
 

A Model for Combustion of Firebrands of Various Shapes 

HOWARD R. BAUM1 and ARVIND ATREYA2 

1Department of Fire Protection Engineering 
University of Maryland, College Park, MD 20742 
2Department of Mechanical Engineering 
University of Michigan, Ann Arbor, MI 48109 
 

ABSTRACT 

The lifetime of a firebrand before burning out controls the maximum distance a firebrand can travel to 
cause spotting. Thus, combustion of firebrands of various shapes and sizes and their burnout time during 
transport is studied. The analysis assumes “quasi-steady” burning. In the present context, “quasi-steady” 
means that the rate processes controlling the gas phase fuel consumption and energy release are much faster 
than the particle fuel depletion time or the gas phase transport times. The Reynolds number based on the 
overall particle dimension and velocity relative to the particle is assumed to be small. The gas phase 
combustion processes are represented by the evolution of a mixture fraction variable. It is shown that the 
velocity field near the particle can be described by a potential flow whose functional form is determined by 
the mass conservation equation and that this flow satisfies the particle surface boundary conditions. Gas 
phase solutions are obtained for two-parameter family of firebrand shapes composed of oblate and prolate 
ellipsoids of revolution. Prolate ellipsoids range from a thin needle to a sphere and oblate ellipsoids range 
from a sphere to a thin disc. Thus, they cover all possible firebrand shapes. The ambient velocity field does 
not need to be aligned with the firebrand axis of symmetry, so that the composite velocity and mixture 
fraction fields are three-dimensional. While a variety of steady-state condensed phase models are 
compatible with this picture, results are first presented for an ablating solid describable by the Spalding B 
number. B-numbers representative of flaming combustion of wood firebrands and glowing combustion of 
remaining char are used. All quantities are calculated as a function of the ellipsoidal aspect ratio, B number, 
and the Reynolds number. Surprisingly, it is found that the firebrand burnout time is shape independent. All 
possible shapes were considered by using oblate and prolate ellipsoids of different sizes and aspect ratios. 
The burnout time depends only on the firebrand mass under the assumptions used. 
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NOMENCLATURE  

B Spalding B number Greek  
D  mass diffusivity (m2/s) ( ),ξ η  ellipsoidal coordinates 
𝛥H energy released/mass of O2 (kJ/kg) φ  velocity potential 
L particle dimension (m) oξ  particle surface, ( ) 1OZ ξ =  
  𝓛 heat of pyrolysis (kJ/kg) ϵ	   aspect ratio: minor/major axis	  
M  total mass rate leaving the particle subscrip

ttts	  
subscrip
ts 

 

S stoichiometric ratio = O O F Fm mν ν  ∞ ambient conditions 
Re Reynolds number F fuel 
T∞  ambient temperature (K) O oxygen 
Tw  particle surface temperature (K) fl flame	  u  velocity vector (m/s) superscripts 

U∞  relative velocity (m/s)  ∞ ambient conditions	  
Y mass fraction accents 
Z mixture fraction ~ dimensional scalar variable 

 

 dimensional quantity 
x,r( )  cylindrical coordinates (m) →  vector quantity 
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INTRODUCTION  

Spotting ignition by lofted firebrands is a major fire propagation mechanism in wildland and wildland-
urban-interface fires. It consists of many complex individual phenomena: (i) Generation of various size and 
shape firebrands by fires, (ii) Firebrand lofting and transport by fire-induced flows and prevailing winds, 
(iii) Combustion of various size and shape firebrands during transport, and (iv) Ignition after the firebrand 
lands on the fuel bed. Clearly, a range of phenomena must be understood to predict spotting ignition. A 
substantial amount of work has been done to develop this understanding starting from the pioneering work 
of Tarifa et al. [1] and Albini [2] to the more recent work of Manzello et al. [3], Koo et al. [4], Woycheese 
et al. [5], Sardoy et al. [6] and others. An excellent review of this literature has been recently published by 
Koo et al. [7]. The present work limits itself to the combustion part of the problem. It develops an 
analytical model to determine the burning rate and burnout time of firebrands. A simple physically 
interesting case of an ablating solid describable by the Spalding B-number is considered first. Charring 
solids that pyrolyze and form char require a numerical solution and are left for later analysis. The problem 
is solved in prolate and oblate ellipsoidal coordinates to cover all possible shapes. Prolate ellipsoids include 
firebrands ranging from a needle to a sphere, whereas, oblate ellipsoids include firebrands ranging from a 
thin disk (leaf) to a sphere. The advantages of using these coordinates are: (i) A single combustion solution 
suffices for all sizes and shapes; (ii) It can be shown that the near-field fluid flow around these objects 
simplifies to a potential flow and can be represented as the gradient of the velocity potential φ . The 
analysis also assumes that the particle motion relative to the oxidizing atmosphere is small, yielding small 
Reynolds numbers based on the particle dimension ‘L’ and the relative velocity


U

∞
. It is further assumed 

that combustion can be adequately represented by the evolution of a mixture fraction variable ‘Z’. Thus, the 
energy and species conservation equations reduce to a single evolution equation for the mixture fraction.  

With these assumptions, the mass conservation equation and the mixture fraction evolution equation, 
supplemented by an isobaric equation of state and a set of piecewise linear algebraic relations between the 
major gas species, the sensible enthalpy, and the mixture fraction constitute the system of equations 
describing the gas phase phenomena. The assumption that the velocity field is irrotational replaces the 
momentum conservation equations. It may appear contradictory to describe a low Reynolds number flow as 
an irrotational flow, but that is precisely what is assumed in all analyses of the combustion of spherical 
droplets. In that case, the spherically symmetric geometry precludes the existence of vorticity. For more 
general shapes, if a solution to the equations can be found consistent with a constant value of the velocity 
potential on the surface of the particle, then the solution so obtained satisfies the no-slip conditions at the 
particle surface, while still allowing for the emission of fuel vapor from the surface. This is precisely the 
case for prolate and oblate solids of revolution. Examples of these solids are shown in Fig. 1. In addition to 

Fig. 1. Prolate Ellipsoids (left) and Oblate Ellipsoids (right) for various aspect ratios ϵ. The limiting case 
of a Prolate Ellipsoid as ϵ → 0 is a needle while that for an Oblate Ellipsoid is a disc. 
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the overall length L, a single parameter 'ϵ' describing the ratio of semi-minor to semi-major axes lengths 
determines the specific geometry under consideration. 

The remainder of this paper is organized as follows. First the models needed to describe phenomena in the 
gas phase are introduced. These models take different forms depending upon the distance from the particle 
for which solutions are required. Then, appropriate solutions for different parts of the domain of interest are 
developed but only near-field solutions are presented due to lack of space. Much of this can be done 
without considering anything beyond the geometry of the solid material. Following this, the model for an 
ablating solid is introduced and solved. This permits the gas phase solution to be completed for at least the 
simplest representation of the solid degradation. The ultimate result is a description of a set of time-
dependent processes that determine the burning rate of an idealized wood chip or wood char as a function 
of its size, shape, and material properties. 

GAS PHASE MODEL  

Assuming that for length scales of O(L) from the particle, all processes can be regarded as quasi-steady, in 
the sense that the equations governing the gas phase phenomena can be utilized in their steady state form. 
The mass, energy, and species conservation equations then take the form: 

∇⋅ ρ
u( ) = 0  (1) 

∇⋅ ρ
u Z( )−∇⋅ ρ D∇Z( ) = 0  (2) 

Here, ρ(Z ) is the gas density and D Z( ) is the diffusivity. 

The momentum equation can be formally solved by the assumption that the flow field on this length scale 
is irrotational. This can be shown by writing the momentum equations for a constant viscosity and 
assuming 𝜌 to be constant in the momentum equations only. Then if we require the vorticity to 
vanish


ω = 0( ) , we may write the momentum equations as [8]: 

ρ
∂
u
∂t
+∇
u( )
2
2

#

$
%

&

'
(+∇ p− p∞( ) = 43µ∇ ∇⋅

u( )  (3) 

Using u = ∇ φ , Eq. 3 can be immediately integrated subject to the boundary conditions that p− p
∞
and u  

vanish far from the particle. The result is the generalized Bernoulli equation:  

ρ
∂ φ
∂t

+
u( )
2
2

"

#
$

%

&
'+ p− p∞( )− 43µ∇⋅

u = 0  (4) 

The irrotational velocity field together with the generalized Bernoulli equation satisfies the no-slip 
boundary condition so long as the velocity potential is constant along the particle surface. Thus, the all 
solutions obtained below are exact solutions of the low Mach number combustion equations. The normal 
component of the velocity does not vanish and varies along the surface as a function of the size and shape 
of the particle. 

Rewriting Eq. 1 & 2 in terms of the velocity potential u = ∇ φ , we get:  

∇⋅ ρ∇ φ( ) = 0  (5) 
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∇⋅ ρ Z∇ φ( )−∇⋅ ρ D∇Z( ) = 0  (6) 

Once ρ(Z ) and D Z( ) are specified, together with an appropriate set of boundary conditions, Eq. (5) and 

(6) are sufficient to determine the solution to the gas phase combustion problem in the vicinity of the 
particle. The diffusivity is specified by the relation: 

ρ( )
n D= ρ

∞( )
n D

∞
 (7) 

The value of n will be chosen based on a balance between physical accuracy and mathematical 
convenience. Further, if the mean molecular weight at any point in the gas is assumed to be the same, rather 
than depending on the local species concentrations, the equation of state simplifies to: 

ρ T = ρ
∞
T
∞

 (8) 

More generally, the state equations now take the following form: 

( )( ) ( )F O O OZ SY Y Y S Y∞ ∞= − − +  (9) 

( )( ) ( )1 1F PZ S Y Y S= + + +  (10) 

Z = ΔH YO −YO
∞( ) +Cp

T − T∞( )( ) Cp
Tw − T∞( ) − ΔHYO∞( )  (11) 

Here, S denotes the mass of oxygen consumed per unit mass of fuel, ∆H is the energy release per unit mass 
of oxygen consumed, Tw is the temperature of the particle surface. The stoichiometry parameter S is 
another empirical input into this model. It can be used to characterize the consequences of incomplete 
combustion, although the procedure for choosing this parameter is beyond the present analysis. 

Equations (9), (10), and (11) actually constitute several equations. Since we assume that the reactions are 
infinitely fast, the fuel and oxidizer cannot co-exist. Thus, the flame sheet is located on a curve flZ Z= , 
where the flame sheet value of Zfl is: 

( )fl O OZ Y S Y∞ ∞= +  (12) 

For values of Z such that Z ≤ Zfl , YF = 0 and Eq. 9 determines YO (Z); while for Z ≥ Zfl, YO = 0 and Eq. 9 
determines YF. The combustion product mass fraction YP is found from Eq.10 using the results for YF. 
Similarly, Eq. 11 determines the temperature T (Z ) as a piecewise linear function of Z. Eq. 8 then 

determines the piecewise linear relation ρ Z( ) . 

The boundary conditions on Z are that Z = 0 far from the particle and Z = 1 on the particle surface. 
Similarly, the velocity potential ϕ is constant at the particle surface. Far from the surface: 

φ ~ − M 4π ρ
∞

r( )  (13) 
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The quantity M is the total rate of mass leaving the particle surface, and r is the distance from the particle 

measured from its center of mass. The constancy of ϕ at the surface ensures that there is no slip at the 
surface, while the asymptotic condition guarantees that the total mass flux from the surface is preserved. 

These conditions can be made more precise by the introduction of dimensionless prolate ellipsoidal 
coordinates [9]. First consider the prolate ellipsoid. Let ( x, r) be the dimensional axial and radial 
coordinates in a cylindrical coordinate system aligned with the axis of symmetry of the ellipsoidal particle, 
arranged so that the particle occupies the domain defined by−L / 2 ≤ x ≤ L / 2 . The prolate ellipsoidal 
coordinate system (ξ, η) is then defined as follows: 

r 2 = c2 1−η2( ) ξ 2 −1( ) and x = cξη  (14) 

The quantity c is defined by noting that ξ = ξ0 gives a prolate ellipsoid of rotation with semi-major axis a = 
c ξ0 and semi-minor axis 2

0( 1)b c ξ= − . Thus: 

x2

c2ξ0
2
+

r 2

c2 ξ0
2 −1( )

=1  (15) 

Since the aspect ratio ϵ is the ratio of semi-minor to semi-major axes, 

( ) ( )
1

2 2
0 0 01 1c cξ ξ ξ

−

= − = −e e  (16) 

Now using the fact that the semi-major axis has length L/2: 

21
2
Lc = −e  (17) 

Finally, the ellipsoidal coordinates can be written explicitly in terms of x, r( ) as follows: 

ξ =
1
2c
x2 + r 2 + c2 + x2 + r 2 + c2( )

2
− 2 xc( )

2"

#
$

%

&
'

1
2

η =
x
cξ

 (18) 

The coordinate geometry for contours of constant ξ starting at the particle surface is shown for an ellipsoid 
of aspect ratio ϵ = 1/4 in Fig. 2. 
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Fig. 2: Prolate ellipsoidal coordinates for an ellipsoid of aspect ratio ϵ = 1/4. Note that each 
successive contour of constant ξ becomes more circular with increasing ξ. 
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NEAR FIELD SOLUTION  

Writing the conservation Eq. 1 and 2 in ellipsoidal coordinates and assuming that ρ, φ and Z are functions 
of ξ only, we get: 

d
dξ
ρ ξ( ) ξ 2 −1( ) d

φ
dξ

ξ( )
!

"
#

$

%
&= 0  (19) 

d
dξ
ρ Z ξ( ) ξ 2 −1( ) d

φ
dξ

ξ( )
!

"
#

$

%
&−
d
dξ
ρ D ξ( ) ξ 2 −1( ) dZdξ ξ( )

!

"
#

$

%
&= 0  (20) 

Note that the assumption that φ is a function of ξ does not mean that the velocity depends only on ξ, but 
only that the vectors are aligned in the direction of increasing ξ. However, since there is no component of 
the velocity parallel to any surface of constant ξ, the no slip condition at the particular surface ξ = ξ0 is 
satisfied. The mass conservation Eq. 19 can now be readily integrated to yield: 

ρ ξ( ) ξ 2 −1( ) d
φ
dξ

ξ( ) = M  (21) 

Note that since ρ→ ρ
∞

as ξ→∞ , then the velocity vanishes far from the particle. Next, using equation 
(21), the energy and species conservation equation (20) can be integrated with the following result: 

M Z − ρ D ξ( ) ξ 2 −1( ) dZdξ =
E  (22) 

Integrating Eq. 22 and applying the boundary condition Z(ξo) = 1 we obtain: 

1
2
log

ξ −1( ) ξ0 +1( )
ξ +1( ) ξ0 −1( )

"

#

$
$

%

&

'
'=

ρ Z( ) D Z( )dZ
E − M ZZ

1

∫  (23) 

At this stage the constants of integration E and M are unknown. However, one relation between the two 
constants can be found by enforcing the boundary condition that 0 as Z ξ→ →∞ . Thus the solution given 
by Eq. 23 can now be written as: 

1
2
log

ξ +1( )
ξ −1( )

"

#

$
$

%

&

'
'=

ρ Z( ) D Z( )dZ
E − M Z0

Z

∫  (24) 

Note that for
r L1, ξ 1 and ξ  r c . Thus, far from the particle, the solution for Z reduces to: 

Z  E ρ
∞
D
∞
ξ( ) = Ec ρ

∞
D
∞

r( )  (25) 
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The solution becomes spherically symmetric far from the particle, regardless of its shape. This fact, which 
is a direct consequence of the ellipsoidal coordinate system, is used advantageously in the far field analysis. 
However, space does not permit presenting the details of the far field analysis. Thus, only a brief summary 
of the composite solution is presented. 

Composite Solution 

A composite solution for the Mixture Fraction that is accurate to the leading order in the small parameter 
δ =

U

∞
L D

∞
everywhere is found and it is presented below in Eq. 26.   

1
2
log

ξ +1( )
ξ −1( )

"

#

$
$

%

&

'
'exp

s ⋅ y − y( ) 2( ) =
ρ Z( )D Z( )dZ
E −M Z0

Z

∫  (26) 

Here s is a the unit vector in the direction of 

U

∞
, y = δr L , y = y  and the following non-dimensional 

definitions are used: D= D
∞
D y( ); ρ = ρ∞

ρ
y( ); E = ρ∞

D
∞
E; M = ρ

∞
D
∞
M . Applying the boundary 

conditions ( )0 1Z ξ = and Z → 0 as ξ → ∞, we get: 

( )
( )

( ) ( )1
0

00

11 log
2 1

Z Z dZ
E M Z

ξ ρ

ξ

⎛ ⎞+
=⎜ ⎟⎜ ⎟− −⎝ ⎠ ∫

D
 (27) 

These are general solutions for a prolate ellipsoid burning in a slowly moving (relative velocity) oxidizing 
environment in the fast reaction limit. The oxidizer flow does not have to be aligned with the axis of 
symmetry of the ellipsoidal particle, and the results are valid for any aspect ratio ϵ. However, nothing has 
yet been said about the fuel flow rate. This information must be either prescribed, or a model of the 
condensed phase processes within the particle must be coupled to the above results. 

STEADY STATE SOLUTION FOR AN ABLATING SOLID 

In order to complete the solution a second relation between the parameters E and M must be found. This 
relationship comes from the set of equations and boundary conditions that describe the thermal degradation 
of the solid particle. The simplest case of physical interest is a vaporizing solid. Here, the net heat flux at 
any point on the particle surface q is related to the mass flux m by the effective heat of pyrolysis 𝓛 by the 
relation q =L m.Using the state relation between Z and T  given by Eq. 11 and using the fact that the 
velocity potential ϕ depends only on ξ, we can write:  

− k d
T
dZ
dZ
dξ

ξO( ) =L ρ D∞

dφ
dξ

ξO( )  (28) 

Given that the Lewis number k ρ DC p( ) =1 is built into the state relations, the vaporizing solid boundary 

condition can be rewritten as: 

D ΔHYo
∞ +Cp T∞ − Tw( )( ) dZdξ ξ0( ) =L dφdξ ξ0( )  (29) 

Using Eq. 21 and 22 to eliminate the derivatives, the following relation between M and E is obtained: 

( )1M E= +B B  (30) 
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Here, the parameter B is the Spalding “B number”, defined as: 

B= ΔHYo
∞ +Cp T∞ − Tw( )( ) L  (31) 

Substitution of Eq. 30 into Eq. 27 yields the desired expression for E, and hence M. 

( )
( )

( ) ( )
( )( )

1
1

0

00

1
2 log

1 1 1
Z Z dZ

E
Z

ξ ρ

ξ

−
⎛ ⎞⎛ ⎞+

= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− − +⎝ ⎠⎝ ⎠
∫

D
B B

 (32) 

An explicit solution for Z(r ,e,B) can be obtained for the particular case of 1ρ =D [this assumption is 
reasonable because density and diffusivity have opposite relationship to temperature at constant pressure]. 
Under these circumstances, the integrals in equations (26) and (27) can be readily evaluated to yield: 

( ) ( )
( )

( ) ( )
1

0
0

0

1
, 2 log log 1 1

1
M E

ξ
ξ

ξ

−
⎛ ⎞⎛ ⎞+

= + = +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
B B B B  (33) 

Z(r ,e,B) =
1+B( )
B

1− exp −W (r ,e,B)( )( ), Where:  (34) 

W (r ,e,B) = log 1+B( )log
ξ +1( )
ξ −1( )

"

#

$
$

%

&

'
' log

ξ0 +1( )
ξ0 −1( )

"

#

$
$

%

&

'
'

"

#

$
$

%

&

'
'

−1

 (35) 

A useful check of this result can be found by considering the limiting case of a spherical body in a 
stationary gas such as combustion of a liquid fuel droplet [10]. In the present case this corresponds to the 
limit 1→e . In this limit, ξ0 → ∞, and since ξ ≥ ξ0, the same is true for ξ. Since ξ0 c = L/2 = R, where R is 
the radius of the sphere, then for fixed r , ξ→ r c . Thus: 

W →
R
r

log 1+B( );  solving for Z, we get:  (36) 

Z =
1+B( )
B

1− 1+B( )
−R r"

#
$

%
&
'  (37) 

This differs from the result in [10] by the prefactor (1 + B)/B. The difference arises because the present 
study assumes Z = 1 at the surface, while for a fuel droplet Liñán & Williams [10] regard B as a parameter 
to be determined by evaporative equilibrium and accept a discontinuity in Z at the droplet surface. 

TIME DEPENDENT EFFECTS – PARTICLE BURNOUT 

The analysis up to this point has assumed a steady state processes. However, there are two important 
exceptions that must be considered. First, the size of the particle is inherently time dependent because 
combustion reduces the mass of the particle. In principle, this process continues until the particle is entirely 
consumed, at which point the combustion terminates. The above analysis implicitly assumes that the time 
scale for mass loss is much slower than the time for a small parcel of fuel to be carried by advection or 
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diffusion over a distance of the order of the semi-major axis of the ellipsoid. Under these conditions, the 
mass loss rate can be calculated as a steady-state process, and a global mass balance employed to determine 
the time history of the particle size. Second, for length scales far enough from the particle, the time scales 
are long enough for the species and energy transport to be unsteady and the combustion process may 
terminate before the steady state calculated above can be established in the far field. This means that the 
“outer expansion" describing the energy and species transport must be treated as inherently unsteady. Space 
precludes presenting this latter unsteady gas phase part of solution. 

We first consider the consumption of the particle. The dimensional mass M * of a prolate ellipsoidal particle 
of density ρ p is: 

M * =
4π
3
ρ p
L
2
!

"
#

$

%
&

3

e2  (38) 

The mass loss rate can be determined from the source term in the far field velocity field as: 

M = 4πc M = 4π ρ
∞
D
∞

L
2
"

#
$

%

&
' 1-e2M ξ0 ,B( )  (39) 

Now introducing a dimensional time scale tP , and a dimensionless time τ P = t tP  and the initial particle 
major axis length 0L the particle mass balance equation becomes: 

 d
dτ P

= −1; or:  = L
L0
= 1-2t tP ; Where: tP =

L0
2

"

#
$

%

&
'

2
1
D
∞

ρ p
ρ
∞

e2

1-e2
1

M ξ0 ,B( )
 (40) 

The particle burnout is inherently time dependent because vaporization reduces the size 0L L= l and the 

time scale for burnout is much longer than gas phase diffusion-convection time scale tg = L 2( )
2
(1 D

∞
) . 

Particle burnout occurs at t = tP 2 . Eq. 39 is the generalization of the “d2 law” for fuel droplets. Note that 

the factor ρ p ρ∞ ~10
3 appearing in the definition of tP  means that the particle consumption time is much 

longer than the gas phase diffusion and advection time on the scale of the particle. This justifies the steady 
state analysis of particle burning. However, when there is small relative motion, the establishment of the 
steady state in the far field also takes a long time relative to the gas-phase diffusion time. The analysis of 
this competition between the two processes is not considered here. While not derived here, the transient far 
field solution for the prolate ellipsoid is given below in Eq. 41. 

Z ≅
E LO
2 r

1-e2( ) 1-2t tP( )  (41) 

Oblate Ellipsoids  

In this section we return to the study of the shape dependent combustion processes, this time for an oblate 
ellipsoid. Again, let ( x, r) denote a cylindrical coordinate system aligned with the axis of symmetry of the 
ellipsoidal particle. Since the semi-major axis is by definition now in the radial direction, its length is 
denoted by R. The oblate ellipsoidal coordinate system ( , )ξ η is now defined as: 

r 2 = c2 1+ξ 2( ) 1−η2( ) and x = cξη  (42) 
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The quantity c is redefined by requiring that ξ = ξ0 gives an oblate ellipsoid of rotation with semi-major 

axis 2
0(1 )c ξ+ and semi-minor axis c ξ0. Thus: 

r 2

c2 1+ξ0
2( )
+
x2

c2ξ0
2
=1  (43) 

Since the aspect ratio ϵ is the ratio of semi-minor to semi-major axes, 

2 2
0 1 1c Rξ = − = −e e e  (44) 

Finally, the ellipsoidal coordinates can be written explicitly in terms of x, r( ) as follows: 

ξ =
1
2c
x2 + r 2 − c2 + x2 + r 2 − c2( )

2
+ 2 xc( )

2"

#
$

%

&
'

1
2

η =
x
cξ

 (45) 

The coordinate geometry for contours of constant ξ starting at the particle surface is shown for an ellipsoid 
of aspect ratio 1/ 9 to 1=e in Fig. 1. 

Writing the conservation Eq. 5 and 6 in oblate ellipsoidal coordinates and assuming that ρ, φ and Z are 
functions of ξ only, we get: 

d
dξ

1+ξ 2( ) ρ ξ( ) d
φ
dξ

!

"
#

$

%
&= 0  (46) 

d
dξ

1+ξ 2( ) ρ ξ( )Z ξ( ) d
φ
dξ

− ρ ξ( ) D ξ( ) 1+ξ 2( ) dZdξ
"

#
$

%

&
'= 0  (47) 

Once again, these equations can be readily integrated to yield: 

1+ξ 2( ) ρ ξ( ) d
φ
dξ

ξ( ) = MO  (48) 

MO Z ξ( )− ρ ξ( ) D ξ( ) 1+ξ 2( ) dZdξ =
EO  (49) 

Integrating Eq. 48 again and imposing the boundary condition that Z = 1 at the particle surface ξ = ξO yields 
the result: 

ρ Z( ) D Z( )dZ
EO − MO ZZ

1

∫ = arctan ξ( )− arctan ξ0( )  (50) 

Far from the particle, as ξ →∞ , we must have 0Z → . Thus:  

ρ Z( ) D Z( )dZ
EO − MO Z0

1

∫ =
π
2
− arctan ξ0( )  (51) 
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This yields one relation between MO and OE . It also permits Eq. 49 to be rewritten in the form: 

ρ Z( ) D Z( )dZ
EO − MO Z0

Z

∫ =
π
2
− arctan ξ( )  (52) 

For the Oblate ellipsoid, when 
r R1, ξ 1, and ξ ≅ r c . Thus, far from the particle, the solution for 

Z reduces to:  

Z  EO ρ
∞
D
∞
ξ( ) = EOc ρ

∞
D
∞

r( )  (53) 

The similarities of these results with those obtained earlier for the prolate ellipsoid are obvious. This 
similarity extends to the determination of the parameters EO  and MO . Introducing dimensionless 

quantities, for  and O OE M , EO = ρ∞
D
∞
EO & MO = ρ∞

D
∞
MO . The required second relation between these 

parameters is identical with the result for the prolate ellipsoid. 

MO =B 1+B( ) EO  (54) 

This must be true on physical grounds, since the ablation boundary condition is entirely locally determined. 
It can also be derived mathematically; the steps are identical with those used for the prolate ellipsoid. Using 
Eq. 54 in Eq. 51, the solution for EO is readily obtained. 

EO =
ρ Z( )D Z( )dZ
1− B 1+B( )( )Z0

1

∫ π
2
− arctan ξ0( )

#

$
%

&

'
(  (55) 

For the special case of ρ 𝓓 = 1, the integral can be evaluated with the result: 

EO =
1+B( )
B

log 1+B( ) π
2
− arctan ξ0( )

"

#
$

%

&
'  (56) 

( ) ( )0log 1 arctan
2OM
π

ξ⎛ ⎞= + −⎜ ⎟
⎝ ⎠

B  (57) 

The corresponding solution for the Mixture fraction ( , )Z ξ ξ BO,  is:  

( ) ( )( )1
( , ) 1 exp ( , ) , Where:Z Wξ ξ ξ ξ

+
= − −

B
B B

BO O, ,  (58) 

( ) ( ) ( )( , ) log 1 arctan arctan
2 2 OW π π

ξ ξ ξ ξ⎛ ⎞ ⎛ ⎞= + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

B BO ,  (59) 

We now consider the time evolution of the burning rate for the oblate ellipsoid. The dimensional mass of an 
oblate ellipsoid particle of radius R, aspect ratio ϵ, and density ρ p is: 
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M * =
4π
3
ρ pe R

3  (60) 

The dimensional mass loss rate through a sphere far from the particle M is:  

M = 4π ρ
∞
D
∞
R 1-e2MO ξ0 ,B( )  (61) 

Equating the rate of change of the particle mass with minus the mass flux far from the particle, the time 
history of the particle radius can be expressed in terms of the initial radius RO and the oblate particle 
dimensional time scale tO as: 

dM *

dt
= − M ; this gives: R

RO
= 1-2t tO ; Where,  (62) 

tO =
RO
2

D
∞

ρ p
ρ
∞

e
1-e2

1
MO ξ0 ,B( )

 (63) 

The transient far field solution for the oblate ellipsoid can be found immediately. Equation (41) shows the 
far field limit of the solution for the prolate ellipsoid. This solution applies to the oblate case if E is 
replaced by EO, LO/2 replaced by RO, and tP  is replaced by tO . All the far-field solutions for the prolate 
ellipsoid also apply to the oblate ellipsoid using these substitutions. The particle burnout reduces R and it 
occurs at t = tO 2 .  

Burnout time for different size and aspect ratio prolate and oblate firebrands 

Figure 3 shows the computations of particle burnout times using Eqs. 40 and 63. In these equations, three 
different B numbers are used; 0.1 to represent glowing combustion of wood char, 0.6 to represent flaming 
combustion of wood, and 1.2 given by reference [4]. Wood firebrands are assumed to have a density of 250 
kg/m3 [4]. The logic for selecting these ℬ numbers is as follows: For forest fires we are primarily concerned 
with flaming or glowing combustion of wood and wood char. For wood char, as evidenced from data [11, 
12] both reactions C+O2 → CO2 and 2C+O2 → 2CO take place at the surface. The question is how much of 
which reaction occurs because it depends on the surface temperature of glowing char (1254K [11]). At 
higher temperatures, experiments [13, 14] show a thin, bluish, CO flame separated from the carbon surface. 
However, this mechanism is not likely for firebrands. Thus, to estimate the B-number for glowing 
combustion of wood char, Evans [11] data is used. The estimated B number is ≅   0.1. Recent work of 
Rangwala [15] shows that the average B-number for Douglas fir wood is ≅  0.6. Surprisingly, Fig. 3 shows 
that the firebrand burnout time is shape independent. The burnout time depends only on the firebrand mass 
under the assumptions used.  

A BRIEF NOTE ON VELOCITY FIELD 

The velocities induced by the combustion of the particle surface can also be calculated. Since the velocity 
potential φ depends only on the appropriate (prolate or oblate) ellipsoidal coordinate ξ, the velocity always 
points in the direction of the unit normal


iξ . Thus, for a prolate ellipsoid: 

u =

iξ Vξ ; where: Vξ =

D
∞

L
2
1-e2

M
ρ Z( )

1

ξ 2 −1( ) ξ 2 −η2( )
 (64) 
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This is the general solution for the velocity field for any prolate ellipsoid regardless of the state relation 
defining ρ(Z) used. An interesting property of this solution is the increasing value of the velocity near the 
ends of the particle as ϵ → 0. This can be readily seen by noting that on the particle surface, 

ξ = ξ0 ,η = x L / 2( ). The velocity approaches a square root singularity at each end as the particle shape 

becomes more like that of a needle. The analysis and results for an oblate ellipsoid are similar. 

CONCLUSIONS  

In this work the burning rate for a class of particles ranging from a thin needle to a sphere (prolate 
ellipsoids) and from a sphere to a thin disc (oblate ellipsoids) is studied using methods based directly on the 
underlying conservation equations of fluid mechanics and combustion science. These shapes of particles 
are reasonable representation of various (unknown) shapes of firebrands lofted by forest fires. The formulae 
obtained are simple enough to be evaluated without elaborate numerical computations. 

The analysis assumes “quasi-steady” burning. The Reynolds number based on the over-all particle 
dimension and velocity relative to the ambient atmosphere is assumed to be small. The gas phase 
combustion processes are represented by the evolution of a mixture fraction variable. It is shown that the 
velocity field near the particle can be described by a potential flow whose functional form is determined by 
the mass conservation equation and that this flow satisfies the particle surface boundary conditions. Gas 
phase solutions are obtained for two-parameter family of firebrand shapes composed of oblate and prolate 
ellipsoids of revolution. The ambient velocity field does not need to be aligned with the particle axis of 
symmetry, so that the composite velocity and mixture fraction fields are three-dimensional. While a variety 
of steady-state condensed phase models are compatible with this analysis, results are presented for a simple 
physically interesting case of an ablating solid describable by the Spalding ℬ-number. ℬ-numbers 
representative of wood and wood char are used and all quantities are calculated as a function of ellipsoidal 
aspect ratio, ℬ number, and the Reynolds number. A surprising result is found: the firebrand burnout time 
is shape independent and the burnout time depends only on the firebrand mass under the assumptions used.  
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 Fig. 3: Particle burnout time for Prolate and Oblate ellipsoids, with major axis ranging from 2 to 6 cm, 
and aspect ratio 'ϵ' ranging from 1 to 1/9. Note that ellipsoids with ϵ = 1 are spherical and have the 
largest mass. Calculations for three B-numbers are plotted: B = 0.1, 0.6 & 1.2. They correspond to 

glowing char and flaming wood combustion. 
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