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ABSTRACT

Closed form analytical solutions are obtained for the temperature
of bare and insulated steel members in one-dimensional geometry in case
the outer surface is exposed to standard ISO 834 fire test. The heat
transfer from fire gases into the wall is described by a linearized
boundary condition. The thermal material parameters are assumed indepen-
dent of temperature.

It is shown that the solution of the approximated equation for
insulated steel is closely related with that of bare steel. Temperatures
are presented as a one-parameter family of curves. Methods to determine
steel temperatures and insulation thicknesses are explained by
examples.

INTRODUCTION

Recently there has appeared several notes [2 - 4] commenting on the
temperature calculation methods of fire exposed steel structures as
recommended by various steel design manuals or national fire codes. The
purpose of the present note is to add a few features to the discussion
by presenting analytical, closed form formulas as solutions of lin-
earized, constant coefficient heat conduction equation. For the heating
of bare steel under IS0 834 fire test the solution of the linearized
equation is an analytical function of one parameter. Although the Tin-
earization is rough, the solution plotted as a family of temperature
curves, gives a quick overview of the problem.

For the heating of insulated steel under IS0 834 fire test, the
partial differential equation of heat conduction can be approximately
replaced by a two parameter differential equation [3]. It is shown here
for the first time to our knowledge, that the solution of this approxi-
mate equation is almost the same analytical function as for the bare
steel. The difference caused by the second parameter allows for an easy
geometrical interpretation.
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PROBLEM DEFINITION

Consider a planar wall with an insulation Tayer of thickness d
and a steel core as shown in Fig. 1. The heat capacity of the steel
per unit area is Q''. The insulation is described by temperature inde-
pendent density p, specific heat capacity c, and thermal conductivity a.
The left hand side of the insulation layer (fig. 1) is exposed to ISD
834 standard fire with a temperature time dependence

Te(t) = To In(1 + t/t,) (1)

where in SI-units T. = 149.83 K, t, = 7.5 s, and t is expressed in
seconds. (Fgn. (1) is the same curve defined in IS0 834 in terms of 1g-
function, but it was transformed here to suit better theoretical pur-
poses. Likewise, SI-units are preferred to any engineering type
choices.)
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FIGURE 1. Thermal model of an insulated planar steel structure. The
steel of heat capacity Q'' has an adiabatic boundary on the right
side and a perfect thermal contact with insulation on the left
side. The insulation with thickness d, density p, specific heat
capacity ¢, and thermal conductivity a is exposed to standard IS0
834 fire test on the Teft side.

Setting the coordinate x-axis perpendicular to the wall as shown in
fig. 1 the temperature T{x,t) in the insulation is given by the heat
conduction equation

o 221 = ol (2)
ax2 ot

where thermal diffusivity o
o = )\/pC (3)
For the initial condition we take

T(x,0) = 0 (4)
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where in the linear system we assumed the environmental temperature Ty =
0. The same result is obtained, if temperatures T are interpreted as
differences relative to T,. The boundary condition at x = 0 is given by

0 B,
-n BIO.E) & hT(0,t) = nTe (5)

and at x = d by
A\ QTafg,t) + 0 QTaﬂd,t) =0 (6)

In eqn. (5) the radiative part of heat transfer is proportinal to
the fourth power of the absolute temperature. We Tinearize the equation
at the maximum temperature. Therefore h will be an effective value in-
c]udi?g]convective and radiative contributions calculated as depicted in
ref. 16].

When the thickness d of the insulation approaches zero ean. (2)
tTooses its meaning. The heat flux terms on the left hand side in egns.
(5) and (6) approach each other

éif . I 6ng.t) b s g;(o.t) (7)

Combining boundary conditions egns. {5) and (6) yields a single
equation

or denoting for shortness h/0'' = A gives

) 4 a () = AT, (8")

Eqn. (8) together with the initial condition, eqn. (4), is a first
order differential equation which is easily solved in closed form for
the IS0 834 standard exposure curve. Eqns. (2} through (6) define
mathematically the temperatures of insulation and steel in terms of a
partial differential equation the solution of which is much more in-
volved. ECCS remcommendations [7] give two approximate differential
equations of type

AT 4 p T(1) = A Te(t) - B E(E (9)

which for proper choices of constant A and B should approximate eqns.
(2) through (6) rather well for times not too short. Constants A and B
are defined in terms of steel and insulation parameters [3]

A= (Ne/d2)/(1 + 1/4)(1 + NJ) (10}
B = b/{1 + NJ} (11}
where

A /H
J = fﬁ%gaii—a (12)
and
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v = hd/x (13)

Steel parameters are density oo, specific heat capacity ¢, and
section factor H_/A_. In egns. (10) and (11) b and N are adjus%ab]e
weighting factor®. Melinek and Thomas [3] have shown that optimal
choices of these for long time are as follows:

g kb

b = 3 ; c g 3 (14)
J1+2+2 ) + 3+ + o=
v oyr B2
and
(1+4)
N=2(b+1) —X (15)
(1+2)
We explain in the numerical example later how to determine
jteratively constants A and B using egns. (10} - {15}.
HEATING OF BARE STEEL
The general solution of egn. (8') with initial conditions
T(0) = Te(0) = 0 s
T(t) = A gftexp [Alt' - £)] Tglt")dt! (16)

or in more transparent form obtained from ean. (16} integrating by
parts
dTe(t')
t) = - [texplA(t' - t)] —L qt '
T(t) Tf(t) of exp [A( )] e dt (16')
So far the solution is general and does not depend on the func-
tional form of T¢ provided it has a reasonable well defined derivative.
Egn. (16') shows the steel temperature follows the IS0 standard curve
Te but lags from it by the amount given by the integral term. This is a
convolution of the derivative of the IS0 curve and an exponential
function. The weighting function of the derivative equals unity at time
t and decays exponentially towards earlier times. Substituting the IS0
834 standard exposure curve, eqn. (1), into egn. (16') and integrating
results into

T(t)/Te = In(l + t/ty) - exp[-Alt + t4)]
[Ei[alt + to) ] - Ei[At ]} (17
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where the exponential integral function Ei(z) is given by a Cauchy prin-
cipal value integral [1]

_JFetdt/t (z > 0) (18)

The first term in eqn. {17) is the ISD 834 fire test curve. The second
term on the right hand describes the lag of the change of temperature
caused by the heat capacity of steel. For long times the variable

Alt + t } grows big compared to unity. Then using the asymptotic
expans1on of the exponential integral for big z [1]

Eilz) »e%/z (19)
the temperature lag is expressed
Tooexp [-Alt + to) J{exp[Alt + t ) J/[A(t + t,)] - Ei(Aty)]} =

T, | ﬂrf-%-fET - exp[-Alt + t )] Ei(At))} >0

t > o

Thus the temperature Tag disappears for long fire exposures, because the
Togarithmic ISO 834 curve time dependence becomes rather flat.

HEATING OF IMSULATED STEEL
The general solution of egn. (9) with the initial condition (4) is

very similar to the solution of eqn. {8'}. The general solution for
arbitrary function Te(t) is

T(t) = -B Tg(t) + A(L + B) offexp[A(t' - £)] Te(t')dt! (20)
which again can be cast into a "perturbation expansion”

t dre(t")
T() = Te(t) - (1 +B) of exp[A(t' - )] —fgr dt’ (21)

This solution differs from eqn. (16') only by the multiplying factor

1 + B in front of the integral on the right hand side. This allows for
easy interpretation: If B = 0 eqn. {9) becomes indentical with eqn. (8')
and the solution (21) with egn. (16') as it should. For positive B the
temperature lag, which the Tatter part of the solution represents,
increases by a multiplicative factor.

Substituting into eqn. (21) the explicit formula for the ISO standard
exposure curve yields for the steel temperature T(t) a closed form
formula

T(t)/Te = In(l + t/ty)) - (1 + B) exp[-Alt + t,]

[Ei[Alt + t)] - Ei[At ]} (22)
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This is the same as eqn. (10) despite the factor 1 + B in front of the
latter part. Calculating numerical values of b using eqns. {10} through
{(15) shows it is small (< 0.5). However, in the beginning of the curve,
where the latter part is dominant, nonzero B drops steel temperatures
fast. Thus, negative values of temperature change occur in the beginning
as noted earlier, [3, 4]. For insulated steel the relevant protection
time is of the order of one hour, This method is not suitable for
calculating the temperatures during the first minutes, but applies well
for longer times.

There are two possible ways of using this theoretical result: (i)
Theoretically egns. {10) - (15) determine the constants A and B from
first principles, i.e. from known dimensions and material properties of
the system. Thus an iteration process using these equations, as will be
shown, produces values of A and B. {ii) Since this is only a rough
model, it is not for granted the prediction of temperatures is accurate
enough. Although the gross features of the temperature are right,
detailed quantitative determination might be too coarse. Therefore, one
could use experimental temperature data and try to determine effective
material parameters to be used for design purposes. More work 15 needed
to show, which one of these methods turns out practical.

APPLICATION FOR INSULATION DESIGN

In fig. 2 the temperatures predicted by eqn. {17) are plotted as a
function of time (expressed now in minutes) and the constant A as a
parameter. Using the recommendations of £CCS [6] to calculate h, and
using maximum air and steel temperatures we got somewhat conservative
temperature predictions as shown in table 1.

TABLE 1. Comparison of temperature predictions

Variable Dimension Time, min
30 60 90
Section factor m-! 30 10 10
A 57! 7.1.100% | 2.8.107% | 3.2.1074
Temperature: 0C
this work 510 530 750
Ref. [6] 484 467 678
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FIGURE 2. Dependence of steel temperatures on time and parameter A (s

For determination of B, see text.
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In reality, h is during the heating period smaller than this maxi-
mum value. Using some smaller values for h, the difference between both
theoretical results can be compensated. No comparison with experimental
results was tried. This example also shows that the heating of bare
steel depends delicately on heat transfer.

For calculation of cladding thickness of insulated steel we carry
out an example where the temperature should remain below the critical
temperature T. = 500 0C for at least 1 hour. We presume the insulation
to be dry matérial with thermal parameters: density 200 kg/m3, specific
heat capacity 700 J/kgK and t?erma] conductivity 0.2 W/Km. The section
factor of the steel is 100 m™*. From egn. (12) we calculate Jd = 0.37 m.
From fig. 2 we see for time tep= 1 h and temperature T.. = 500 0¢
(point P), that A = 2.6.107%s L. Substituting this into egn. {10} and
taking N = 3 and y = «, an approximate d = 15 mm is obtained. Then
J ~ 25 and from egqn. {11), where b = 0.5, B = 0.0066. This is so small
that there is no use to continue iteration because the accuracy of fig.
2 is not enough.

In case B were bigger, one should determine a point R along line PN
such that the calculated B is given throuagh the ratio

B = PR/UR {23)

and the new A is the value of the curve going through point R. New
thickness d is then obtained from egn. (10). This iteration is continued
as long as the coefficients A and B change considerably. In the above
example one iteration was sufficient resulting d ~ 15 mm as compared to
value d ~ 16 mm obtained in ref. [6]. Since B is usually small (< 0.2),
the method converges quickly.

CONCLUSIONS

The closed form formulas for the temperatures of unprotected steel,
eqn. {17), as well as the solution, eqn. (22}, of the approximate equa-
tion of the insulated steel can be utilized for fast calculations of
steel temperatures. The latter equation suits for quick determination of
insulation thickness, because it is mainly a one-parameter (A) function.
The dependence on B is weak and is used for fine adjustment. These equa-
tions are easily programmed on PC-Tevel microcomputers and allow for
iterative determination of any one parameter when others are known.

Eqns. {17) and {22) are useful for deriving analytical fits on
experimental data. Theoretical curves present the overall features.
Local adjustment to make prediction to coincide with experimental data
is a way to determine effective material parameters.

For numerical calculations tabulations of the exponential integral
function, eqn. (18), are available, e. g. [1]. The mathematical subrou-
tine libraries on most main frame computers include Ei{z). It can also
be calculated from simple algorithms [1, 57.
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