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ABSTRACT 

This paper investigates the effects of brominated and halogen-free fire retardants on the thermal stability 
and fire performance of glass-fibre reinforced poly(butylene terephthalate). Brominated polystyrene was 
used as the brominated fire retardant (BFR), whereas aluminium diethylphosphinate (Alpi) with/without 
nanoclay as halogen-free fire retardants (HFFRs). Tests were conducted using thermogravimetric analysis 
(TGA), limiting oxygen index (LOI), UL94 and the cone calorimeter. TGA results show that 
decomposition of glass-fibre plus PBT (PBT+GF) starts earlier in the presence of fire retardants (FRs).  In 
the cone calorimeter, all FRs reduce significantly the heat release rate (HRR) compared to PBT+GF, with 
brominated polystyrene achieving lower HRR primarily because bromine released in the pyrolysis gases 
inhibits combustion, without however changing the mass loss rate (MLR). Alpi alone has significant effects 
on reduction of both HRR and MLR, which become considerably more when combined with nanoclay. The 
efficiency of combustion of the brominated polystyrene compound is much lower than that of HFFRs, 
which indicates that unburned pyrolysing gases are released during the combustion of brominated fire 
retardants.  

KEYWORDS: brominated fire retardants, halogen-free fire retardants, thermogravimetric analysis, cone 
calorimeter 

INTRODUCTION 

In the past few years, the environmental and toxicological hazards of brominated flame retardants (BFRs) 
have been highlighted in several studies [1-7]. It was demonstrated in [1-5] that (i) some of the BFRs result 
in a strong bioaccumulation in aquatic and terrestrial food chains, and (ii) a growing number of BFRs is 
found in increasing concentrations in the human food chain, human tissues and breast milk. Furthermore, 
BFRs have also been found in indoor environment such as in dust at homes [6]. BFRs are persistent 
showing serious toxicological effects such as endocrine disruption. Brain and nervous system were 
identified as one of the most vulnerable targets for the toxic actions PBDE’s [7]. It is therefore not 
surprising that some of BFRs are or will be soon phased out. Consequently it is essential, for ecological and 
economic reasons, to investigate available environmental friendly alternatives. However, banning specific 
BFRs may imply a serious risk if the introduction of non-brominated alternatives is not properly assessed 
regarding its impact on environment and human health. It is also of vital importance that the substitution 
options do not affect the functionality and reliability of the end product, including the fire behaviour. It has 
been shown in [8-10] that BFRs can reduce significantly the heat release rate because when the brominated 
material burns, the flame retardant produces hydrobromic acid which interferes in the radical chain reaction 
of the oxidation reaction of the fire. The mechanism is that the highly reactive hydrogen radicals, oxygen 
radicals, and hydroxy radicals react with hydrobromic acid to form less reactive bromine radicals (i.e., free 
bromine atoms). 

This paper presents an evaluation of alternatives for brominated polystyrene in glass-fibre reinforced 
poly(butylene terephthalate) (PBT+GF) for its fire retardancy. PBT+GF was fire retarded with either 
brominated polystyrene combined with antimony trioxide or aluminium diethylphosphinate (Alpi) 
with/without organically modified montmorillonite clay (OMMT). The main fire retardant mechanism of 
Alpi is that it intumescences upon heating, forming a thick intumescent layer that protects the unpyrolysed 
material from heating and thus pyrolysis[11,12]. Nanoclays, while having limited effect on degradation of 
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polymers in thermogravimetric analysis (TGA) where mg samples are used, have also been shown to have 
an important effect in reduce the heat release rate/mass loss rate in the cone calorimeter, owing to the 
formation of a surface layer after polymer composites degrade and nanoparticles are left behind or to 
increased strength and integrity of the char when nanoclays are added to FRs (phosphorus-based or 
intumescent coatings) [13-15]. 

In this work, thermal decomposition, flammability and fire tests were conducted using a combination of 
thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL94 and the cone calorimeter in both 
horizontal and vertical orientations. Flammability properties are determined from the ignition tests and 
comparative analyses were made in terms of mass loss in TGA and time to ignition, heat release rate, mass 
loss rate, production of carbon monoxide and smoke in the cone calorimeter. The effect of glass-fibre in the 
PBT formulation is also examined using a numerical model previously developed for polymer 
nanocomposites.  

The paper is organized in the following way. First, the materials information is given, along with 
experimental details. Next, experimental results and discussions are presented followed by the conclusions 
of this work. 

MATERIALS 

In total, four formulations were investigated as shown in Table 1. The base formulation, PG1, consists of 
PBT reinforced with 30 wt. % of glass-fibre. A halogenated formulation, PG2, contains 10 wt. % 
brominated polystyrene (BrPS), with 5 wt. % antimony trioxide for synergism as normally done. In 
addition, two halogen-free flame retardants (HFFRs) were studied: PG4 contains 15 wt. % aluminium 
diethylphosphinate (Alpi) and PG3 15.5 wt. % Alpi with 2.5 wt. % organically modified montmorillonite 
clay (OMMT).  

Table 1. Summary of the formulations and their compositions studied in this work. 

Compounds 
% weight of formulations 

Commercial product name and suppliers 
PG1 PG2 PG3 PG4 

PBT+GF 100 85 82 85 Arnite TV4 261 from DSM 
Brominated polystyrene 0 10 0 0 Milebrome 7010 from MPI Chemie 
Antimony trioxide 0 5 0 0 Timonox Red Star from Chemtura 
Alpi 0 0 15.5 15 Exolit OP 1230 from Clariant 

OMMT 0 0 2.5 0 Cloisite 30B from Southern Clay 
Products 

 

Prior to extrusion, the virgin polymer and fire retardants were dried at 120°C under vacuum in an oven for 
6 hours. A Prism Twin Screw Extruder (TSE) 16 TC was used to produce the plate samples in the cone 
calorimeter. The temperatures corresponding to the rear, centre and front zones were 240 °C, 245 °C and 
255 °C, respectively, and the screw speed was set at 60 rpm. The extruded polymer was then pelletised and 
dried. A BOY 22M injection moulding machine was utilized to mould the samples. The temperatures 
corresponding to the rear, centre, front and nozzle zones were 240°C, 250°C, 250°C, and 260°C, 
respectively. These temperatures were varied by ± 5°C depending on the level for the fire retardant present. 
The melt temperature was 255°C and the water-cooled mould was set at 80°C. The thickness of the cone 
samples is 2.9 mm with a surface area of 0.1 x 0.1 m2. No measurements of the polydispersity of 
nanoparticles were made.   

EXPERIMENTAL DETAILS 

Thermogravimetric Analysis (TGA) 

Thermal analysis was performed using a Mettler Toledo TGA/STDA 851e measuring module, with 
temperature accuracy and temperature reproducibility of ±0.5 °C. Samples of around 10 mg were heated in 
alumina pans at three heating rates, i.e., 5, 10 and 20 °C/min, from 300 to 1000 °C in nitrogen with a flow 
rate of 50 cm3/min. The results at different heating rates have similar trends and thus only the ones at 
10°C/min are presented in this paper. 
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Limiting oxygen index (LOI) and UL94 

LOI measurements and UL94 vertical tests were conducted using 3.2 mm thick samples, according to BS 
EN 60695-11-10 and BS EN ISO 4589-2, respectively. Due to the complexity of tests, a varied number of 
tests were conducted for each formulation, with a minimum of five specimens used for any of the tests. 

Cone calorimeter 

Tests were conducted at six heat fluxes in horizontal orientation (22.5, 30, 45, 60, 75 and 90 kW/m2) 
whereas at one in vertical orientation (75kW/m2) in order to assess the strength of the char and the effects 
of orientation. At each heat flux, tests were repeated at least three times to ensure repeatability. Time to 
ignition (TTI), heat release rate (HRR), mass loss rate (MLR) and production of carbon monoxide, carbon 
dioxide and smoke were recorded. During the tests, the exposed surface of the plates was covered with 
carbon black to ensure maximum surface absorption of external heat with absorptivity close to one. Before 
the tests, all samples were kept in a conditioning room maintained at an atmosphere of 50 ± 5% of relative 
humidity and at 23 ± 2˚C until their mass was stabilized. All the experiments were carried out with an 
insulation consisting of four layers of low-conductivity Cotronic paper at the back and sides of the 
specimen in order to reduce heat losses to the sample holder [16]. Aluminium foil was used to avoid melted 
polymer to soak into the Cotronic insulation paper. 

RESULTS AND DISCUSSIONS 

Thermogravimetric Analysis (TGA) 

Figure 1 shows a comparison of the mass loss history at 10 oC/min between PG1 (i.e, PBT reinforced with 
glass-fibre) and neat PBT. For comparison purpose, the weight loss of PG1 normalized by the initial weight 
of PBT in PG1 is also included in the figure. It can be clearly seen in Fig. 1 that both formulations undergo 
one-step reaction at the same temperature range. The fact that glass-fibre does not change the 
decomposition of PBT confirms that it is a chemically inert material, which only acts, as seen in the cone 
calorimeter experiments, as a protection layer in the solid phase. 

  
Fig. 1. Comparison of the mass loss (TGA) between glass-fibre enforced PBT (PG1) and neat PBT at 10 

°C/min in nitrogen.  

Figure 2 presents a comparison of the mass loss (TGA) and mass loss rate (DTG) at 10 oC/min for all 
formulations. The results at other heating rates are similar indicating the same pyrolysis kinetics. It seems 
that all FRs induce early decomposition of PBT, which may indicate some synergistic effect of FRs and 
PBT as both neat brominated polystyrene and Alpi degrade at higher temperatures as shown in Fig. 3. The 
interaction between brominated polycarbonate and PBT+GF was reported in [8].   

Table 2 shows the residue (wt. %) in TGA at 500 and 1000 oC. PG2 gives a residue of 33.0 and 29.1 wt % 
at 500 and 1000°C, respectively. This formulation contains less glass-fibre than PG1, i.e. 25.5% (85% of 
PBT+GF × 30 % of GF) which composes the major part of the residue. As shown in Fig. 3, BrPS degrades 
almost completely, and only a small amount of antimony trioxide acts in the solid phase (via SbOBr which 
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facilitates the dissociation of C-Br bonds [9]). Consequently, as the amount of residue of PG2 is higher than 
expected, it is concluded that there is an interaction between PBT and BrPS. 

 
Fig. 2. TGA and DTG curves at 10 °C/min in nitrogen. 

  
Fig. 3. TGA curves of brominated polystyrene and Alpi (PG1 as reference). 

Table 2. Residue (wt %) in TGA at 500 and 1000°C  

Formulations PG1 PG2 PG3 PG4 
500 °C  34.2 33.0 36.9 35.6 
1000 °C 30.8 29.1 33.5 31.9 
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For Alpi containing materials, an additional small decomposition step is observed at around 475 oC, which 
is due to the vaporization of Alpi as shown in Fig. 3. It was reported in [15] that the decomposition process 
of Alpi depends on experimental conditions (such as the size of the crucible and the mass of the sample) 
and that two different decomposition behaviours are observed depending on these conditions: vaporization 
of Alpi as a complete molecule (around 275 oC) or decomposition of Alpi (435 oC). The amount of residue 
changes depending on the process. In our measurement for PG4, the second step at 475oC is due to the 
vaporization of Alpi while the change in weight slope during the first decomposition and the increase in 
residue are due to the action of decomposition products of Alpi. 

The results of PG3 are similar to those of PG4, indicating that nanoclay does not affect the decomposition 
of the materials. As shown in [13-15], the primary effect of nanoclay is that it forms a protection char layer 
for neat polymers or enhances the char strength of FRs or intumescent coating and such physical actions of 
nanoclay cannot be observed for the thermally thin materials as tested by TGA; consequently the effect of 
nanoclay is minimal in micro-scale experiments.  However as it will be shown later in the cone calorimeter 
results that nanoclay can have a significant effect on the fire retardancy when combined with Alpi. 

Limiting oxygen index (LOI) and UL94 

Table 3 summaries the LOI and UL94 results. The three fire retardants containing formulations are V0 
rated while PG1 failed the UL94 test. This result highlights one of the drawbacks of the UL94 test as it 
cannot differentiate the behaviour of different fire retardants having the same acceptable V0 rating. For the 
LOI measurements, PG4 has the highest LOI (35.5%), followed by PG3 (31.5%), PG2 (28%) and PG1 
(19.5%). The fact that Alpi alone achieves a higher LOI than Alpi combined with OMMT is somehow 
unexpected. This result indicates that although LOI measurement provides a numerical result convenient to 
rank materials, it does not correspond to an intrinsic material property becasue the LOI value depends on 
experimental characteristics such as heat of pyrolysis or effective heat transfer coefficient to the sample for 
instance. The complexity or the extinction process involved for LOI determination can be found in [17].  

Table3. Results of limiting oxygen index (LOI) and UL 94 tests. 

Formulations PG1 PG2 PG3 PG4 
LOI (%) 19.5 28.0 31.5 35.5 
UL-94 Vertical (nom 3.2mm) Fail V0 Pass V0 Pass V0 Pass 

Cone calorimeter 

Visual observations 

After the tests, sample residues present different visual aspects depending on both the formulation and also 
on the external heat flux. For PG1and PG2, small pores are visible on the surface of the residue and colour 
changes from white (high heat fluxes) to dark grey (below 30kW/m2). These residues are mainly composed 
of glass-fibre, as the weight of the residue is the same as the initial glass-fibre content. For PG3 and PG4, 
black residues were observed: for PG4, this carbonaceous char is bumpy and porous whereas it is smooth 
and stiff for PG3. Observed carbonaceous chars for PG3 and PG4 are an indication of solid phase action of 
Alpi and OMMT. 

Time to ignition 

Table 4 summarizes the average times to ignition (TTIs) in horizontal configuration. At heat fluxes lower 
than 45kW/m2, flashes were often observed prior to sustained combustion. The ignition behaviour of PG2 
is noticeably different at these low heat fluxes—flashes were still observed but the sparkle igniter had to be 
maintained much longer when first flames appeared in order to reach sustained combustion. This illustrates 
the gas phase action of BrPS contained in PG2. At lower heat fluxes, all FRs seem efficient in delaying 
ignition. For PG2 and PG3, an increase of about 30% in TTI is observed at 22.5kW/m2 and 40% for PG4, 
compared to PG1. However, at higher heat fluxes PG2 actually has lower TTIs than PG1, indicating that 
the action of BrPS on TTI is less efficient with increasing heat flux. In comparison, Alpi with/without 
OMMT delays TTI with similar findings reported in [11,12], which showed that Alpi increases TTI of 
PBT+GF. However, as observed for BrPS, the action of Alpi decreases with increasing heat flux. It should 
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be noted that by plotting time to ignition against external heat flux, it is possible to determine the critical 
heat flux as shown in Table 5, where the effective ignition and flammability properties are deduced. 

Table 4. Averaged time to ignition at different heat fluxes in the horizontal cone calorimeter. 

Formulations 22.5kW/m2 30kW/m2 45kW/m2 60kW/m2 75kW/m2 90kW/m2 
PG1 228 101 44.5 26 15 12.5 
PG2 335 116 43 26 12 9.7 
PG3 329 158 55 32 14.5 11.2 
PG4 390 150 51.5 29 16 9.3 

Mass loss rate 

Figure 4 shows a comparison of the mass loss rate at 60kW/m2.  The trends of the MLR follow those of 
typical charring materials.  Namely, the mass loss rate (i) increases to reach the first peak, (ii) decreases 
rapidly to reach a plateau, (iii) increases again to form the second peak and (iv) finally decreases when 
most of the material is consumed. The decrease of the mass loss rate after the first peak is due to the 
formation of a surface layer as a result of accumulation of glass-fibre [20]. It reduces the pyrolysis gas 
supply to the combustion zone by retarding heat transfer from the surface material to the virgin zone owing 
to re-radiation losses from the surface consisting mainly of glass-fibre. The second peak is due to the 
insulated backside. When the heat reaches the insulated back surface, there is an accumulation of energy 
due to the insulation, which results in an increase of the mass loss rate. 

 
Fig. 4. Mass loss rate at 60kW/m2 in the horizontal cone calorimeter. 

The MLRs of PG1 and PG2 are similar, which indicates that the BrPS combined with Sb2O3 has little effect 
in the solid phase. For PG4, a thin char layer is formed on the sample surface, which could be responsible 
for the reduction in the first peak MLR. When OMMT is added, the MLR is reduced further by between 30 
and 50% depending on the external heat flux owing to the increased strength of the char formed by glass-
fibre and Alpi in the presence of OMMT. The pyrolysis process is however prolonged because the total 
mass loss is similar between PG3 and PG4. A much rigid and solid-like char was observed for PG3 
compared to the thin char layer for PG4. 

Heat release rate 

Figure 5 shows the HRR (normalized by the exposed surface area) at 60kW/m2. Interestingly, while the 
mass loss rates of PG1 and PG2 are similar (see Fig. 4), their heat release rates are considerably different. 
BrPS reduces the first peak HRR by more than 70%. This result indicates a strong gas phase action of 
BrPS, which consists in interacting of bromine with highly reactive free-radical species such as H• and O• 
by slowing down or stopping the cascade-chain mechanism of the combustion [21]. Antimony Trioxide 
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interacts with BrPS and improves its decomposition. Among all formulations, PG2 produces the lowest 
HRRs without prolonging the burning process compared to PG1. 

 
Fig. 5. Heat release rate at 60kW/m2 in the horizontal cone calorimeter. 

For PG4, there is a reduction of about 60% at its first peak HRR. However its second peak HRR is close to 
that of PG1. The present results are similar to those reported in [15], where a decrease of about 45% in the 
first peak HRR was achieved whilst no difference was noted for the second peak HRR when 20% Alpi was 
used in PBT+GF. 

For PG3, there is a further reduction of the HRR compared to PG4. The first peak HRR for PG3 is 
comparable with that for PG2, however with a prolonged burning process. The reduction of the HRRs by 
PG3 in comparison to PG4 is mainly due to the reduction in the MLR as shown in Fig. 4. 

Effective heat of combustion effcH ,Δ  

Figure 6 presents the effective heat of combustion (EHoC), calculated by dividing the total heat released 
(THR) by the total mass lost and then normalized by the PBT+GF weight content for each formulation. 
PG1 has the highest EHoC with an average of 15.5 kJ/g. PG2 has the lowest EHoC ranging from 5.6 to 8.8 
kJ/g depending on the external heat flux. It corresponds to a decrease of about 55% compared to PG1. This 
reduction illustrates the dominant gas phase action of BrPS. Although the total mass lost for PG2 is the 
same for all heat fluxes, its EHoC increases slightly with the heat flux. The efficiency of the gas phase 
action of BrPS seems to decrease with increasing heat flux. The gas phase action of BrPS is also illustrated 
by the difficulty in igniting PG2 samples described previously and local extinction at lowest heat fluxes. 
PG4 shows a decrease of about 15% in EHoC which also indicates an action of the phosphorous FR in the 
gaseous phase with similar results reported in [15]. PG3 has a similar EHoC to PG4 although PG3 burning 
process lasts longer with lower MLR. OMMT reduces the HRR but does not change the total amount of 
heat released. The action of the OMMT is only physical.  

It should be mentioned that the values obtained in this work are slightly lower than those reported in the 
literature. For example, 22 kJ/g was reported in [21] for pure PBT and 21 kJ/g for PBT+GF [18]. This 
could be due to the difference in the samples used in these studies as glass-fibre should not affect the fire 
behaviour of PBT. 

Time (s)

0 50 100 150 200 250

H
R

R
 (k

W
/m

2 )

0

100

200

300

400

500

600

700

PG1
PG2
PG3
PG4

FIRE SAFETY SCIENCE-PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM pp. 832-845 
COPYRIGHT © 2014 INTERNATIONAL ASSOCIATION FOR FIRE SAFETY SCIENCE/ DOI: 10.3801/IAFSS.FSS.11-832

838



 
Fig. 6. Comparison of effective heat of combustion (kJ/gPBT) at six heat fluxes, calculated by dividing the 

total heat released by the PBT content in each formulation, in the horizontal cone calorimeter. 

Production of smoke and carbon monoxide 

Carbon monoxide, and smoke yields were calculated from the pre-ignition period until the flame goes out. 
The smoke production rate was calculated as the volume flow rate in the exhaust duct times the extinction 
coefficient. Results are plotted in Figs. 7-9. 

 
Fig. 7. CO production rate (g/s) at 60kW/m2 in the horizontal cone calorimeter. 

As expected, PG1 has the lowest CO and smoke yields and production rates. It demonstrates a more 
complete combustion than the other three formulations. The combustion of PG2 yields about 20% more 
smoke than other FR formulations and 55% more than PG1. Its peak values of smoke production rates are 
2.5 times higher than those obtained for PG1. PG4 yields more than 15% of CO than PG2 and almost 80% 
more than PG1. CO is produced 15% more by PG4 than by PG2. It is generally considered that an increase 
in smoke and CO production by a factor of more than two is the consequence of a suppressed total 
oxidation process and is synonym of a radical trapping mechanism. Consequently BrPS and Alpi may act in 
the gas phase as radical scavengers. When OMMT is combined with Alpi in PG3, the same amount of CO 
and smoke is produced as when Alpi is used alone. However, the use of OMMT reduces the rate at which 
these species are released by 45% and 25% for CO and smoke respectively. 
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Fig. 8. Smoke production rate (m2/s) at 60kW/m2 in the horizontal cone calorimeter. 

 
Fig. 9. Average CO and smoke yields at all heat fluxes in the horizontal cone calorimeter.  

Vertical tests 

Figure 10 shows a comparison of the MLRs and HRRs at 75kW/m2 in horizontal and vertical orientations. 
The results show that both MLR and HRRs are about 30% lower in vertical orientation than in horizontal 
orientation. The action of BrPS and Alpi is however similar for both cases. The difference in two 
orientations could be attributed to the differences in convective heat transfer coefficient and flame radiation 
to the sample. However, the change in the flame heat flux alone is not sufficient to explain the decrease in 
mass loss rate as the flame heat flux is considered to be small (estimated to be about 10kW/m2) compared 
to the external heat flux. Another possible explanation could be a change in the burning behaviour in 
vertical orientation (for example in the way how the polymer flows and pyrolyses) because a difference in 
the total mass lost was also observed between horizontal and vertical orientations, which shows the total 
mass lost in vertical orientation is systematically lower than that in horizontal orientation. 
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Figure 10. Comparison of MLRs and HRRs at 75kW/m2 between horizontal and vertical tests.  

Modelling of pyrolysis of PBT+GF 

By plotting the time to ignition against the heat flux it is possible to determine the effective ignition and 
flammability properties [23].  The results are summarized in Table 5.  As mentioned earlier, the action of 
glass-fibre can be considered similar to that of  a char layer, which allows the prediction of the pyrolysis 
rate of PBT+GF using the methodology that have been previously developed for polymer nanocomposites 
[13]. A brief description of the methodology is given here below whereas detailed formulations can be 
found in [13]. 

Table 5. Effective ignition properties determined from the ignition tests in the cone calorimeter. 

Formulation ρ  
(kg/m3) 

α  
(m2/s) 

"
criq  

(kW/m2) 
Tig 

 (K) 
k  

(W/m.K) 
c  

(J/kg.K) 
kρc  

(kJ2/m4.K2.s) 
PG1 1520 4.9x10-8 12.2 374 0.17 2215 0.56 
PG2 1610 5.8x10-8 18.4 452 0.14 1490 0.33 
PG3 1495 5.1x10-8 19.9 469 0.13 1770 0.36 
PG4 1490 5.5x10-8 22.5 494 0.12 1520 0.28 

 

Due to the shielding effect of glass-fibre, the heat flux on the interface of the glass-fibre surface layer and 
virgin material is only a fraction of the heat flux on the surface for the case when there is no surface layer. 
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This allow to define a heat flux ratio [13], i.e. the ratio of the heat flux on the surface for the case when 
there is no surface layer to that at the interface for the case of PBT+GF. By definition, this heat flux ratio 
should be equal to or larger than one. This heat flux ratio can be calculated by solving one-dimensional 
conduction equation with the use of the experiment mass loss data and effective ignition and flammability 
properties given in Table 5.  

)(
)( 0_

tq
q

tratio
net

net
flux 



ʹ′ʹ′

ʹ′ʹ′
=  (1) 

where 0_netq ʹ′ʹ′  is the net incoming heat flux on the surface for the case when there is no surface and )(tq net ʹ′ʹ′   

is the actual heat flux at the interface of the surface (nanoparticle) layer and virgin material in the presence 
of the surface layer. 0_netq ʹ′ʹ′ , can be calculated using the energy balance on the surface with the surface 
temperature being the ignition temperature as: 

)(4
0_ ambigcigflameconenet TThTqqq −−−ʹ′ʹ′+ʹ′ʹ′=ʹ′ʹ′ σ  (2) 

)t(qnet ʹ′ʹ′  can be found by combining experimental mass loss data and the conductive heat flux on the 
surface from the numerical model as: 

Ltm
x
Tktq

x
net )()(

0

 ʹ′ʹ′+
∂
∂

−=ʹ′ʹ′
=

 (3) 

where L is the heat of pyrolysis of PG1, which was assumed to be the same as that of pure PBT [24], i.e., 
1000 kJ/kg, because glass-fibre does not affect the decomposition of PBT as confirmed in the TGA results.  

The calculated heat flux ratio is plotted against the pyrolysed depth (i.e., the depth of the material that has 

pyrolysed, pyroδ , ρττ /)(
0∫ ʹ′ʹ′=
t

dm ) in Fig. 11 for a heat flux of 60kW/m2, where we note that it is nearly 

one at the beginning and then increases almost linearly after the initial stage.  

 
Fig. 11. Calculated instantaneous heat flux ratio, ratioflux, against the pyrolysed depth, δpyro, at 60 kW/m2 

(sample thickness is 2.9 mm). Two lines represent the best fits of the calculated results. 

These results imply that the reduction of the heat flux at the interface is proportional to the amount of glass-
fibre on the surface. Using curving fitting, the following relationship between the heat flux ratio and 
pyrolysed depth was deduced. 
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Subsequently, Equation 1, along with the effective properties, can be used to predict the pyrolysis rate at 
other heat fluxes [13] as: 

Lratio
Tqq

tm
flux

igflamecone

⋅

−ʹ′ʹ′+ʹ′ʹ′
=ʹ′ʹ′

4

)(
σ

  (5) 

In Fig. 12, the predicted pyrolysis rates are compared to the experimental ones. The trends of the two sets 
of data are similar and the predictions are also in reasonably quantitative agreement with the measurements. 
This result confirms the earlier proposition that the effect of glass-fibre is similar to a char layer and its fire 
protection performance improves when the depth of the glass-fibre layer increases during pyrolysis.  

 
Figure 12. Comparisons of experimental and predicted mass loss rates of PG1 at different heat fluxes. 

CONCLUSIONS 

Glass-fibre reinforced PBT was fire retarded with a brominated fire retardant (BFR), namely brominated 
polystyrene (BrPS) combined with antimony trioxide, and two halogen-free fire retardants (HFFRs), Alpi 
with and without OMMT. The fire retardancy of these compound materials was assessed using TGA, LOI, 
UL94 and the cone calorimeter. The major conclusions of this work are: 

• All fire retardants accelerate the decomposition of PBT+GF in TGA indicating synergistic effect 
between fire retardants and PBT+GF. 

• All fire retarded formulations achieved V0 rating in the UL94 vertical test for 3.2mm thick samples, 
whereas the neat PBT+GF (PG1) failed the test. For LOI tests, Alpi alone (PG4) has the highest LOI, 
followed by Alpi with OMMT (PG3), brominated polystyrene (PG2) and PG1.  
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• Brominated polystyrene shows strong action in the gaseous phase because the combustion is 
incomplete and the heat of combustion decreases. Therefore, it achieves the lowest heat release rate 
(HRR) with a reduction of more than 70% compare to PG1 even though it has nearly the same mass 
loss rate (MLR) as PG1. However, it produces excessive CO, smoke and unburned pyrolysing gases; 

• For PG4, there is a reduction of both HRR and MLR indicating that Alpi acts both in the condensed 
phase by modifying the residue (glass-fibre plus residue from Alpi, Figs. 4 and 5) and in the gaseous 
phase by decreasing the effective heat of combustion. The decrease of the HRR is however less than 
that by brominated polystyrene. Although the Alpi formulation produces less smoke than the 
brominated one (PG2), it releases more CO. When OMMT is combined with Alpi (PG3), there is a 
further reduction in the HRR and MLR. The HRR of PG3 is similar to that of PG2, as a result of 
reduced MLR. Yields of CO and smoke are comparable to those of PG4. The combination of Alpi and 
OMMT appears to be the best alternative to the brominated FR in PBT+GF because the strength and 
effectiveness of the residue by glass-fibre and Alpi residue increases in the presence of OMMT.  

• For vertical cone calorimeter tests, lower HRRs/MLRs were recorded for all formulations possibly due 
to reduced flame heat flux and also to a change in the burning behaviour because lower total mass loss 
was observed in vertical orientation. No dripping was observed for all formulations. 

• The methodology previously developed for charring materials and polymer nanocomposites was used 
to quantify the effect of glass-fibre and to predict the pyrolysis of PG1 and the results indicated that 
glass-fire acts only in the solid phase as a protection layer.  

• The present study also highlights the limitations of commonly used UL94 and LOI tests, because these 
tests (UL94 and LOI) do not provide a way to discriminate the behaviour of these materials in real 
fires. For example, UL94 test cannot differentiate materials with the same rating (V0 in this case). The 
LOI results in this work indicate that the formulation containing only Alpi (PG4) has the highest LOI. 
However, the cone calorimeter results clearly show that PG2 and PG3 have similar HRRs, which are 
lower than those of PG4. In addition, LOI and UL94 tests cannot take into account smoke and CO 
production, which are important hazards in fires. 
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