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ABSTRACT Understanding the atomization of fire sprinkler sprays fills a critical gap in the modeling of
fire suppression systems. Previous research by the authors has shown an instability model coupled with a
stochastic transport model can paint most of the sprinkler spray picture, but requires input in the form of
thickness and velocity of unstable fluid sheets. The model outlined describes a water jet impinging on a
perforated deflector plate as a velocity potential. The free surface separating the jet from the surrounding air
takes the form of a vortex sheet with the air assumed to be at rest. Through the use of the Green’s function, the
fluid velocity potential can be posed as a boundary value problem. Any solution obtained is an exact solution
to the inviscid flow equations and the interior flow a solution to the Navier-Stokes equations. The resulting
model allows for the determination of the complete flow field over a sprinkler head of arbitrary geometry and
input conditions. Knowledge of this flow field provides insight into the impact of sprinkler head geometry
and fluid velocity as well as providing the above mentioned inputs for a complete model of fire sprinkler
sprays.
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NOMENCLATURE LISTING
A, area of deflector plate openings (m?) u  radial velocity (m/s)
f free-surface location v vertical velocity (m/s)
G  Green’s function Z;  arbitrary height of jet boundary (m)
Jo  Bessel function of order zero z vertical spatial location (m)
G axisymmetric Green’s function zo  vertical source location (m)
P pressure of fluid (Pa) zs  tine sheet thickness (m)
ps  static pressure of fluid (Pa)
R; radius of jet boundary (m) Greek

flow split

Dirac Delta function

Eigenvalue of the order zero Bessel function
angular spatial location

fluid density (kg/m?)

perturbation potential

fluid potential

R; radius of the centroid of the slot (m)
R;s arbitrary radius of tine stream boundary (m)
7 spatial location (m)
7o  source location (m)
radial spatial location (m)
ro  radial source location (m)
U; jetvelocity (m/s)
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INTRODUCTION

Sprinkler systems are a ubiquitous form of fire protection in the United States with expanding adoption
around the world. The performance of a sprinkler depends on the spray generated by the sprinkler, the dis-
persion of the spray within the flames, and the wetting of burning surfaces. Despite the widespread use of
sprinklers, analytical models to predict their performance have yet to be developed. Each one of these stages
of sprinkler modeling involve complex transport processes which create important modeling and measure-
ment challenges. The transport processes responsible for sprinkler performance are complex, not readily
yielding to measurement or analysis, making the development of analytical models difficult.

The possibility of accurately predicting water delivery with fire models, or more ambitiously, of designing
sprinklers with models to produce particular sprays, has far reaching implications for suppression technology
and engineering practices. The goal of the present paper is to introduce a general scheme for predicting sheet
formation from the impingement of a jet onto a deflector, a configuration common to most sprinklers. This
scheme provides insight into how deflectors govern sprinkler spray behavior and represents an important
fundamental sub-model required for predicting the initial sprinkler spray.
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The atomization mechanisms responsible for sprinkler spray formation are both unstable and chaotic. Though
diverse in size, shape, and design details, most modern fire sprinklers use the same fundamental impinging jet
configuration for spray generation illustrated in Fig. 1. In this configuration, water is initially forced through
an orifice to produce a continuous water jet. This jet then impinges onto a deflector to form thin sheets of
water (described by the modeling scheme developed in the current study). These thin, unstable sheets then
disintegrate into ligaments, which, in turn, break into droplets [1].

There are multiple well-explored methods available to predict the droplet formation. For example, scaling
laws have been developed which characterize droplet breakup locations as well as drop sizes in terms of
sprinkler geometry, ambient conditions, and liquid flow properties [2,3]. Alternatively, more detailed linear
stability models describing the growth of the disturbances (i.e. sinusoidal waves) responsible for breakup are
also available. In both cases, explicitly in the former and implicitly in the latter, sheet thickness and velocity
are fundamental to the equations describing sprinkler spray characteristics. The determination of this sheet is
thus very important to the overall characterization of the sprinkler spray.

In typical fire sprinklers, sheets are formed as the jet is turned along the deflector tines and as the jet is forced
through the deflector slots as shown in Fig. 1. In order to predict the thickness and velocity of these sheets,
one must have an understanding of the sprinkler-head flow responsible for their formation. The essential
challenge in modeling sprinkler-head-fluid interactions is resolving the free-surface interface between liquid-
phase water and gas-phase ambient air. This boundary-defined interface creates extremely thin sheets making
the determination of its precise location critically important. In a preliminarry study to address the challenge
of locating the liquid-gas interface (and the associated sheet thickness and velocity), the Volume of Fluid
(VOF) method as outlined in Hirt [4] was applied to a sprinkler-head simulation. The VOF method is a
simple but powerful approach designed with the goal of tracking the shape and position of the interface
during multi-phase computational fluid dynamics (CFD) simulations. However, the computational burden to
calculate the gas flow, liquid flow, and their interactions during the CFD based sprinkler-head simulation was
prohibitive owing to mesh requirements for resolution of the thin sheets (with typical grid sizes of tens of
microns) formed by the deflector (with typical sizes of tens of millimeters).

A new and more efficient alternative formulation for the sprinkler-head deflector flow problem is posed based
on free-streamline flow theory. A free surface describes the surface of a fluid that is subject to constant
perpendicular normal stress. The boundary between two homogeneous fluids; in this case, the impinging
water jet and the surrounding air, can be described as a constant pressure free surface. Because of this constant
pressure free-surface description of the jet, it is known that there is no flow normal to the jet boundary and
thus the liquid-air boundary is a free streamline. The essential notion is to make use of the fact that a free-
surface model of the flow can be constructed based on the description of the water jet as a velocity potential.
Using the potential flow assumptions, the fluid velocity potential solutions can be reduced to a boundary
value problem. Recognizing the velocity potential satisfies Laplace’s equation and that the velocity potential
may be specified on all boundaries, a complete velocity potential field within the boundaries may be realized
along with the shape of the free-surface boundary itself.

This formulation removes the need to solve the Navier-Stokes equations for the water and the air on the
volume surrounding the deflector for determination of the water-air interface. Figure 2a shows that in a
traditional CFD approach tremendously detailed gridding is required to resolve the thin sheets (on the order
of 50 microns). In contrast, in the free-surface modeling approach as shown in Fig. 2b, only the boundaries of
the liquid stream require solution, greatly reducing computational requirements, typcially by about a factor
of 100.

The mathematical formulation of this model is discussed next.

MATHEMATICAL MODEL

There is considerable literature describing two-dimensional free streamline flows dating back to the late nine-
teenth century. These problems have typically been addressed using the hodograph method, which uses the
velocity components as independent variables [5,6]. These flows are typically characterized by solid bound-
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Fig. 2. Dimension and gridding requirements for deflector flow simulations in (a) traditional computational
fluid dynamics approach and (b) the proposed boundary value problem approach.
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aries composed of straight-line segments with the free surface being a streamline at a constant pressure. These
qualities make determination of the boundary shape in the hodograph plane straightforward. Further, the fact
that the velocity components are functions of a complex variable makes conformal mapping a powerful tool
in constructing the solution.

In three dimensions the hodograph method is no longer available, nor is the use of complex variable tech-
niques. However, the potential flow still satisfies the Laplace’s equation and the free streamline remains a
constant pressure surface. The free streamlines separating the water jet from the surrounding air are taken to
be vortex sheets and the air is assumed to be at rest. The method relies on the existance of a Green’s function
satisfying the potential flow equation and appropriate boundary and symmetry conditions. In mathematics,
a Green’s function is a specific type of function used to solve inhomogeneous differential equations. It is a
function which transforms a boundary value of a function into the functions response to the boundary value
across all space. Physically the Green’s function may be thought of as a weighting function or a propagator
function. G(¥,7) gives the effect of a unit point source ar ¥y producing a potential at 7.

The formulation of the boundary value problem in terms of an appropriate characteristic Green’s function
reduces the problem to the determination of the shape of the free surface and the outflow conditions on the
deflector plate.The boundary conditions required for definition of the Green’s functions are dictated by the
description of the sprinkler geometry and the nature of the incoming flow.

The general nature of the model presented in this study provides the capability of capturing the critical sheet
behavior for fire sprinklers of almost any design complexity. It shares the advantage of the VOF method in
being able to precisely capture interface location as well as the ability of the CFD model to exactly model the
fluid flow. Additionally, it achieves both of these goals with relatively minimal computational burden.

To begin development of the mathematical model, the problem is posed in cylindrical coordinates as follows.
The spatial location is given as

7= (x,y,z) = (rcos(0),rsin(0),z) (D

and a source location given as

7o = (x0,Y0,20) = (ro cos(09), 7o sin(6p),z0)- )

The starting point of the mathematical formulation is the assumption that, because of the size and speeds
associated with sprinkler heads (on the order of 0.01 m and 10 m/s, respectively), the effects of gravity and
boundary layers can be disregarded. We can than define an impinging jet velocity field, #(7), which can be
described as a potential flow satisfying the equation

V29 (F) =0,  where ii(7)=Vo(F). 3)

Figure 3a shows the fluid potential of an axisymmetric jet impinging on solid plate. The velocity, i (7), is
always perpendicular to the isocontours of ¢ (7). The local pressure change, p — p, is determined by the
gravity free Bernoulli equation given by

pu*/2+ ps = constant = p U]-2/2. 4)
where U; is the velocity of the impinging jet. Figure 3b shows the nondimensional pressure of the same

axisymmetric jet, with potential depicted in Fig. 3a, calculated using the gravity free Bernoulli equation.

Having established these preliminaries the sprinkler boundary value problem can now be formulated. The
Green’s function is a solution to

V2G(F, 7y) =8(F 7). (5)

Here 8 denotes the Dirac Delta function in three spatial dimensions.
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Fig. 3. For an axisymmetric jet impinging on a solid, horizontal plate the (a) fluid potential, ¢ (¥), (b) static
pressure, p; (7), and (c) the Green’s function, G (r,1,z,2)

Next consider the integral ¢(7) can be defined by

(7) = [ 6(0)8 (7 7o) di. ©
From Egs. 3, 5, and 6, ¢(7) can be defined as the integral
o) = [ [00) VG (7, 7o) = V()G (7. To)] d'Fo )

The integral above is taken over the entire volume of the flow being solved. In the general case, this volume
includes the jet bounded by the inlet, its free-surface, and the deflector that it impinges on. It is important to
note that this formulation by itself assumes nothing about the geometry of the problem.

Second, ¢(7) can be written in the form

M= [ V-16(0) VG (7. 7o) - Vo (70) G (7. 7o) d*Fo ®
Using the divergence theorem, the above can be rewritten as
o) = f (060 5 (7~ G 7) 52 ()| s ©)

The integral in Eq. 9 is taken over the surface which bounds the volume of interest. Here, 7i is the local
coordinate unit normal to the bounding surface pointing outward from the volume and #; denotes point along
that surface.

This result is very general and assumes nothing about the specific boundary conditions or the shape of the
boundaries that are needed to obtain it. To proceed further it is necessary to specify the information available
to formulate a specific boundary value problem relevant to the sprinkler jet impingement on a given deflector
plate. The unknowns are, as mentioned above, the values of ¢(7) along the boundaries, the fluid velocity,
u(7), normal to the boundaries, and a specific choice of a Green’s function, G(7,7y). The choice of Green’s
function will be considered next.

The starting point is the observation that the simplest Green’s function satisfying Eq. 5, denoted here by
Go (?7 To, 05, Zo), is:

I 1 1 1
Gy (¥, r, E) .
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This solution satisfies Eq. 5, but is not particularly useful. There exist a variety of solutions to Eq. 5, all of
which are acceptable Green’s functions for use in the solution of Eq. 9. A simple modification can be made
for the case of a planar barrier located at zop = 0, a reasonable approximation to a sprinkler deflector. The
appropriate Green’s function is then:

Gy (?a Yo, em Zo) =Gy (?7 Yo, 9,,, Zo) +Go (?7 Yo, em *Zo) . (11)

The new solution still satisfies Eq. 5 and also satisfies the condition of no normal gradient at the surface
Zo = 0. Figure 3c shows G| for a source located at ryp = 1, zop = 2. Because the velocity component normal
to the barrier either vanishes or is prescribed everywhere, the first term in Eq. 8 vanishes along the deflector
boundary allowing the integral along the deflector boundary to be solved with only knowledge of the Green’s
function and the velocity normal to the deflector plate.

In this manner the Green’s function can be further modified depending on the specific problem being consid-
ered. The particular choice of Green’s function provides a limited amount of constraint to the problem. The
remainder of the constraint will follow from the boundary conditions chosen and will reflect the geometry
of the specific problem. In order to generally explore the impact of changing boundary conditions the major
simplification of an axisymmetric flow pattern will be introduced in the following section.

AXISYMMETRIC MODEL

The full form of the boundary value problem is quite general and can be applied to complex boundary
shapes.This complexity can make explaining the modeling approach difficult and obscure the impact of essen-
tial sprinkler geometric features. In an effort to provide insight into the impact of variations of the boundary
conditions, as well as to clarify the general formulation of the boundary problem, a non-dimensional axisym-
metric model will be demonstrated in this study.

Before proceeding to explore the boundary conditions, it is useful to introduce the dimensionless variables

% %

¢:UjRj¢(r7Z)7 FZI"/R]', Z:Z/ij i= 7 aiz (12)

The tilde notation will be dropped for the remainder of the paper for the convenience of the vector notation.
Owing to this non-dimensionalization R; = 1 and U; = 1.
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Fig. 4. (a) The parameters of an axisymmetric model and (b) the potential flow field resulting from an
axisymmetric deflector.
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The axisymmetric model suggested here is posed as follows: an inviscid, vertical jet with radius R; impinges
upon a horizontal deflector plate. A ring opening with centroid R; and total area Ay is located in the deflector
plate. Here both slot centroid, Ry, and slot area, Ag, are non-dimensionalized by the impinging jet radius
and area, R; and TI:R?, respectively. In a typical sprinkler head, slot penetrations in the deflector plate have
some angular dependence. In the axisymmetric model suggested the discrete openings in the actual plate
are smeared out uniformly with respect to the angular coordinate, 6, and the radial location and width of
the smeared locations are chosen to match the last two parameters mentioned above. By assuming the flow
pattern to be axially symmetric, some of the geometric effects induced by the details of the deflector plate
geometry are lost, but the impact of the general geometry of slots is preserved. Figure 4a shows the definition
of R, and A, for this general axisymmetric case.

The boundary conditions of ¢ (7;) and its normal gradient, /- V (¥;), appearing in Eq. 9, are independent of
0. All of the bounding surfaces are now figures of revolution, and the only quantities containing an angular
dependence are the Green’s function and its normal derivative. An axisymmetric Green’s function can now
be achieved by angularly integrating the Green’s function presented in Eq. 10. The result takes the form

1

1/275
— de,. (13)
AnJo /2412 —2rr,cos(0—0,) + (2—20)2

g(?a To, Zo) =

The quantity, G, physically represents a ring source of fluid situated at » = r,, z = z,. The Green’s function
can then be rewritten as

. . 1 /2 47‘7‘0 . —1/2
G (¥, 70,20) = — PR /0 (l Tt =) sin (9)) de. (14)

This function can be evaluated in terms of the complete Elliptic Integrals of the first kind, denoted as K (m)
where

K(m) = /On/z (1—msin?(8)) "/ g6, (15)

The Green’s function being rewritten as

_ 1 K (m) _ 4rr,
TC\/(rJrr())er(z—Z())z 7 (rt7r0)*+(2—20)*

G (P r0,20) = (16)

This axisymmetric Green’s function can then be again refined in the same manner as demonstrated in Eq. 11
with the form

gl (?7 r07Z0): g(?7 r07Z0)+g(77 Vm_Zo)- (17)
Similar to G, G represents a ring source situated at » = r,, z = z,, but located in a semi-infinite space bounded
below by the plane z = 0.

The task now remains to define the boundary conditions. The bounding surface consists of four parts as
outlined in Fig 4a:

Jet: an inlet disk of radius R; located at a given height, Z;.
Free surface: the bounding free streamline surface.

Tine stream: a vertical cylinder of radius R;; and height z; (the vertical distance between the bounding
free streamline and the deflector plate) where the flow that does not pass through the deflector plate

exits.
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Deflector: the horizontal deflector plate where flow passes through the ring opening with centroid R
and total area Aj;.

Because of the formulation of the problem as a surface integral, each individual boundary can be evaluated
individually, and summed to construct the entire integral as

O(F) = 0;(F) + &5 (F) + s (F) + 0a(7), (18)

where §;(7), (), Oss(7), and ¢4(7) correspond to the integral ¢(7), as defined in Eq. 9, evaluated on the
surface of the inlet jet, free stream, tine stream, and deflector plate, respectively. Because of the inviscid
nature of the flow, the distance at which the inlet jet and the tine stream barriers are evaluated is arbitrary.
At a sufficient distance from the deflector plate and the vertical axis, respectively, the flow on both of these
boundaries converges to some asymptotic behavior.

The impinging jet can be imagined as a circular cylinder of radius R; with a downward speed U; extending
to infinity. Thus, as z — o, ¢ — —U;z. Similarly, the deflector plate with the specified opening governed by
R and A; extends so it occupies the entire plane z = 0. The jet thickness then approaches 0 as r — oo. It is
worth noting that all analytical solutions for free jet problems described in the literature are posed as infinite
domain problems. This has not prevented their use in the study of problems in a finite domain.

It is helpful to construct a global mass balance to quantify how the flow entering through the inlet jet leaves
the deflector. The inlet volume flow is dimensionally quantified as TCR?U ;» or non dimensionally as simply 7.
A fraction, a,, or the flow split, of this flow leaves the domain in the slot stream through one or more holes
in the deflector plate. The remaining fraction, 1 — @, is trapped between the surface of the deflector and the
ambient air. Because the ambient pressure remains a constant, the speed of the radially moving tine stream
must also be U;. Thus, if we let z denote the thickness of the tine stream, conservation of mass requires that

(1—)nR;U;j = 21rzsUj, (19)
or non-dimensionally,

11—
rZg = ( 2 ) . (20)

The shape of the of the asymptotic streamline leaving the deflector is then a hyperbola whose thickness is
determined by the fraction of mass flow passing through the plate or the flow split. The flow split must be
determined as a part of the solution to the problem.

Now considering the region z > 1 far from the deflector plate. The presence of the plate creates a perturbation
that retards and expands the jet, deflecting the boundary in the process. The potential at this jet boundary can
be represented as

Ojer(r,2) = —z2+P(r,2). (21)

The appropriate boundary conditions for the pertuirbation potential, ®(r,z) are

lim ®(r,z — ) =0 (22)

and

0\* [0d)\?

-1+ = — =1. 23
< +; > + ( 5 > (23)
The first condition requires that the perturbation to the jet flow vanish sufficiently far from the plate while the

second arises from the requirement that the pressure and thus the jet speed be uniform at the jet free surface.
Neglecting the quadratically small terms the second condition can be simplified to the linearized form

7*(l,2)=

b

—(1,2) =0. 24)
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Now any solution for ®(r,z) can be written as

D(r,z) = Y Ando(Anr)exp(—Mnz) (25)

where A,, are some series of undetermined constants, Jy are the Bessel functions of order zero and A, are
a set of eigenvalues corresponding to the Bessel function such that Jo(A,) = 0. Because each subsequent
eigenvalue decreases by more than an order of magnitude, only the first term in the series above is important.
As a result the asymptotic solution on the jet can now be completed.

The normal velocity is given by

Vier(r,2) = —1 —AohoJ1 (Aor)exp(hoz) (26)

and asymptotic free streamline has the shape

r=1-AgJ; (7»0)6)6[7(—7\,01). 27

The boundary integral, ¢;(7), can now be evaluated at the inlet, a horizontal plane located a non-dimensional
distance Z; above the deflector plate.

R; oG (%, r0,Z;
¢j(r72)=/0 r0(¢jet(r07zj)gl(7ar07zj)_Vjet(VO>Zj)w)d”0 (28)

The chief problem for the general solution to the proposed boundary value problem is selecting an appropriate
shape for the free-surface boundary. An approximation of the surface as a hyperbola is a reasonable one for
the axisymmetric ring slot case. Using the criteria that the non-dimensional free surface must approach r = 1
as z — oo the free-surface can be approximated as

z:f(r):A+§ 29

where A and B are constants chosen for continuity with the jet and tine stream boundaries.

Assessing the boundary integral, ¢ 7(7), is simplified greatly by the assumption that there is no normal flow
to the free-surface. The integral is assessed from ry = 1, or the radius of the jet, to ry = Ry, or the arbitrary
location of the tine stream boundary, along the curve bounded by the free-surface equation given in Eq. 29.
¢ ¢5(7) can be written as follows:

Ry =
Ors(7) :/1 ro¢(r0,f(r0))wdro (30)

where dGj /dn can be found by the following
agl/anzvg1'ﬁ (31)

where 7 is the unit normal to the free-surface at any given ry.

The impact of the next boundary, ¢;s(¥), is now considered. In the region near the plate r > 1. As r — o
the radially expanding jet thins. Since the speed of the jet is fixed by the requirement of constant pressure
the limiting form of the solution for large  must be ¢ — U;r. This is not, however, a solution for the fluid
potential in this region, but merely the leading term in a descending series. The solution for the velocity
potential in this region takes the form

tinegrazg:r‘FFlg F+F2g’Z\PG/”3+... (323
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Enforcing the boundary condition that v(r,0) = 0 gives

Fi(z) =—-22/2'4¢ and F(z) =z'/4!+d. (33)

Note that this form of the solution restricts its validity to a region of r greater than the radial location of the
slot in the deflector plate. The above constants ¢ and d are determined from the requirement that the speed is
constant at the free surface. To accomplish this, the equation for the free surface must also be expanded into
a descending series in r as

wr)=(1—)/2r+b/r* + ... (34)

This introduces another constant, b. The solution for ¢y;,. given by Eq. 32 must also be made consistent with
the shape of the free surface. The results yield that b= ¢ =0 and d = — (1 — a)? /4. This result holds no matter
what fraction of the mass flow passes through the plate, subject to the caveat that the domain of applicability
lies outside the opening in the plate.

This boundary is evaluated at the arbitrary radius of the plate, ro = R;,, with the integral spanning 0 < zg < zj,
where z; is the height of the sheet above the deflector plate given by z (R;s) from Eq.34.

< d qu sy
0u(r2) = [ ro@une (s, 20)G1 - R ) ~ v,,-et<Rm,zo)w>dzo 35)

The final boundary, the deflector, is evaluated at zp = 0 and spans 0 < ry < R;;. Because of the choice of
Green’s function, dG; /on is equal to 0 at all z = 0. The term, d¢/9n is also equal to 0 at all points where there
is no penetration through the boundary. As a result, the integral, ¢,(7), can be written as

R[S
(])4(7) = A rov(ro,O)gl (?, I’(),O)dr() (36)

where v(rg) is the profile of flow through the ring opening with centroid R, and total area A;. This flow
profile can be assessed based upon the typical assumptions of 2D slot flow. Using the static pressure at the
location of the slot (see Fig. 3b) as calculated from Bernoulli’s equation in Eq. 4, a total slot flow, v(rg), can
be determined.

The above integrals can be summed following Eq. 18 to calculate the full potential ¢ (7). The flow split is
unknown in any arbitrary axisymmetric geometry. In order to solve for the flow split an iterative process
must be performed. First the flow split is estimated, and used to calculate the potential, ¢ (¥). Using this
calculated potential, pressure on the slot is evaluated, and used to calculate flow through this slot. With this
new information, a new flow split is calculated and used to construct new boundary conditions and in turn
a new potential. By repeating this process for some given geometric parameters the flow split mandated by
the geometry is converged upon. Figure 4b shows a calculated potential flow for the case Ry = A; = 1 with a
calculated flow split, oo = 0.62.

RESULTS

In the previous section, it was mentioned that the axisymmetric model can be used to investigate the impact
of the two parameters, slot centroid location, R, and total slot area, As, which define the ring opening in the
deflector plate. The primary quantity of interest in these investigations is the flow split, a.. The flow split,
while not capable by itself of providing a detailed description of sprinkler spray, is useful as an assessment
of sprinkler behavior. Exploring the impact of various parameters on the flow split provides insight into the
impact of sprinkler shape on spray behavior.

Figure 5 shows the resulting flow split for a variety of slot centroid locations and slot areas. The model
quantifies the effects of increasing slot area and reduced slot centroid (owing to increased pressure at the

deflector as in Fig. 3b) on increasing the flow split to the slot stream. The results help to illustrate some of
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Fig. 5. Calculated flow split from the axisymmetric model.

the meaningful data that can be collected from the axisymmetric model. In addition to the flow split, the
thickness and velocity of tine and slot sheets for a given deflector geometry can also be calculated. These can
in turn be inputted into the three part sprinkler model as outlined previously in Fig. 1 and used to determine
full sprinkler behavior.

An estimate error for the above calculations can be formed by examining the mean deviation from free
stream velocity along the streamline was calculated. In the above model, non-dimensional speed along the
free-surface should have a constant value of u*> 4+ v> = 1. Any slowing or speeding from this velocity is an
indication of error. Error can then be written as:

dr 37

e[ Vt s )P+ v =17
N | 4 di0)?

dr

In all cases tested above £ < 10%. The source of this error likely stems from discrepancies in the boundary
conditions. The shape of the free-surface may not be precisely a hyperbola and the slot calculations are not
perfect representations of flow through a slot. That said, the total error calculated is small, likely less than the
error of the physics based models used to calculate sheet breakup and fragment transport [3].

It is important to note that this error only quantifies deviation from an accurate solution of the potential flow
equations. There are a number of complications of real flows on real sprinkler heads which would cause
calculated results to deviate from true behavior. First, the inviscid and non gravitational assumptions are
incorrect for real flows but in flows of the approximate size and speed of sprinkler heads these assumptions are
nearly correct. Second, the assumptions made regarding slot behavior break down in the case of particularly
large, small, or distant slots. For example, in the case of large or distant slots the hyperbola formulation
of the free-surface streamline fails to capture the possibility of flow traveling completely through the slots.
Alternatively, in the case of very small slots viscid effects of flow become more important.

It is also important to note the scope of this model. The above general model only accounts for the interaction
of an impinging jet with the sprinkler deflector up until the flow leaves the deflector. It does not account for
aerodynamic instabilities or air flow effects which dominate the sheet behavior upon leaving the sprinkler
head. It can however provide the initialization parameters for these instabilities models and give insight into

the poorly understood imEact of sgrinkler head geometry.
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CONCLUSIONS

The mathematical model presented above provides a method for determining the free surface flow field on
a perforated deflector plate. By posing the flow impinging on the sprinkler as a potential flow boundary
value problem, and applying appropriate boundary conditions and selected Green’s functions, the fluid-gas
interface location can be determined along with the full deflector flow field. The general nature of this method
provides the capability to capture all of the essential features of complex geometries found in typical fire
sprinklers.The hypothetical axisymmetric case explored in this study exemplifies the impact of geometric
details of the sprinkler (and their associated boundary values) on the deflector flow. Specifically, the impact
of slot area and slot centroid radius on the sprinkler head flow split was demonstrated in this study. This flow
split is critical as the sheet topology (i.e. location, thickness, and velocity) which governs initial spray details
is completely determined from this quantity.

The model developed in this study is capable of capturing this fundamental sheet formation behavior quan-
titatively with only minimal computational burden. Further work on this problem includes a refinement of
the asymptotic boundary conditions on the jet and tine boundaries as well as better selection of free-surface
shape. Additional model development will include expansion to capture the periodic geometry (i.e. tines and
slots) typical of real fire sprinklers. The sprinkler head deflector flow model is an essential component of a
high-fidelity modeling framework capable of completely describing the initial sprinkler spray.
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