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ABSTRACT 

Facade fires being a disastrous hazard for high rise building, as several historical and recent incidents have 

shown, have attracted the interests of numerous fire scientists, engineers and regulators. This work has as 

an objective to present issues in this area that are challenging and need further attention. It focuses on 

characterizing the flame height and heat fluxes from facade flames produced from under-ventilated 

enclosure fires on a facade that is not flammable. Such an investigation is an important consideration for 

practical applications as well as a prerequisite for examining fire spread on flammable facades and for 

designing a test for modern facade assemblies. The mass pyrolysis rates and burning of real fuels are 

discussed in under ventilated enclosures, rectangular or corridor like, for various openings presenting the 

current state and some critical issues. Facade flames are analyzed from experiments using gaseous burners 

to have control on the fuel supply rate by introducing physical length scales for the opening geometries to 

model flame heights and heat fluxes. An important parameter for the facade flames is the excess heat 

release rate of the fuel burning outside the enclosure. Finally, applications for facade flames with sidewalls 

and facade flames from two openings are presented. 

KEYWORDS: enclosure fires, facade flames, excess heat release rates, flame heights, heat fluxes  

INTRODUCTION 

It is a difficult task to provide due credit to previous work related to enclosure and facade fires. Almost all 

fire scientists and engineers have had an input in this area. For this reason, I have put two lists of references 

one that is probably exhaustive (Appendix A) and the other that is related directly to this paper. The latter 

list is dominated by work done by my group and collaborators in Japan (TUS, Professor Y Ohmiya) and in 

China (SKLFS, Professor Longhua Hu).  

I also point out that I will not include a discussion and relation of the present work with spill plumes where 

a great difference is that the boundary conditions for the facade flows and flames are better defined 

especially if mainly under ventilated fires are considered as done here. 

It is widely recognized that facade flames and fire spread (see Fig. 1) can create serious hazard in high rise 

buildings owing to three mechanisms of fire spread:  

 Flames ejecting form a window can break the window above allowing ignition in the next floor 

(leap-frogging)  

 Failure of fire stopping between the floor slab and the exterior wall, and  

 Heat flux impacts on the internal facade assembly (melting of metals, fire spread within 

insulation) allowing flames through 

In order to design for mitigation of the facade fire spread hazard, one should be able to determine the size 

of the fire in the enclosure, the ejected facade flame properties (flame height and heat fluxes) and their 

impact on facade assemblies and building materials. The present paper addresses the enclosure fire and 

facade flames on an inert wall which are required to a) assess the impact , as for example , on fire resistance 

and flame spread on possibly flammable facade assemblies and b) provide inputs for the design of a 

reasonable facade test.  

Figure 1 provides also an illustration of the contents of the present paper that consist of the next section on 

enclosure fires followed by a section on facade flames and then a section on applications of the 

methodologies, before we present conclusions and remaining challenges for fire safety engineering. In 

Fig.1 the extent of continuous and intermittent flame ejected from an enclosure fire is indicated where 0.4H 

is the neutral plane. 
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Fig. 1. Enclosure fire and floor to floor external fire spread. 

ENCLOSURE FIRES 

Mass Pyrolysis Rate  

The main thrust of this section is a discussion of the mass pyrolysis rate inside an enclosure having an 

opening (Fig. 1) as the conditions change from over ventilated (fuel controlled) to under ventilated 

(oxidizer flow) controlled. For the present purpose, we exclude other interesting phenomena inside the 

enclosure such as ghost flames, burning oscillations, extinction and re-ignition. 

The basic behavior of the mass pyrolysis rate in an enclosure is shown in the sketch of Fig. 2 and in the 

corresponding data in Fig. 3 [1] for enclosure fires. Both figures show that as ventilation rate (proportional 

to      decreases the mass pyrolysis rate per unit fuel area (AF) first increases owing to radiation 

augmentation by the hot gases reaching a maximum and then becomes proportional to the ventilation rate 

    for under ventilated conditions. A significant observation is that the slope of the straight line on the 

left hand side  in Fig. 2 is nearly 0.1, as Kawagoe [2] first found, independent of the fuel type (e.g. its heat 

of pyrolysis) or the enclosure geometry as long as combustion inside the enclosure can be sustained.  

 

Fig. 2. Mass pyrolysis rate in an enclosure as the ventilation rate varies, both expressed per unit fuel area.  
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Some recent modeling (Daisuke et al. [3]) of enclosure fires claims to support this result but the physics of 

why is this so are not clear. We will come to this matter later but this is clearly is a challenge for fire 

research. In addition, the maximum of the pyrolysis rate in Fig. 3 is reached at stoichiometric conditions as 

Fig. 4 implies because the abscissa is the air inflow for stoichiometric combustion where S is the air to fuel 

equivalence ratio. We may summarize this section by providing the mass pyrolysis rate for under ventilated 

conditions as: 

                       Tm 0.1A H (kg/s) in rectangular enclosures                             (1) 

Here the area A of the opening is in square meters and the height H of the opening in meters. 

 

Fig. 3. Experimental data for mass pyrolysis and ventilation in an enclosure for different fuels expressed 

per unit surface area of the fuel AF. 

 
Fig. 4. Maximum pyrolysis rate from Fig. 3 is nearly equal to the stoichiometric requirements for the 

ventilation rate. The maximum pyrolysis rate is independent of the radiation properties of the fuel which 

will affect how fast this value is reached from its value at ambient burning. 

AH
1/2

/AF (m
1/2

) 

0.5AH
1/2

/AF /S   (m
1/2

) 

FIRE SAFETY SCIENCE-PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM pp. 3-27 
COPYRIGHT © 2014 INTERNATIONAL ASSOCIATION FOR FIRE SAFETY SCIENCE/ DOI: 10.3801/IAFSS.FSS.11-3

5



There is another remarkable discovery related to the mass pyrolysis rate in long corridors (see Fig. 6) as 

deduced from Fig. 5 for liquid pools [1], namely the mass pyrolysis rate is one quarter of the mass pyrolysis 

rate in rectangular openings where Eq. 1 applies:  

                          corridorsin 2025.0 2/1AHm
T
                                                     (2)  

The factor of 2 accounts for the entrainment from both ends of the corridor. This ( slope 0.025 compared to 

0.1)  is another challenge we and other people try to address. 

 

Fig. 5. Flow in a long corridor from a pool fire open at both ends. 

 

Fig. 6. Correlation of mass pyrolysis rate with the ventilation factor (mass rate of the air inflow) in fully 

involved corridor fires from under ventilated to over ventilated conditions. Ap here is the same as AF 

namely the fuel surface area. 

We will not discuss here over ventilated fires where an important consideration is the calculation of the 

heat fluxes to the fuel which consist of radiation from the hot layer, convection and radiation from the 

flames (e.g. ref [3 – 5]). A simplified methodology based on experiments to estimate these heat fluxes is 

given by Tofilo et al. [6] also important for the heating and possible breakup of glazing. 

Heat Release Rate inside the Enclosure for Under-ventilated Conditions 

To address the case of facade flames, one has to be able to calculate the fuel burning outside an enclosure 

for under ventilated fires which present the major hazard for external fire spread in high rise buildings. First 

we notice that for under ventilated fires [e.g. 7 – 9] the gas temperatures inside the enclosure away from the 

opening are nearly uniform. In this case, it has been shown [1, 10] that the air inflow is given by the 

expression 

                                 (kg/s)50.0 HAm
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The limitations of this equation have been examined in detail in the Appendix of reference [1] showing a 

small correction as Tooa
mHAm 

2

1
50.0   and a range of applicability for enclosure gas temperatures 

between 900 to 1200 K. The gas temperatures (not explicitly presented here) inside the enclosure depend 

on the heat released inside the enclosure, the heat losses to the walls, and the convective and radiative heat 

losses through the opening [6, 9]. In the following presentation we will use Eq. 3 because it is applicable 

for the scenarios analyzed.  

Subsequent to Eq. 1 it was proposed by several authors [4, 5] that the heat released inside the enclosure is 

just the heat released by the complete consumption of the oxygen of the incoming air which can be 

calculated by multiplying the mass air inflow by 3000 kJ/kg , the heat released by the oxygen in air: 

               (kW)150050.03000 HAHAQ
inside

                                            (4) 

 

Fig. 7. Modular (box) enclosures used for the facade experiments [6] with a gaseous burner fuel source 

located at different boxes. 

 

Fig. 8. The facade arrangement with an opening in the front and the instrumentation used in front of the 

modular enclosure in Fig. 7 [6]  

It was shown definitely that this relation is valid in all the experiments by Lee et al. [7, 9] in enclosures 

using a gaseous burner and a facade well instrumented as shown in Figs 7 and 8. A typical plot of the heat 

release rate (HRR) measured in a collecting hood is shown in Fig. 9 together with the theoretical HRR of 

the supplied fuel (straight line) increasing linearly with time from 0 to 50 kW. This figure 9 shows [7, 9] 

that as the conditions inside the enclosure become under ventilated (in about 8 minutes) and before external 
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burning occurs (at about 13 minute) the HRR inside the enclosure remains constant and is given by Eq. 4 . 

One can also conclude from these experiments that the same energy is released inside the enclosure even 

after external burning occurs (at about 13 minutes) because the gas temperatures inside the enclosure [7, 9] 

do not change after under ventilated conditions establish (in about 8 minutes). 

We can now determine the “excess” heat released outside the enclosure as the heat from the complete 

burning of the fuel minus the heat released inside the enclosure: 

                         (kW)1500 HAHmQ
cTexc
                                                   (5) 

Here cH  is the heat of combustion of the pyrolysing material or the gaseous fuel when a gas burner is 

the source fire. For a pyrolysing material, Eq. 5 together with Eq. 1 provides the following excess HRR; 

                        (kW)/12.05.0 HASHQ
cexc

                                                (6) 

Here we have used also the relation between the air to fuel stoichiometric ratio S and the heats of 

combustion ( 3000/
c

HS  ). This is another challenge because it proclaims that there cannot be excess 

HRR and excess pyrolysate ( cexc
HQ / ) if the stoichiometric ratio S <5!.  Having established the relation 

for the excess HRR, we continue in the next section with the examination of facade flames from enclosures 

for a gaseous burner fire source where the fuel supply is controlled so that Eq. 5 definitely applies. 

FACADE FLAMES  

Facade Flames from Under-ventilated Enclosure Fires Under-ventilated conditions exist when the heat 

release rate from the fuel is larger than (kW)1500 HA as deduced from Eq. 5 and Fig. 9 and also being 

consistent with the results in Figs. 3 and 4 [7,8,9]. In this case flames will be established outside the 

enclosure as Fig. 9 also indicates after ignition of the excess pyrolysate occurs at the opening. Until ignition 

of the external flames occurs the HRR is constant (16.8 kW) as soon as under-ventilated conditions are 

created inside the enclosure.  External burning can also occur at over-ventilated conditions simply when the 

flames from the source fire are long enough to extend beyond the opening. This situation has been several 

times confused in the literature to imply under-ventilated fire conditions inside the enclosure.  

 

 
 

Fig. 9. Theoretical and measured heat release rate history for an experiment having 20 cm by 20 cm 

opening. The intermediate plateau indicates the heat released inside the enclosure is equal to 

HA1500  = 26.8 kW. 

Turning now to facade flames, we inevitably stumble over the widely used Yokoi method [4, 10] for 

correlating the gas temperatures of the facade flames. Before we discuss why the Yokoi method should be 

replaced we note that using the excess pyrolysate (Eq. 5) we were able [7 – 9] to correlate flame heights 

and heat fluxes to the facade wall using length scales associated with the flow at the exit of the enclosure. 
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The appropriate length scales derived in Appendices B (where also the Yokoi method is outlined) and C are 

briefly explained next. The three length scales are 

                                                  5/2

1
HA                                                               (7a) 

                                                  4/12

2
AH                                                                (7b) 

                                                
10/33/4

3
)(AH                                                           (7c) 

The first length scale is related to the size of the opening required to accommodate the convective flow and 

the other two length scales are expressing the horizontal extension of the flow with or without flames 

outside the enclosure owing to the competition of horizontal momentum with the buoyancy. We note that 

the ratio of these two length scales ,   20/1

32
// WH , varies weakly with the aspect ratio (H/W, height 

over width) of the window so that 
2

  can be retained for correlating the facade flame properties. 

Figure 10 shows for example a correlation of the flame height using the length scale 
1

  and the non-

dimensional excess HRR; 

                                      
*

ex 5/2

p 1

Q
Q

C T g 




                                                         (8) 

 

Fig. 10. Flame height correlation using the length scale 1  (Eq. 7a) and the normalized excess HRR (Eq. 8)  
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dimensional. The heat flux measurements, see Fig. 11, are also correlated using the same length scales in 

[7] and in [9] where the heat fluxes on an opposed facade wall are measured and predicted. Heat flux 
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measurements and correlations are essential for the safe design of facade walls. One additional point to 

make is that the radiation from the facade flames does not depend on the type of fuel in the enclosure 

because the fuel is preheated to about 800 ˚C before exiting the enclosure thus always producing a lot of 

soot.  

 

Fig. 11. Heat flux correlation at the center of the facade for all of enclosure geometries and all openings  

Sometime after the development of the new length scales [7, 9] we were able to publish [11] a detailed 

explanation why the Yokoi correlation [10] needs to be replaced. Two modifications were imposed on 

Yokoi‟s correlation on the gas temperatures on the facade flow, one replaces his length scale 

)(
0

HWr   by the new length scale 1  and the other replaces the local density in the dimensionless 

temperature by the ambient density. These modifications were justified by analysis and verified (in Figs. 5 

and 6 of reference 11) by comparison with Yokoi‟s experiments of the temperature variation on facades 

produced from enclosure fires. To my surprise, I discovered, while writing this paper, that Phil Thomas 

expressed great doubts regarding the Yokoi correlation [12] which are difficult to understand and I have to 

decided to include them as an Appendix C for the reader. 

 

APPLICATIONS TO OTHER FAÇADE FLAME CONFIGURATIONS  

Several applications [12 – 15] of the present results and methodologies have been made in collaboration 

with the Dr. Longhua Hu team in SKLFS (USTC) and with the Professor Yoshi Ohmiya team at TUS. As 

an example, we present two new correlations in Figs. 12 and 13 for the flame heights in the case of facade 

flames with sidewalls and in the case of facade flames from two windows of equal size on the facade wall. 

These four figures are taken from papers submitted for publication to International Heat and Mass Transfer 

Journal (sidewalls) and to the Combustion Institute 2014 (two windows). 
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Fig. 12a. Top view of a facade flame experiment for an enclosure with two sidewalls located symmetrically 

to the opening. 
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Fig. 12b. Determination of the height of the facade flames at distance D of the sidewalls (Fig. 12a) using 

the height when the sidewalls are absent Z0 and the parameter K which depends on the length scales 1 2,  

(Eqs. 7a and 7b) and the normalized excess HRR (Eq. 8).
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Fig. 13a. Average contour maps of video intensity showing facade flame heights for decreasing separation 

distance of the window 0.25 m (H) × 0.125 m (W) and heat release rate 164 kW (the horizontal red line for 

the flame height at 50% intermittency and the horizontal blue lines are background marks). 
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Fig. 13b. Facade flame height Zf  against flame merging point distance Zf,m normalized by the completely 

non-merging flame height Zf,0 where this height is reproducing the data in Fig. 10. 

CONCLUDING REMARKS  

There are some major challenges for enclosure and facade fires which need explanation and more 

experiments: 

1. The (total) pyrolysis rate for normal enclosures is given by Eq. 1, (kg/s)1.0 Hm
T
  and for 

long corridors by Eq. 2,  2/12025.0 AHm
T
 based on experiments, but there is no explanation 

for these values. These relations are assumed to be valid for any fuel and any geometry. Daisuke et 

al. [3] developed a global zone model that corroborates Eq. 1 supported also by his experiments. 

However, there is not a simple explanation through the equations in [3]. I propose that this 

behavior is due to radiation blockage near the surface of the fuel owing to pyrolysis gases. This 

radiation blockage is nearly inversely proportional to the concentration of pyrolysis gases in the 

enclosure which can be determined by the ratio of the mass pyrolysed to the air inflow: 

                         
a

p

F m
H

Aq



/





                                                                             (9a) 
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Therefore the mass pyrolysis rate should be  

                    
a

p

F

T
m

H

Aq
m 


 


 


/                                                                 (9b) 

2. For a pyrolysing material Eq. 5 together with Eq. 1 provides the following excess HRR 

  (kW)/12.05.0 HASHQ
cexc

  . This is another challenge because it proclaims that 

there cannot be excess HRR and excess pyrolysate )/(
cexc

HQ  , if the stoichiometric ratio S <5! 

3. The experiments used in this paper have been in small scale (up to 0.8 m
3
 cube) where the flow is 

turbulent and the conditions are under-ventilated. For these reasons, the results can be applied for 

larger scales as it was examined in [7] for the work of Oleszkiewicz [16] and recent results of 

Ohmiya [17]. 

4. Incorporation of wind effects requires investigation of both the magnitude of the wind and its 

direction. It is possible based on the present approach to examine when wind may be important by 

comparing the wind speed with the maximum velocity in the facade fire plume. 

5. We have used CFD (mainly FDS) to model the under-ventilated fires including the facade flows 

but the experience has not yet been successful in predicting the experimental results.  

The present results are being used for the rational design and interpretation of a test for facade 

assemblies that can represent well actual fuel loads and conditions for under-ventilated fires and 

also be economical. 
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APPENDIX B 

Length scales for the convective flow outside the enclosure 

We have revised Yokoi‟s [10] work for the gas temperature distribution along a facade to introduce a 

length scale that would better collapse the experimental data. Namely, Yokoi [10] proposed to use the 

square root of the area, HW , of the enclosure opening as an effective length scale for the thermal plume 

in the facade produced by over-ventilated fires with no combustion occurring outside. Examination of his 

analysis would show that the appropriate scale should have been   5/2

HA  instead. Replotting his data in 

ref. 10, see also our work in [11] verifies this conclusion but because of lack of space we chose not to insert 

the full explanation and this plot here. Figure B1 illustrates the physical meaning of the scales introduced 

for the flow issuing at the opening of an enclosure.  

Nevertheless, we show in this work how and why this scale is significant for the analysis of flames on 

facades at under-ventilated conditions. Namely, the convective flow at the exit is defined as: 
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which indicates that an appropriate length scale is: 

  5/2

1
HA  (B3) 

Moreover, an important characteristic (different from other wall fires) of the flows outside the enclosure is 

that they are ejected horizontally before turning vertically and attaching to the facade. The horizontal length 

after which the flow becomes vertical can be determined from the momentum and buoyancy at the exit of 

the enclosure. Specifically, the momentum flux is equal to: 
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where the characteristic exit velocity and the mass flow are: 
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The characteristic length after which buoyancy dominates is determined by equating the momentum at the 

origin with the momentum of the developing thermal plume generated by the buoyancy flux after a certain 

distance:  
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It is concluded that the length scales   5/2

1
HA  and   4/12

2
AH  underpin the physics related to 

the flow at the exit of the enclosure. More specifically, the flow outside the enclosure may be depicted as 

generated by a rectangular burner having sides 
1

 and 2  (normal to the opening plane) at the level of the 

neutral plane and providing unburned gas of chemical energy
ex

Q . 

We chose the length scale 
1

  to correlate the flame height and heat fluxes on the facade because we can 

observe that 2  is nearly proportional to 
1

  varying weakly with aspect ratio of the window, i.e.,  
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Figure B1 A sketch of the physical meaning of length scales 1

~
  and 2

~
   

APPENDIX C 

Length scales representing the length after which the flames turns from horizontal to vertical  

A length scale for the under-ventilated fires with flame ejecting outside the opening representing the length 

after which the flames turns from horizontal to vertical due to buoyancy ( 3 ), are presented below. The 

horizontal length after which the flames become vertical can be determined by the competition of 

momentum and buoyancy in the vicinity of the opening.  

The upward momentum due to the entrainment can be expressed as: 
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where: 

fT  is the temperature rise between flame and ambient. 

 and T  are the density and temperature of ambient air, respectively. 

3  is the distance of flames ejecting from the opening after from horizontal to vertical. 

  5/22/1
1 AH  is the length representing the exit condition of the enclosure (Appendix B)

 

The horizontal momentum flux at the exit 0M  is equal to: 
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where: W is the width of the opening 

gT  is the temperature rise between gas inside the enclosure and ambient 

oZ  is the distance between the neutral plane and bottom of the opening 

The characteristic length 3  after which buoyancy dominates is defined by equating the horizontal 

momentum at the origin (Eq. C2) with the vertical momentum (Eq. C1) generated by the buoyancy 
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Inserting 
5/22/1

1
)(AH  in Eq. C3 and making arrangement, it gives 
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In the case of under-ventilated fire condition, Eq. C 4 can be expressed as [1]:  
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In under-ventilated fire, the effect of enclosure gas temperature and temperature of flames (assume 

KT
f

2000 ) on the length scale 3  was examined by the cases having gas temperature 600 
o
C and 

1000
o
C, respectively. It is observed that the length scale 3  is independent on the gas temperature inside 

the enclosure for the case of under-ventilated fire condition. Thus, the length after which the flames turn 

from horizontal to vertical for the case with flames appear outside of the enclosure can be expressed as  
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APPENDIX D: 

Phil Thomas query of the Yokoi relation [10, 11] 
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