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ABSTRACT 

In this paper a new simple calculation method for compartment temperatures is derived. The method is 
applicable to post-flashover ventilation controlled fires. A parameter termed the ultimate compartment fire 
temperature is defined as the temperature obtained when thermal equilibrium is reached and thick 
compartment boundaries cannot absorb any more heat from the fire gases. This temperature depends only 
on the product of the heat of combustion and the combustion efficiency over the specific heat capacity of 
air. It is, however, independent of the air mass flow rate, and of the fire compartment geometry and the 
thermal properties of the compartment boundary materials. These parameters on the other hand govern the 
rate at which the fire temperature is increasing towards the ultimate temperature. 
It is shown how the fire temperature development as a function of time in some idealized cases may be 
calculated by a simple analytical closed form formula. 
The fire temperature developments of two types of compartment boundaries are presented, semi-infinitely 
thick and thin structures. It is also shown that for the semi-infinite case, the solution resembles the standard 
ISO 834/EN 1363-1 curve and the parametric fire curves according to Eurocode 1, EN 1991-1-2. 

KEYWORDS: one-zone fire model, compartment fire temperature, analytical solution. 

NOMENCLATURE 

Ao area of openings (m2)  T temperature (ºC) 

Atot 
total surrounding area of enclosure 
(m2) Tg gas temperature (ºC) 

c specific heat capacity (J/(kg K)) Tf fire temperature (ºC) 

cp 
specific heat at constant pressure 
(J/(kg K)) Ti initial temperature (ºC) 

Ho height of the openings (m2) T∞  ambient temperature (ºC) 
h heat transfer coefficient (W/m2K) t time (s) 
k thermal conductivity (W/(m K)) Greek 
ma  Mass flow rate of gases (kg/m2) 1α  flow constant  

ml  Mass flow rate in compartment(kg/m2) 2α  

constant describing the combustion 
energy developed per unit mass of 
air 

mo  Mass flow rate out (kg/m2) χ combustion efficiency (-) 
O opening factor  ε emissivity (-) 
R thermal resistance ((m2 K)/W) θ  temperature increase (K) 
Rf fire heat transfer resistance ((m2 K)/W) ρ  density (kg/m3) 

,h iR  
heat transfer thermal resistance at the 
fire exposed surface ((m2 K)/W) σ  

Stefan-Boltzmann constant (W/(m2 

K4)) 
!!qw  the heat transfer at surface (W/m2) τ  time  constant (sec) 
qc  heat release rate by combustion (W) Subscripts	  

ql  
heat loss rate by the flow of hot gases 
out of compartment openings (W) f Fire 
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qr  
heat radiation out through the openings 
(W) s fire exposed surface  

qw  losses to the surrounding structure (W) ult ultimate 
 

INTRODUCTION  

Fire engineering design of structures and structural elements are in most cases made with a procedure 
including a classification system and associated standard tests like ISO 834, EN 1363-1 or ASTM E-119 
with defined time-temperature fire exposures. In these tests fully developed enclosure fires are simulated in 
fire resistance furnaces with a prescribed duration. Other design fires are obtained by making a heat and 
mass balance analysis of fully developed compartment fires. A number of significant simplifications and 
assumptions are then done to limit the number of input parameters and facilitate the calculations. Thus  

1. The fire compartment is ventilated by natural convection at a constant rate independent of 
temperature. 

2. The combustion rate is ventilation controlled, i.e. proportional to the ventilation rate. 
3. The gas temperature is uniform in the fire compartment. 
4. The energy of the fuel is released entirely inside the compartment. 
5. The surface temperature of the enclosure structure is assumed equal to the gas temperature. 
6. The fire duration is proportional to the amount of energy in the combustibles in the compartment, 

i.e. the fuel load. 
The main purpose of this paper is not to suggest another set of design curves but rather to show and 
demonstrate how a well-defined analysis of the energy and mass balances of a fire compartment can lead in 
the end to relatively simple mathematical solutions which includes the key physical and chemical input 
parameters. In addition it is shown how the model relates to current standard time-temperature curves. 

GENERAL THEORY OF ONE-ZONE MODELS 

The theory and assumptions outlined below follows broadly the work of Magnusson and Thelandersson [1] 
who developed a numerical compartment fire model already in the early 1970’s. They then calculated fire 
temperature-time curves for compartments and compared with numerous experimental data. Their model 
and curves was then modified and reformulated according to later work by Wickström [2]. This work is the 
basis for the design fires referred to in Eurocode 1, EN 1991-1-2, Appendix A as ‘parametric temperature-
time curves’[3]. The fundamentals of the theory are presented below. For details on the so called 
parametric fires the reader is referred to the EN standard. The here suggested values of model parameters 
are mainly taken from the original works of Magnusson and Thelandersson [1] or when possible from 
general adequate text-books. 
The heat balance of a fully developed fire as shown in Fig. 1 may be written as: 

qc = ql + qw + qr  (1) 

where qc  is the heat release rate by combustion, ql  the heat loss rate by the flow of hot gases out of the 

compartment openings, qw  the losses to the surrounding structure and qr  the heat radiation out through the 
openings. Other components of the heat balance equation are in general insignificant and not included in a 
simple analysis as this. 
Air and combustion products flow in and out of the compartment driven by buoyancy, i.e. the pressure 
difference developed between the inside and outside of the compartment due to temperature difference as 
indicated in Fig. 1. The mass flow rates in ml  and out mo  must be equal (the mass of the gases generated 
by the fuel is neglected) and is designated hereafter ma. The mass flow rates through vents are computed by 
applying the Bernoulli’s principle. Calculation methods for vertical openings can be found in the literature 
[4].  For vertical openings the flow rate can be derived as approximately proportional to the opening area 
times the square root of its height:  

ma =α1Ao Ho
 (2) 
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where the proportionality constant 1α  is a flow constant, oA  and oH  are the area and height of the openings 
of the compartment. The value of 1α at high uniform gas temperature can be found to be approximately 0.5 
[4]. The dependence of 1α  on the fire temperature level is assumed small over a wide range and is therefore 
neglected here as in most analyses of this kind. (For details on e.g. multiple openings and horizontal 
openings, see e.g. EN 1991-1-2 Appendix A) 

	  

Tf

qc

mo

mi

qW

qW

qW ho qr

ql

T∞

 

Fig. 1. One-zone model of a fully developed compartment fire with a uniform temperature Tf. 

 
As the fire is ventilation controlled the combustion rate qc inside the compartment is proportional to the air 
flow into the compartment, i.e.: 

qc = χα2 ma = χα2α1Ao Ho
 (3) 

where χ is the combustion efficiency and 2α  is a constant describing the combustion energy developed per 
unit mass of air. The latter varies very little for various fuels/materials [5]. This fact is also accounted for 
when measuring heat release rates by the so called oxygen depletion technique as in e.g. a cone calorimeter 
test according to ISO 5660. According to Tewarson [6], the combustion efficiency values are in the range 
of 3% to 30% for hard combustible materials and up to 93% for some liquid fuels. By narrowing the range 
of the efficiency, combustion can be assumed in the range 40%-70% [7]. To fit the existing parametric fire 
curve, the combustion efficiency for that model has been chosen about 0.5. 
The convection loss term is proportional to the mass flow times the fire temperature increase, i.e:  

ql = cp ma (Tf −Ti ) = cpα1Ao Hoθ f  (4) 

where pc  is the specific heat capacity of the combustion gases (usually assumed equal to that of air), fT  
and iT  are the fire and the initial (and ambient) temperatures, respectively. fθ  is the fire temperature 
increase, i.e: 

f f iT Tθ = −  (5) 

The wall loss term qw  is proportional to the total surrounding area of the enclosure totA : 

qw = Atot !!qw  (6) 
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where !!qw  is the heat flux rate to the enclosure surfaces. This term constitutes the inertia of the system. It is 
significant in the beginning of a fire and then it decreases when the temperature of the surrounding 
structure increases along with the fire temperature. 
The heat radiation out through the openings may be calculated as: 

qr = Aoσ (Tf
4 −T

∞
4 )  (7) 

DESCRIPTION OF THE NEW ONE-ZONE MODEL 

The model is based on the theory described above. By inserting Eq. 3, Eq. 4, Eq. 6 and Eq. 7 into Eq. 1, and 
after rearranging the heat balance equation of a fire compartment may be written as: 

!!qw = cpα1O
χα2
cp

−θ f
!

"
#
#

$

%
&
&+
Ao
Atot

σ (T
∞
4 −Tf

4 )  (8) 

where O  is named the opening factor defined as: 

o o

tot

A H
O

A
=  (9) 

When the losses to the compartment boundaries qw  and the radiation losses qr  are negligible what is 
named the ultimate compartment fire temperature ultθ  is obtained. It can be derived from Eq. 8 as: 

2
ult

pc
χα

θ =  (10) 

In general the compartment fire temperature reaches its maximum when qw  is at its minimum value. This 
happens when the surrounding structures after some time have been fully heated and stationary thermal 
conditions can be assumed. Note that if the losses through the surrounding structure and the radiation out 
the window can be neglected, then the fire temperature depends only on the ratio between (χ 2α ) and pc , 
i.e. ratio between the effective heat of combustion per unit weight of air and the specific heat of the fire 
gases. Thus the ultimate fire temperature becomes independent of the opening factor and the thermal 
properties of the surrounding structure. 
The flow constant 1α  may be derived for flow in and out through a vertical square opening due to the 
pressure differences between the inside and outside of the fire compartment due to the temperature 
differences [4], see Fig. 1. The combustion yield constant 2α  is obtained from the knowledge that most 
organic materials yield about 13.1*106 Ws/kg oxygen under ideal combustion conditions [5]. The yield 
constant 2α  is calculated assuming an oxygen content of 23 % in ambient air. When the combustion 
efficiency constant χ is assumed to be in the order of 50 %, to the calculated temperatures fit with the 
Eurocode parametric fire curves. The specific heat capacity of air at constant pressure pc  is here taken 
from tabulated values at a temperature level of 800 ºC, i.e. pc =1.15*103 Ws/(kg K) [8]. 
The values of all the three constants introduced above vary only slightly with temperature (the value av 
pc varies from 1.00*103 at 20 ºC to 1.68*103 at 2500 ºC [8]) and are therefore here assumed to remain 

unaffected with changing temperatures. Commonly assumed values are summarized in Table 2. 

Analogious model 

Eq. 8 is analogous to the heat transfer equation by convection between a gas and a solid surface. Under 
certain conditions as demonstrated below the fire temperature can then be obtained by analytical methods 
as shown below. Under other conditions numerical methods are needed. Then the parameter group 1pc Oα , 
is analogous to a heat transfer coefficient. For clarity it is convenient to work with thermal resistances and 
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analogies with electrical resistances. Thus an artificial thermal resistance here named the fire heat transfer 
resistance is introduced: 

1

1
f

p

R
c Oα

=  (11) 

The thermal conditions may be seen as an analogous electrical model as shown in Figure 2. ,h iR  in the 
figure denotes the heat transfer thermal resistance at the fire exposed surface. Then the heat transfer at the 
surface becomes: 

!!qw = hi (θ f −θs )  (12) 

where 

,

1
i

h i

h
R

=  (13) 

Now Eq. 8 may combined with Eq. 11, Eq. 12 and Eq. 13 to yield: 

!!qw =
1

Rf + Rh,i
θult −θs( )+ AoAtot

1

1+
Rh,i
Rf

!

"
##

$

%
&&

σ (T
∞
4 −Tf

4 )  (14) 

Solid	  
surrounding
structure

(t=∞)

(0	  ≤t≤∞)

(t=0)
(0	  ≤t≤∞)

(t=∞)

(t=0)  

Fig. 2. Electrical analogy of fire model of thick structure assumed to be infinitely thick, and an indication of 
the temperature initially (t=0), after some time (0≤t≤∞) and after a very long time (t=∞). 

This relation can be interpreted as a boundary condition for the surrounding structure where the parameters 
can be identified as given in Table 1 and 2. In Figure 2 it is indicated that the fire temperature can be 
calculated by rule of proportion as: 

,

,

s f ult h i s i ult f
f

f h i f i

R R h h
R R h h

θ θ θ θ
θ

+ +
= =

+ +
 (15) 

One observation is that this theory yields an instant fire temperature increase 0
fθ : 
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Table 1. Analogue parameters 

Parameter Analogue parameter Analogue notation 

,

1

1 1
1 1f h i

p i

R R
c O hα

=
+ +

 Convection heat transfer 
coefficient conh  

2
ult i i

p

T T
c
α

θ + = +  Ultimate fire temperature increase  gT  

.

1

1

o

tot h i

f

A
A R

R
⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠

 
Emissivity ε  

T∞  Ambient radiation temperature T∞  
 

Table 2. Assumed values of parameters in the simple one-zone fire 

Name Notation Value SI-units 
Flow constant 1α  0.5 kg/(s m½) 
Combustion yield 2α  3.013*106 Ws/kg 
Specific heat capacity of air pc  1150 Ws/(kg K) 

Ultimate fire temperature increase (Eq. 10) 2
ult

pc
χαθ =  1325 (χ=0.505) 

 
K 

Analogue heat transfer coefficient  

1

1
1 1

p ic O hα
+

 
- W/(m2 K) 

Analogue heat transfer coefficient given, , 0h iR =  1f ph c Oα=  575*O W/(m2 K 

Analogue heat transfer resistance given, , 0h iR =  
1

1
f

p
R c Oα=  0.00174/O (m2 K)/W 

,0

,

fh i
f ult ult

f h i f i

hR
R R h h

θ θ θ= =
+ +

 (16) 

This is of course only physically correct if the initial combustion developing process (i.e. the ignition and 
growth stages) is ignored. However, as soon as the combustion and the flow are established and flashover 
has occurred and stabilized the approximate predictions given by the above theory are expected to apply. 
The analogue parameters are summarized in Table 1 and typical parameter values in Table 2.  

EXAMPLES OF USING OF THE NEW CALCULATION METHODS 

Below two idealized cases of compartment boundaries will be presented, one assuming compartment 
boundaries being semi-infinitely thick, and one assuming compartment boundaries being thin where the 
heat capacity is concentrated in a core, so called lumped heat capacity. Analytical solution of the fire 
temperature can then be derived if constant properties including heat transfer coefficients are assumed. 

Semi-infinitely thick compartment boundaries 

For typical fire durations, the compartment boundaries may be considered thermally thick and heat 
transferred to the surfaces and stored in the surrounding structures. The heat flux to the compartment 
boundaries can be written as: 

FIRE SAFETY SCIENCE-PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM pp. 289-301 
COPYRIGHT © 2014 INTERNATIONAL ASSOCIATION FOR FIRE SAFETY SCIENCE/ DOI: 10.3801/IAFSS.FSS.11-289

294



!!qw = −k
dT
dx

!

"
#

$

%
&
x=0

 (17) 

Now the approximation is made that the temperatures of the surrounding surfaces are assumed equal to the 
fire temperature, i.e. the heat transfer resistance between the fire gases and the surface of solid 
compartment boundary is neglected ( , 0h iR =  and f sθ θ= ). In addition the radiation loss term out the 
openings is neglected. Then Eq. 14 becomes: 

!!qw =
1
Rf

θult −θs( )  (18) 

A diagram of the corresponding electrical analogy is shown in Figure 3. 

Rf

= Solid	  
surrounding
structure

 
Fig. 3. Electrical analogy of one-zone fire compartment model when neglecting the thermal resistance at 

the fire exposed surface, i.e. , 0h iR = and f sθ θ= . 

 
According to common heat transfer theory found in several textbooks like [8] the surface temperature 
increase sθ  can be calculated as a function of time as: 

1
t

s g
te erfcτθ θ
τ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦

 (19) 

where  

2

k c
h
ρ

τ =  (20) 

and where h is a constant heat transfer coefficient. 
Now in analogy with the general solution of the surface temperature of a semi-infinite body, the fire 
temperature development in a fire compartment surrounded by semi-infinite structures may be written as: 

1 f

t

f s ult
f

te erfcτθ θ θ
τ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎡ ⎤
⎢ ⎥= = −
⎢ ⎥
⎣ ⎦

 (21) 

where the parameter fτ  may be identified as a fire compartment time constant for infinitely thick 
compartment boundaries. The fire compartment time constant may be identified as: 

2 2
1( )1

f
p

f

k c k c
c O

R

ρ ρ
τ

α
= =
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (22) 
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The relation to standard design time-temperature curves may be demonstrated by prescribing a maximum 

temperature increase 2 1325ult
pc

α χθ = = (ºC) as derived above. Then if a fire compartment time constant 

1200fτ =  s is assumed, Eq.21 yields the fire temperature as an analytical solution as: 

12001325 1
1200

t

f
te erfcθ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦

 (23) 

Figure 4 shows the fire temperatures according to this analytical solution (Eq. 23). For comparison the 
standard fire curve according to ISO 834 and EN 1363-1 and the parametric temperature-time curve for a 
gamma value of unity according to Eurocode 1 (EN 1991-1-2) are also shown. Note that the three time-
temperature curves are almost identical for the first three hours. The difference between the standard curve 
and the parametric curves is so small that it is not visible in this diagram. The analytically curve goes 
asymptotically to the ultimate temperature 1325 ºC while the ISO curve is defined by a log function and 
goes to infinity for long fire durations. 
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Fig. 4. Comparison between fire temperature rise according to the analytical expression (Eq.23) and the 
standard ISO 834/EN 1363 curve 

 
In reality the heat transfer resistance between the fire gases and the surfaces of the compartment boundaries 
must be considered. If it is assumed constant it may be included in this type of simple linear analysis by 
adding the two resistances fR  and hR , see Figure 2. The fire compartment time constant then becomes: 

2

2 ( )
1

f f h

f h

k c R R k c

R R

ρ
τ ρ⎡ ⎤= = +⎣ ⎦⎛ ⎞

⎜ ⎟⎜ ⎟+⎝ ⎠

 (24) 

The surface temperature sθ  may be obtained from Eq. 21 and the fire temperature fθ  from Eq. 15. 
Below is an example to illustrate how fire temperatures of a compartment surrounded by infinitely thick 
structures with constant properties may be calculated as a function of time. 

Example 1 

Calculate the fully developed fire temperature increase after 60 min in a compartment surrounded by 
concrete.  

a) Neglecting the effects of heat transfer resistance 
b) Considering the effects of heat transfer resistance 
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Assume an opening factor of 0.04 m½, a heat transfer coefficient of 70toth =  W/(m2 K), and other fire 
compartment properties according to Table 2. For concrete assume the conductivity k=1.7, the density 
ρ=2300 kg/m3and the specific heat capacity c=900 J/(kg K) 
 
Solution: 

a) Eq. 11 yields   1 0.0435
575 0.04fR = =

⋅
 (m2 K) /W  

 
and Eq. 21 yields  

( )2
3530000 6673s
575 0.04

fτ = =
⋅

. 

 
Thus    3600 0.54

6673f

t
τ

= =  

 
Eq. 21 yields   0.541325 1 0.54 646f s e erfc Cθ θ ⎡ ⎤= = − = °⎣ ⎦

 
 

b) Thermal resistance 1 1 0.0143
70h

tot

R
h

= = =  (m2 K) /W  

 
Eq. 24 yields   

2

3530000 11793sec
1

0.0435 0.0143

fτ = =
⎛ ⎞
⎜ ⎟+⎝ ⎠

. 

 
Thus    3600 0.305

11793f

t
τ

= =  

 
Eq. 21 yields   0.3051325 1 0.305 544s e erfc Cθ ⎡ ⎤= − = °⎣ ⎦

 

 
and the fire temperature can be obtained from  Eq. 15 as 
 

   544 0.0435 1325 0.0143 737
0.0435 0.0143f Cθ
⋅ + ⋅

= = °
+

 

(Thus the fire temperature is 90 C°  higher when the heat transfer resistance is considered.) 

Thin compartment boundaries 

An analytical solution of the fire temperatures may also be obtained when the fire compartment is 
surrounded by structures consisting of a metal core where the all the heat capacity is concentrated. Thus the 
capacity per unit area coreC  may be approximated as lumped into the core as indicated in Figure 5. In the 
analyses below the heat capacity of any insulating material are either neglected or considered as included in 
the heat capacity of the core. Figure 6 shows an electrical analogy of how the fire temperature and the core 
and the surface temperature can be calculated. Figure 6 indicates also the relative temperature increase 
initially, after some finite time and after a very long time. Since according to the model all inertia is lumped 
into the core and no inertia is assumed in the insulation layers, the temperature differences between various 
positions will always be proportional to the corresponding thermal resistances. 
In the analyses in this section the heat loss by radiation through the opening is neglected. Otherwise an 
analytical solution is not possible. 
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Tf T∞

 

Rins,i Rins,o

Ccore
Rh,i Rh,o

 
Fig. 5. A fire compartment surrounded by a structure with its heat capacity C  assumed 

concentrated/lumped to a metal core. Thermal resistances iR  and oR  are assumed on the 
fire inside and outside, respectively, due to insulation and heat transfer resistance. 

(t=∞)
(0	  ≤t≤∞)

(t=0)

(0	  ≤t≤∞)

(t=0)

(t=∞)

(t=∞)

(t=∞)(0	  ≤t≤∞)

(0	  ≤t≤∞)

(t=0) (t=0)  
Fig. 6. Electrical analogy of fire compartment model with a thin surrounding structure assuming lumped 

heat. Temperatures at various points initially (t=0), after some time (0≤t≤∞) and after a 
very long time (t=∞). 

The thermal resistance on the inside (fire exposed side) iR  of the core may be obtained as the sum of 
thermal heat transfer resistance and the conductive resistance as: 

, ,i h i ins iR R R= +  (25) 

and correspondingly on the outside (unexposed fire side) as: 

, ,o h o ins oR R R= +  (26) 

The total thermal resistance of the structure then becomes: 

tot i oR R R= +  (27) 

The conduction resistance of the core is neglected. Then the maximum fire temperature rise may be derived 
from Eq. 8 as 

max 2

1

1
tot

f ult
f tot

p
tot

R
R Rc

OR

χα
θ θ

α

= =
++

 (28) 

and 
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max o
core ult

f tot

R
R R

θ θ=
+

 (29) 

where ultθ  may be obtained from Eq. 10. fR  is defined by Eq. 11. In iR  and oR  both the heat transfer 
resistance and possibly the conduction resistance are included. Fig. 7 shows the maximum fire temperature 
in a non-insulated steel container as a function of the opening factor assuming surface emissivities equal 
0.8 and convection heat transfer coefficients according to Eurocode, i.e. 25 W/(m2 K) and 4 W/(m2 K) at 
the fire exposed and the non-fire exposed sides, respectively.  

 

Fig. 7. Maximum fire and steel temperature of a non-insulated steel container as a function of the opening 
factor [9]. 

If all the parameters are constant the core temperature increase may be written as a function of time as 

1 f
t

tot
core ult

f tot

R e
R R

τθ θ
−⎡ ⎤ ⎛ ⎞

= −⎢ ⎥⎜ ⎟+ ⎝ ⎠⎢ ⎥⎣ ⎦
 (30) 

As the insulation is assumed to have negligible heat capacity, the compartment fire temperature increase 
can be calculated as a weighted average between the ultimate fire and the core temperatures as 

1 f
t

o
i fult

i f f core tot f
f ult

f i f tot

RR R e
R R R R
R R R R

τ

θ θ
θ θ

−⎡ ⎤⎛ ⎞
+ −⎢ ⎥⎜ ⎟+ + ⎝ ⎠⎢ ⎥= =

⎢ ⎥+ +
⎢ ⎥
⎣ ⎦

 (31) 

In a corresponding way the fire exposed surface temperature becomes 

, ,
,

( )ult
ins i f f h i core

s i
f i

R R R
R R

θ θ
θ

+ +
=

+
 (32) 

The fire compartment time constant fτ  is 

1 1
core

f

f i o

C

R R R

τ =
+

+

 (33) 

where coreC  is the heat capacity per unit area of the core.  
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Example 2 

A fire compartment is surrounded by a 3 mm thick steel sheet structure with a 12 mm thick gypsum board 
mounted on both sides of the core. The opening factor is 0.08 m½. The total heat transfer coefficient at the 
fire exposed and the unexposed sides are assumed to be 200 W/(m2 K) and 40 W/(m2 K), respectively. 
a) Calculate the ultimate fire temperature increase ultθ  
b) Calculate the maximum fire max

fθ  and core max
coreθ  temperature increases. 

c) Calculate the core coreθ  and fire fθ  temperature increases after 300 s of flash-over. 
 
Solution: 
Use fire parameter values as given in Table 2. The conductivity of gypsum is assumed to be 0.5 W/(m K) 
and the specific heat capacity of steel equal 460 J/(kg K) and the density 7850 kg/m3. 
Then 
a) Eq. 10 (or Table 2) yields  1325ultθ = ºC. 
b) The thermal resistance on exposed side  0.0121 0.029200 0.5iR = + =  (m2 K)/W  

and the thermal resistance on unexposed side 0.0121 0.04940 0.5oR = + =  (m2 K)/W. 

The fire heat transfer resistance yields  1 0.022
1150 0.5 0.08fR = =

⋅ ⋅
 (m2 K)/W. 

Then the maximum fire temperature increase (Eq. 28) will be      
     

6
max

3

1.52 10 1034
11.15 10

0.5 0.08 (0.029 0.049)

fθ
⋅

= =
⋅ +

⋅ ⋅ +

 ºC  

and Eq.29  yields    max 0.049 1325 649
0.022 0.049 0.029coreθ = ⋅ =

+ +
 ºC. 

c) Eq.33 yields 270fτ =  s and temperature increase after 300 s can be obtained from Eq.30 as  

     
300
2700.0491325 1 1325 0.494 0.67 439

0.021 0.049 0.29core eθ
−⎛ ⎞

= ⋅ ⋅ − = ⋅ ⋅ =⎜ ⎟
+ + ⎝ ⎠

 ºC  

and from Eq.31   max 0.029 1325 0.021 439 953
0.021 0.029fθ
⋅ + ⋅

= =
+

 ºC. 

Numerical solutions of one-zone model fires 

When the heat transfer model includes parameters varying with temperature including heat radiation 
through openings or layered compartment boundaries, a numerical procedure must be used. The finite 
element program Tasef [10] developed for calculating temperature in fire exposed structures allows for 
mixed boundary conditions and is therefore suitable for such purposes. For this type of calculations the heat 
transfer resistances have to be assumed constant or neglected. 

!!qw =
1

Rf + Ri

χα2
cp

−θs
#

$
%
%

&

'
(
(+
Ao
Atot

1

1+
Rh,i
Rf

#

$
%%

&

'
((

σ (T
∞
4 −Tf

4 )  (14) 

The surface temperature can now be calculated with, for example, the finite element code Tasef [10]with 
the analogue assumptions according to Table 1. A one-dimensional model of the surrounding structure is 
then assumed. This may then contain several layers of materials, materials with properties varying with 
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temperature, structures containing voids or anything that is possible to model with the code available. Work 
with these type of assumptions are under way at Luleå University of Technology, Sweden. 

CONCLUSIONS 

In this paper a new simple calculation method for analytically calculating compartment temperature when 
flashover is reached has been described. This new method introduces the so called ultimate fire 
temperature, the maximum temperature which can be reached when there is no energy lost in the 
compartment surroundings and no radiation lost through the openings. This temperature depends only on 
the combustion yield α2, combustion efficiency χ and the specific heat capacity of air cp, but it is 
independent of the air mass flow rate, and of the fire compartment geometry and the thermal properties of 
the compartment boundaries. A value in the order of 1325ultθ = ºC can then be deducted for a combustion 
efficiency of 50 % and the analytically derived time-temperature development is approximately the same as 
given in Eurocode 1 (EN 1991-1-2) as parametric temperature-time curves. In reality the heat is lost by 
radiation through the openings and the combustion efficiency is likely to be higher than 50 %. The first fact 
reduces the maximum temperature possible to reach while the latter would lead to increased temperatures. 

In this paper the ultimate temperature for a compartment with semi-infinitely thick walls as well as with 
thin walls with a steel core and finite insulation has been used to calculate analytically compartment fire 
temperature. It has been shown that for semi-infinite case the solution match very well with the standard 
ISO 834/EN 1363-1 curve and with the parametric curves according to EN 1991-1-2. It has also been 
shown how the maximum fire temperature of a compartment with thin wall depends on the ultimate 
compartment fire temperature and the total thermal resistance of the surrounding structure. 
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