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Theoretical and experimental numerical analysis have proposed the capable of
being executed computational finite difference method for fire induced natural con­
vective heat flow using the viscous heat conductive compressible fluid with K-€
model in the fire compartment. Because two-point upwind difference scheme give
the numerical viscosity, the computational results are different from the approx­
imate solutions at the large velocity. The practical stability and the truncation
errors for computing finite difference equations approximating fire governing equa­
tions have been introduced by theoretical numerical analysis. The sensitivities of
numerical solutions have been evaluated by the theoretical and experimental nu­
merical analysis. As the results of numerical experiments we prop osed that the
reasonable time interval and space mesh size are chosen considering the CPU time.
Furthermore we have introduced the Re" for the equation of motion or Pe" for the
equation of energy. We proposed that the values of He" and Pe" indicate the trust
in the approximate solutions in consequence of the numerical experiments.
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INTRODUCTION

The numerical computations of a natural convective flow have been studied
mainly in fluid dynamics [1]. In applied mathematics the theoretical and numerical
analysis of Navier-Stokes (N-S) equation have been investigated [2]. Ladyzhenskaya
[2] proposed that the unique solution and the existence of analytical solution of
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(j =1,2)

N-S equation for the incompressible fluid flow are not guaranteed in high Reynolds
number and only guaranteed at small Re number (less than about 100) at the ini­
tial and boundary condition. The mathematical analysis for the compressible fluid
flow does not be reported yet. None the less, the computer simulations for the field
model applied to the fire phenomena have been reported by Haserni [3]. However
it is necessary to investigate the methods of numerical solution of the non-linear
parabolic partial difference equations which are the basic governing fire equations.

Because most workers using numerical methods for the convection terms in the
governing equations have adopted two-point upwind difference scheme, the cornpu­
t ational results do not give us the approximate solution because numerical viscosity
is left out of consideration. Furthermore there is need to know how the truncation
errors are dependence upon the time and space meshes in a fire problem influence
the numerical solution.

In this paper, we have conducted calculations with several numerical computa­
tional finite difference methods for fire induced heat flow in the fire compartment
using viscous heat-conductive compressible fluid (K-c model) and have made a com­
parison with the computational results. Since numerical experiments are a difficult
computational problem requiring considerable computer power, the problem was
tackled using a super computer. We have also investigated the sensitivities of the
numerical solutions with the time and space meshes by using numerical experiments,
and investigated the stabilities of computational scheme.

GOVERNING EQUATION

Let us consider a series of the governing equations of the turbulent natural con­
vection by using turbulent transport model (K-c model) which is mathematically
obtained by Reynolds decomposition in a fire compartment [3]. The well known
field equations governing the thermophysical and thermochemical dynamics, and
heat/mass transfer of a turbulent fluid are described, in principle, by the following
set using two-dimensional Cartesian coordinate system.
[1] Equation of Continuity

&15 &pui-+ =0
&t &xi

or

[2] Equation of Motion

&pUj &pUjUi &P o {_ }.. (&P10 + &PUi)} <:_-- + --- = - - + -- Ti' + \. -- -- - Uj2P9
&t &xi &Xj &Xi 1 &Xj DXi
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[3] Equation of Energy

apk + akpuj = .i: (AD ae + pI{ ak ) + Q
at aXi aXi oXi aXj

k = cpe

[4] Equation of State
P = pRe

[5] Transport Equation of Turbulent Energy

[6] Eddy Viscosity and Energy Decay Rate

(j=1,2)

(i,j = 1,2)

Where p is density of fluid; x and y are spatial coordinate, horizontal and vertical
direction; it and v are velocity, x- and y- direction; i is time; J( is eddy viscosity
coefficient; {) is Kronecker delta; 9 is acceleration of gravity; II- is dynamic viscosity;
cp is heat capacity; eis temperature; ij is turbulent energy; € is energy decay rate;
;\0 is thermal conductivity; k is enthalpy; P is pressure; Q is generation of energy;
I is Prandtl's length; R is gas constant; f is viscosity stress.

NUMERICAL COMPUTATIONAL METHOD

We have only discussed the equation of energy, which is the non-linear parabolic
2nd order partial differential equation, in the governing equation because the other
equations will be able to deal with the same manner. The energy equation is rep­
resented by using rectangular coordinate system; x, y and t. The velocities, x- and
y-direction, are denoted it and v respectively. The energy equation is transformed
by Reynolds stress [3J as follows;
[Equation of energyJ

ae ae ae Ao • a2e 02e
-+it-+v-= (-+R){-+-}at ax ay PCp ax2 ay2

{2 I{ ap aJ(}ae {2J(ap aJ(}ae+ --+- -+ --+--P ax ax ax p ay ay ay

where no generation of internal heat is adapted Q=O.
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Finite Difference Approximation

For the purpose of 0 btaining the approximate solution of the energy equation,
let Ax,Ay and At be small increments of variables x, y and t; where Ax = L/ I
and Ay = H / J, I and J being integers, and Land H being length and height
of the domain respectively. The set of point in x ,y,t-plane given by x = iS»,
y = jAy and t = nAt; where i =0,1,2, ... ,1, j =0,1,2, ... , J and n = 0,1,2, ''';
is called a grid whose mesh size is determined by Ax, Ay and At. The approxi­
mation to O(iAx,jAy,nAt) is denoted by B~. In the same way, u(iAx,jAy,nAt),
v(iAx,jAy,nAt), and p(iAx,jAy,nAt), are denoted by uij, vij and P~i' respec­
tively. The finite difference equation [4] approximating the energy equation is ob­
tained

where
m .\q

0'''=--'} p'?!cp

{
n explicit scheme

k-
n + 1 implicit scheme

m _ { n decoupled method

n + 1 coupled method

The decoupled method is used in our system. The time derivative term is approx­
imated with two-point backward implicit (k = n + 1) time difference scheme. The
diffusion terms and first order derivative terms are approximated with five-point
or three-point central space difference scheme, respectively. The convection terms

u:; [~:l:i and vij [g:l:j' which are represented by a[Hll' are approximated with
following scheme:
(1) Central difference scheme

[oJl = h-p -fI-l
a oh I 2Ah

(2) Two-point upwind difference scheme

if a 2: 0

if a < 0
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· (3) Three-point upwind difference scheme

{

3h-4h-l+h-2
oj a Ah

a[ohL= -h+2+ 4J/+1- 3h
a Ah

(4) Four-point downwind difference scheme I

{

h+2 - 2h+1 + 3ft - 2ft-1
8J a Ah

a[oh 1/ = 2ft+1- 3ft+2h-1-ft-2
a Ah

(5) Four-point downwind difference scheme II

{

2ft+2 - 3ft+1 + 6ft - 5ft-1
oj a Ah

a[ohL= a5JI+1 - 6h + 3ft-1 - 2ft-2
Ah

Truncation errors

if a ~ 0

if a < 0

if a ~ 0

if a < 0

if a ~ 0

if a < 0

The truncation errors /LIe worthy of some discussions to estimate the accuracy
of numerical solutions. The estimates are obtained by Taylor series analysis. The
solutions of each scheme of the difference equation of energy are equivalent to the
solutions of the following differential equations.
(A) Tow-point upwind difference scheme

08 ,08 ,08 {(>'s J') A IU1}028-+u-+v-= -+ ( + x- -
ot ox oy pCp 2 ox2

{( >'s J') A Ivl}028 {Kop oK} 08+ -+ ( + y- -+ 2--+- -
pCp 2 oy2 P ox ox ox

K op etc 08
+ {2-=--;:;- + -;:;-} -;:;- + O(At) + O(Ax2)+ O(Ay2)

P uy uy uy
as A.t,Ax, A.y ...... 0

(B) Other difference scheme

ofJ 08 afJ >'0 . a28 >'0 , a28
-+u-+v-= (-+R)-+(-+R)-
at ox ay pCp ox2 pCp ay2

{2K op oK}oe {2K8p oK}oe+ --+- -+ --+--
p ax ax ox p ay ay oy

+ O(At) + O(Ax2) + O(Ay2)

as At,Ax,Ay ...... 0

193



The coefficient of the terms 0Ct..t), O( t..a;2) and O( t..y2) involves the derivations of
high order than it appears in these equations. The truncation errors are evaluated by
O(t..t) + 0(t..a;2) + O(t..y2). As the differencing of the convection terms are applied
to two-point upwind difference scheme, the diffusion terms are made additions to
t..a;lul/2 and t..ylvl/2 which are called numerical viscosity. Using the other difference
scheme, however, the numerical viscosity does not come out. Therefore the accuracy
of the numerical solutions depends only upon the time and space mesh sizes under
no existence of rounding-off errors by numerical computations.

Practical Stability and Spurious Oscillation

The integration of the parabolic partial differential energy equation in time and
space requires the practical stability for the finite difference method. Practical
stability imposed restrictions on the size of time mesh and space meshes for the
finite difference scheme, but the sizes of t..t, t..a; and t..y are arbitrarily given. We
obtained the practical stability conditions impose restrictions for each scheme on
the mesh sizes of t..t, t..a; and t..y as shown in Table 1.

We consider the accuracy of computational results for high Reynolds number
because of turbulent fluid flow. The computational results have the spurious error
[5] under the condition ofthe effective maximum cell Reynolds number (Re") greater
than 2 for the equation of motion and the effective maximum cell Peclet number
(Pe") greater than 2 for the equation of energy because of discretizing the central
difference scheme in FDM (Finite Difference Method). However as the diffusion
coefficient for the two-point upwind scheme is added to the numerical viscosity, the
spurious oscillation is repressed or decreased by numerical viscosity for large value
of velocity. Pe" is defined as follows;

lul'lt..x lul'·It..y
Pe" = maa;{max 'I max II }

"k n + J(n' "k n + J(nIJ iT i j ij'J iT i j ij

NUMERICAL EXPERIMENTS

We consider the transient natural convection in a fire compartment of two­
dimensional rectangular room (2.4 rn height and 2.4 m length). Steady flat plate
heat source (800°C) is placed [Al at the center of the floor (10 ern width) in Fig.
1 and [B] at the left hand side wall (2.4 m length) in Fig. 2. The fluid in the fire
compartment is initially motionless and at a uniform temperature of 30°C. Initial
pressure and density distribution are obtained by computation of the equation of
state. The ceiling, floor and left side wall are the solid boundary and the right
side is the free space boundary. The solid boundaries are assumed to be thermally
adiabatic, Neumann type, except to the heating plate and the velocity on the solid
boundary is assumed to be Dirichlet type non-slip condition. The boundary con­
ditions on the free space boundary are assumed to be Neumann type condition
for out-flow and Dirichlet type condition for in-flow. The simultaneous equations
introduced by the implicit difference scheme are solved numerically by the sparce
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line successive over-relaxation method (SLSOR) for Poisson type equation and two­
point upwind difference scheme, and by the sparce conjugate residual II method
(SCR2) for other difference scheme to reduce the computer memories of data area.
Several numerical experiments were carried out on FACOM VP50 with FORTRAN
77 used double precision as follows;
[1] Estimate of the computational results with space mesh

The constant line heat source (800°C and 2.4 m width) is located on the left
side solid wall in Fig. 1. The computational domain is subdivided with the total
Ll x l l , 16x16, 21x21, 31x31, 41x41 and 61x61 meshes corresponding to 24,16,
12, 8, 6, and 4 cm mesh sizes respectively. The temperature, the velocity ii and ii

of computational results at the location B (48 ern below ceiling and 48 ern far from
heat source) and the cross section A (48 em far from open area on free boundary)
in Fig. 1 were compared each space mesh.
[2] Estimate of the computational results with different

finite difference scheme for convection terms.

For save charge computing time, the numerical computations were carried out
with space mesh size 12 em and time interval 10 msec in which the heat source is
located on the left side solid wall and on the floor in cases of Fig. 1. The scheme
for convection term is proposed numerically.
[3] Estimate of the computational results with time interval

As the results of the estimate of the space mesh, the computational domain is
subdivided into 41 x41 grids corresponding to 6 cm mesh size in Fig. 2. The
computations were carried out with time intervals which are chosen 2.5, 5, 7.5, 10,
15,20, 30 and 40 rnsec considering truncation errors. The temperature, the velocity
ii and ii of computational results at the location A (center of ceiling and 48 ern below
ceiling) and the cross section on the free boundary in Fig. 2 were compared.

RESULTS and DISCUSSIONS

[1] Estimate of the computational results with space mesh
In order to estimate the accuracy of computational results applied to two-point

upwind difference, the space meshes are chosen 24, 16, 12, 8, 6 and 4 ern, and the
time interval is fixed constant 10 msec. Fig. 3 shows the computational results of
the temperature and the velocity ii at the location B. The temperature differences
and the velocity component ii differences among the space meshes 4, 6 and 8 cm
in Fig. 3-a and 3-b respectively are the much same values (less than 5% errors).
In Fig. 3-a, the computational results show the oscillation called "spurious oscilla­
tion". Fig. 4 shows the relationship between Re" from the computational results
and time. This Re" of 4 cm mesh in Fig. 4 gives the smallest values less than 10
after 10 sec, so the period of spurious oscillation would give the large and the am­
plitude would give the small. Before 10 sec the flow motion is numerically unstable
because of initially putting the constant line heat source temperature 800°C, so the
numerical computation with 24 em mesh and 10 msec time interval was diverged
and in the case of 2 ern and 10 msec time interval was also diverged because the
simultaneous equations for implicit method were unstable to be solve numerically
by the truncation errors and rounding-off errors. Fig. 5 shows the computational
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results of the temperature at the cross section A. The results with space mesh sizes
6 and 4 ern are the much same and the other mesh sizes are quite different from
them. On the other hand Fig. 6 shows the temperature distribution at the cross
section A with time intervals 10 and 5 msec in the case of space mesh 6 ern, and
with time intervals 10 msec, 5 msec and 2.5 msec in the case of 4 em. These time
intervals are given by considering truncation errors. As the results the temperature
difference is about 10% errors each other. Table 2 shows the computational run
time (CPU time) of 20 simulation seconds.
[2] Estimate of the computational results with different

finite difference scheme for convection terms.
Fig. 7 shows the distributions of temperature with the different scheme for con­

vection term in the case of 10 msec time interval and 12 cm mesh at the cross
section of free boundary in Fig. 1. As the results the two-point upwind scheme is
only quite differences among other scheme, that is, it gives under estimate because
of adding the numerical viscosity. Table 3 shows the CPU time until 20 simulation
seconds. In above mentions the three-point upwind difference scheme for convection
term applied implicit method would be better way.
[3] Estimate of the computational results with time interval

The computations were carried out for the accuracy of time interval with 6 em
mesh applied to three-point upwind scheme in the case of Fig. 2. The time intervals
are chosen 2.5, 5, 7.5, 10, 15, 20, 30, and 40 rnsec. In the case of 40 msec time interval
the computation miscarried due to numerical errors. It should be noted that the
computations were only success the time intervals 7.5, 10, and 15 msec by three­
point upwind difference scheme. Fig. 8 shows the temperature and the velocity iL

at the location A. Fig. 9 shows the temperature distributions at the cross section of
free boundary. In these figures the results of temperature with 10 msec to 2.5 msec
time intervals give about 5% errors each other. The results of the time interval 10
msec come to a full application of its values from above mentions.

CONCLUSION.

When the implicit method is used in field model simulations of a compartment
fire, our personal point of view from computational experiments is that the time
interval and space mesh should be chosen less than 10 msec and 5 cm for high Re
and the difference scheme for the convection term should be the three-point upwind
difference scheme. The better way is to take O(6ot)~ 0(6ox2) ~ 0(6oy2) and small
increment. The mesh sizes, time and space, influence the accuracy from truncation
errors under the condition of no rounding-off errors, and the scheme avoids errors
due to numerical viscosity. They can be 0 bserved the trust in numerical res ults by
Re" for the equation of motion and Pe" for the equation of energy. Re" < 20 "" 30
or Pe' < 20 "" 30 could be accepted from numerical experiments.
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Explicit Implicit
method method

Centre! A ft-lw/l.Ys ete.ble
2-point upwind D IlJwlLY9 ste.ble
a-point UpWiIHI always unstable e.lwayaete.ble
f-point upwind I always unstable ltlways stable
f-poiut upwind 11 always unete.ble always stable

Time interval {msec]
Space mesh (em) 10.0 6.0 2.6

16 0.073 ._-
12 0.147
8 0.418 -_.-

6 1.000 L346

4 5.412 7.360 11.419

Difference scheme ratio
0.83 (SLSOR)

2-point upwind difference scheme 1.00 (SCR2)
3-point upwind difference scheme 1.01 SCR2)
4-point upwind difference scheme I 1.51 (SCH2)
d-point upwind difference scheme II 1.31 (SCIl2)

IAI eteble if

InJ stable if

where 070, is dilluaion coefficient

Table 2 CPU time

Table 1 Practical stability
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