionless flame growth depends practically on Re number only as flow is choked 

and thus nozzle Mach number M = 1 and nozzle Fr number is constant also for fixed diameter (Fig. 2). 
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Fig. 2. Dimensionless numbers Re, Fr, M as a function of the new similarity group for experiments used for 

the correlation. 

There are three lines in Fig. 2. Line Re = 2000 separates laminar and turbulent jets. Prevailing majority of 

experiments used to validate the correlation were carried out for turbulent releases. Line Fr = 10
6
 is 

indicative for transition from buoyancy- to momentum-dominated jets. Finally, line M = 1 separates 

subsonic jets from choked in the nozzle flows. This explains the shape of the correlation (Fig. 1). 

CONCLUSIONS 

The dimensionless correlation for non-premixed hydrogen jet flame length in still air in coordinates LF/dN 

against (N/S)
.
(UN/CN)

3
 is developed. It is thoroughly validated by the experimental data on flame length 

for laminar and turbulent hydrogen flames, buoyancy- and momentum-dominated flows, expanded and 

highly under-expanded hydrogen jet fires. Numerous experimental data obtained by different authors 

collapsed into the same curve. The correlation follows previously established pattern with “traditional” 

buoyancy- and momentum-controlled parts, and incorporates power law for dependence of the flame length 

on the Re number for under-expanded high momentum jets. The correlation can be recommended for use 
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by fire safety engineers and requires knowledge of only hydrogen density and velocity in the nozzle that 

can be calculated using the under-expanded jet theory published elsewhere. 
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