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ABSTRACT

The steady fire-produced ceiling jet in an open ended corridor is examined with a
simplified "top hat" theory. At a corridor open end, the hot fluid accelerates upward producing
a Richardson Number equal to 1 for tranquil flow as the flow control. Friction satisfies this
condition by upstream waves with a hydraulic jump, if necessary. Entrainment has qualitatively
the same result, but with quantitative differences. Heat transfer at low friction causes the
Richardson Number and depth to rise. The manner of adjustment to Ri = 1 at an open end
needs further study.

INTRODUCTION

The hot gases from a fire rise to the ceiling and spread out radially. This process has
been variously studied both by boundary layer type theories and experiment. [1,2] The layer
cools and becomes deeper as its radius increases. The heat transfer has been of major
concern.{3,4] In a few cases, the ceiling jet in a corridor--a simpler geometry--has been
studied. A full three-dimensional theory [5,6] shows the expected bulbous front of the
transient jet which is well known from hydraulic experiments [7,8] but which is of little
importance in fire spread.

The simplest theory, with the assumption of uniform temperature and velocity with
depth, does not seem to have been exploited and is used here to find, if possible, a simple
treatment suitable for fire modeling. The case of an open ended corridor is studied.

GENERAL EQUATIONS
By reference to Figure 1, the following basic equations are obtained.

anserva(ion of Mass
%—‘:—(‘— = Epu (M)
Conservation of Momentum
drhu s g8 dp f
= —g'pd—+ 22— Zpu? 2
ax BT e 2P )

Conservation of Energy
dime (T - T,
P( a):—‘h(T—Ta) (3)
dx
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FIGURE 1. "Top Hat" velocity and temperature
profile ceiling jet in an open-ended corridor,

THE BASIC FLOW
Consider first a hot perfect fluid ceiling jet with no friction, no entrainment, and no heat
transfer. The basic equations then become

(I‘Ri)gé =0 (4
dx

Equation (4) indicates that the jet depth cannot change unless the Richardson Number equals 1,
i.e., the stream velocity equals the shallow water surface wave speed

w=g5 )

With the jet moving at this speed, upstream waves remain stationary, while downstream waves
wash out.
THE EFFECT OF CEILING FRICTION

With no entrainment and no heat transfer, the mass flow, i, and density p, are
constant and the basic equations reduce to

s f
1-Ri)—— == 6
(=R—=7 (6)
Thus, if
>1 45 <0 tranquil flow
Ri{=1 thena« = oo critical flow )
<1 * >0 shooting flow

A tranquil flow is deeper than and decreases to critical while a shooting flow is less deep than
and increases to critical. By Ri= 1, the critical depth is

L2 V3 3
b
5 = m and Rioll g
. (g'pz} an i (50] (8)

Equation (6) with the origin at the position of critical flow (see Figure 2) integrates to

4
5. 45, ) 4w,
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FIGURE 2. Effect of friction and entrainment on a ceiling jet flow: —friction - top scale;
entrainment - bottom scale

If the corridor ends before critical flow is reached, a tranquil flow will accelerate and
waves travel upstream to the source to reach a steady flow. If the jet has Ri < 1, the flow will
merely shoot out since no adjusting waves can move upstrean.

On the other hand, if critical flow is reached before the end of the corridor, all remaining
momentum is needed to produce the very rapid depth increase and none is available to resist the
friction. The leading edge flow is stopped. If the flow is tranquil, waves slow the motion, the
friction force decreases and the critical flow moves to the corridor end. 1f the flow is shooting,
the blocked flow produces a hydraulic jump which moves upstream until critical flow is reached
at the end. The jet discussion so far is identical to that for hydraulic channel flow.[9]

THE EFFECT OF ENTRAINMENT

With no friction and no heat transfer, one might suppose that entrainment would merely
add some additional mass lo the ceiling jet flow. However, entrainment not only adds mass,
but also, because the new mass must be accelerated, applies a drag on the ceiling jet and,
because the new mass must be heated from the ambient to jet temperature, cools the ceiling jet,
and increases its density. Entrainment by itself has all the effects of the entire problem. This
full problem is discussed in a later section.

Because strong buoyancy tends to suppress instabilities, entrainment is often very
small.[10,11] The entrainment coefficient measured by Atallah [10] is only E =.003. This
section will calculate the effect of small entrainment for which the temperature change is
negligible. The basic equations then become,

., dd )
(1—1{1)3——=2I~, (10)
X

Thus, the acceleration of the entrained fluid puts a drag on the ceiling jet with the same effect as
that of friction, equation (7).

Equation (10) cannot be directly integrated because Ri varies with both & and i .
However, the momentum equation can be integrated directly, then by elimination of u we get
3(8 1, 3+8/8, Ex

222 E0I0 | 35050 X 8|
2(55 NG nﬁ—éﬁ/é‘)c) 5. b

where, again, x =0 at Ri= 1.
The critical flow depth 8¢ is given by

60 { 1 ) }11’2
— = «—(2Fr* -1 12
5. 3( ) (12)
The effect of entrainment is again shown in Figure 2, with a change of corridor length scale.
The required flow adjustiments to reach Ri= 1 at the end for various corridor lengths are
identical to those for friction.
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THE EFFECT OF HEAT TRANSFER . '
With friction and entrainment absent, the basic equations reduce to
T, )LdT 3
2(T-T,) )T dx

on using the gas law to replace p with T. _ ‘ ‘ '
%Ne n%te that for a fire ceiling jet, which cools as it flows, the right side of equation (13)

is negative so that

1-rpy% - 6(1+
dx

> 1 s > 0 tranquil flow
if Ri = 1 then ™ = oo critical flow (14)
< 1 * < 0  shooting flow

By comparing equation (14) with equation (7), we see that the effect of heat transfer is opposite
to that of friction and entrainment.

Since Ri is dependent upon both T and 3, Equation (13) cannot be integrated
analytically. However, using Ri as variable, we get
I-Ri dRi 1 2T-T,

. =7 (15)
Ri(2+Ri) dT 2T(T-T,,

With the boundary condition that at x =0; Ri = Rigand T = Ty, this integrates to

Ri _ Rij T-T,(T 16)
2+Riy} Q4R T,-T, \ T,

The critical condition appears as the maximum of the left-hand side. Using the energy equation
in the integrated form

T-T,=(T,-T.)e* a7
where = hx/mc;, . The Richardson Number -- position relation becomes

TABLE 1

I 11
Ambient temperature 300 294
Initial temperature 800 384.3
Mass flux 16667 025
Heat transfer coefficient 41.65 10.6
Initial Richardson Number various 1.195
h/e,, 24694 41897
Distance along corridor_x_meters 4.0496 C 2.3868 €

Ri - 3 = RIO' 3 L B 1“‘:‘1“3- (‘3{ C;g = -———-———Rl(}‘ 3 116{: (18)

(Z+R1) (2+Riy) | T, T, (2+Riy) T,

Since this equation contains Rigand T,/Ty as parameters, we present the solution to equation
(18) using the case in Column 1, Table 1, and is shown in Figures 3 and 4. For tranquil flow,
both Ri and & increase indefinitely while, for shooting flow, Ri goes to zero (because p —
pa) while 3 becomes asymptotic to some finite value. To appreciate how rapid these thermal
effects really are, the physical distance along the corridor is for the present case

mlcp ¢ = 4.050¢ (19)
)

X =
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Thus, {=15 corresponds to only x = 20.25 meters. The above computation was made with
equation (18) using

5Y Ri(TY

)/3 =1 — :..,__'l —— e§ (20)
S, Ri, \ T,

to compute the ceiling jet depth.

If the depth is to be computed directly, Ri can be eliminated between equations (18)
and (20) to get the cubic equation for y

T,V T
Rio(—T&) e'gy3—~(2+Rio)~i‘°—y+2:O (21)

We note that critical flow does not appear at the corridor end. This will be further
discussed in the concluding section.

t_ T T 1 I l

fm
—

3
Q

@

104

Ri
voandb e o vad v aaad g
y = 818
-

-
2
H
z 4
8 H
sk H
: L :
2 3
£ L e
ot~ z

- S

- :

- | PRI .
008 ol I 1 i 1 T I 1

H 3 4 L) [} 1 2 3 X
Position along Corridor (;= hx/i <p Position aiong Corridor §= hx/in cp

FIGURE 3. Effect of heat transfer and initial ~ FIGURE 4. Effect of heat transfer and initial Richardson
Richardson Number on a ceiling jet Number on a ceiling jet depth. (Case column 1, Table 1)
Richardson Number (Case column 1, Table 1)

GENERAL CEILING JET WITH FRICTION, ENTRAINMENT, AND HEAT TRANSFER
The general equations have not been solved analytically, but, following the methods of
the last section, the results can be put into several useful forms.

I-Ri dRi 1 2T-T, dT+ 3f 2B

_IoREdRi 1 a " 2)
Ri(2+Ri) df 2 T(T-T,)d{ 2Hy(2+Ri) Hy
Again, the first two terms can be integrated while the last two remain to be numerically
evaluated.
. . if3e

Ri __ Rig  T-T, T flsahs k3 23
(2+Ri)’  Q2+Ri) T,-T, T,
Because of entrainment, the mass flow and energy equations become

. E (548 - . tihg

ik c DT by e (24)

m, T,-T, m
which reduces to equation (17), if there is no entrainment. Thus, equation (23) takes the final
form
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Ri Ri, £+ l_Ii m o ( ) J -~dl’, 1) y(2eR)) 25)
(2 +Ri)* (2 + R\O) T, T, ) m m

Equations (24) and (25), contain four parameters, To/To, Rig, E/H, f/H, and has not yet been
fully explored. However, we se¢ by equation (22) that, since the temperature decreases, the
first term on the right is negative while the friction and entrainment terms are plus, thus
counteracting the effect of heat transfer.

THE EFFECT OF FRICTION AND HEAT TRANSFER
We now consider, in some detail, the simpler case with E= 0.

. ] &
Ri . Ri, T 1~_I; gt g o YIRD 26)
(2+Ri)’ (2+R10) T,

The solution is shown in Figures 5 and 6 for the case of Column I, Table 1, for tranquil
flow for Rig=2. Ignoring, for the moment, the line to point 0, all solutions for various values
of f, loop down to Ri= 1 forlarge f or swoop up to infinity for small f. With more decimal
places to f the curves move toward higher C.

To understand this behavior, the differential equation (22), eliminating dT/df by
equation (3) is put into the form

~(24+Ri)2- ~1)y

dRi _Ri|y
at 2y 1-Ri

27)

Then, eliminating y from the numerator, using equation (20) we get

o 3[(T0 )2 e,;)’”(z T, )“ HRi3 (2 + Ri)
. 2 - B B
; T T R
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FIGURE 5. Effect of heat transfer and friction on the Richardson Number
of a ceiling jet. Initial Richardson Number = 2. (Case column 1, Table 1)
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From this we see that
dRi dRi
——m=eo at Ri=1 and — =0 at r=0¢( 29
o o ol(e) (29)
where
HRi"*(2 +Ri) Y Y, TN T T,
= ———— =312 }et (2—-—”) ;=1 2 et 30
fRi}* » 9@ (( T ) ) T T, T, 50

Figure 7 shows the solutions of Figures 5 and G as r vs. { with the additional line on which
dr/df =0 which depends only upon the thermal properties of the flow.

The point 0 at § =4.683 in Figure 7 is a node. Since the coefficient of the bracket in
equation (28) is positive, while both the numerator and denominator are positive below and
negative above their respective lines, the solution slopes are as indicated and the node is a saddle
point.

The slopes of the solution curves passing through the node are found by evaluation of
equation (27) as a 0/0 form. After considerable algebra we find
dRi
— =1-(1%+3

o ( )

where Ty is the jet temperature at the node position.  The corresponding slopes shown

3n

Ta
27T,

n n

.~ . /4‘
_.-&~._ inFigure7are

dr|
dg

2 T,
=3 rn[l (mﬁ)ﬂn) (32)
The solution curves through the node in Figures 5, 6, and 7 were obtained by starting at
the node with f=.12920 and the negative slope given by equation (32) integrating toward
£ =0, using equation (23) in the form (E = 0)
Ri {4 (Ty 1T, -1)et et apff o

— e % y(2+R1) 13
Q+RY  27{1+(Ty /T, —1)e Je* (33)
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THE CEILING JET
In this section, we apply the above theory (o an arbitrary fire-produced ceiling jet, in
tranquil flow, in an open ended corridor of arbitrary length. Such a case is defined by the
parameters 1, Tg, Ty, h, f, L, Rig. We note immediately that Rip may be altered by the
Ri=1 control at the open end.
To solve this problem, we first calculate { at the end.
hL

‘:n'lc
p

(34

From this, we find the sign of the numerator in brackets of equation (27) in the form

‘ L2 13
Ne—"t [2-Tls, and 8, =4 (35)
h/me, T, p.g.

where Ri =1, and &y has been canceled out. For Ri > 1 inthe corridor, dRi/d{ is
opposite in sign to N. If N > 0, the corridor ends before the node is reached.

Thus, the solution to equation (33), starting at Ri = 1 at the end, will have a negative
slope and Ri will increase back to { =0, to the required value of Rig. The velocity and
depth of the fluid source will be altered appropriately.* If N =0, the corridor end is at the
node and the backward solution to equation (33) starting at { = {, must start with the
negative slope given by equation (31). Again, Rip will come from the solution and requires
source adjustment.” If N <0, the corridor ends after the node and the solution slope for
Ri > 1 is positive, the solution starting at the end moves toward £ > £, and no solution
with the given data exists for { < £ with Ri=1 atthe end. See the concluding section for
further comments on this case.

COMPARISON WITH EXPERIMENT

Although there are many papers on ceiling jet measurements, [12-14] few are detailed
enough to guide the theory. A recent Ph.D. thesis [15] provides both careful measurements
over a narrow range of conditions and a careful boundary layer theory with appropriate velocity
and temperature profiles. This theory failed completely to fit the data and was abandoned in
favor of the completely unfounded assumption that Ri =1 everywhere. This assumption
agreed fairly well with the data (see Figures 8 and 9).

* "Source adjustment” does not mean any effect on the fire. It means change of depth and
velocity after the fire plume reaches the ceiling.
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FIGURE 8. Richardson
Number for Chobotov (15)
experiment. ® Experimental
result; Present theory
with data column 2, Table 1
and various {riction factors;

& Present theory with node
at end of experimental channel;
- - - - Arbitrary assumption
Ri = Rig which gives "best fit"
to data. )

Figure 9. Ceiling jet depth

for Chobotov (15)

experiment. © Experimental
result; Present theory

with data column 2, Table 1,

and various friction factors;

& Present theory with node

at end of experimental channel;

x  Arbitrary assumption Ri = Rip
which gives "best fit" to data;
—H-4~ Chobotov (15) boundary
layer theory with arbitrary assumption
Ri=1.

FIGURE 10. Effect of beat
transfer and friction on the
ceiling jet in the Chobotov (15)
experiment. Present
theory with data column 2,
Table 1, and various friction factors;
e, Line on which solutions
have horizontal slope; 4~ Lines,
Ri =1 different f, on which
solutions have vertical slope; +, -
show sign of slope in region between
above lines; N1 - Node implied by
experimental initial data; N2 - Node
moved to the end of the experimental
channel ; - - - - Solution from node
atend.




The top hat theory developed in this paper was applied to the Chobotov experiment
computed with the data of Column 1I, Table 1. The results are shown in Figures 8-10.
Computation from § =0 contains a node far short of the end which shows why the
boundary layer [15] attempt at solution failed.

If the node of the top hat theory is moved to the end of the experiment (by selecting a
higher friction coefficient),* the resulting prediction is shown in Figures 8-10. The agreement
with the ceiling jet depth is only fair while the agreement with the measured Richardson Number
is very poor.

Better agreement is obtained with the completely unfounded assumption that Ri = Rig
throughout.

CONCLUSIONS

The simple top-hat type theory used in this paper would be expected to yield a correct
qualitative semi-quantitative solution to the flow of buoyant fire gases along a ceiling. So long
as the corridor is not too long, the heat transfer not too large, or the friction and entrainment not
too small, reasonable-looking results are obtained satisfying the open end outlet condition for
tranquil flow of Richardson Number = Froude Number = 1.

However, for many cases, there appears to be no solution satisfying Ri =1 attheend.
The reason for this is not clear. If the ceiling jet arrives at the open end with Ri > 1, the jetis
too deep and the fluid "falls out” with acceleration. Thus, the adjustment could take place
beyond the end of the corridor.

If this were the case, the increased velocity and decreased depth would be expected to

propagate upstream at the wave spced /g’ &  which is higher than the end fluid velocity.
The correct explanation would appear to be either non top-hat adjustments at and just outside of
the end of the corridor, or some non-steady effects with localized fluid accumulation and
discharge suggested by observations of persons fleeing from a fire who state that "the fire came
rolling along the ceiling."

Another phenomena sometimes intervenes to alter the Ri= 1 problem. As the ceiling jet
moves along the corridor and cools off, its buoyancy falls and it is more easily removed from
the ceiling by drafts or other disturbances. In the case of fire, there is often a lower layer
current of atmospheric air returning into the fire source. This lower level return current can
entrain the extra deep, extra cool ceiling jet which, therefore, never reaches the corridor end.

It is clear that some sciemifically motivated ceiling jet studies are essential to guide
further theoretical work on the ceiling jet.

The theory of this paper is about the right complexity for use in a general fire model,
with some empirical coefficients, if necessary. It needs to be further developed to include
partially open or closed corridors, It needs to be extended to the two dimensional ceiling of a
room and needs to include residual fuel which is burning.

NOMENCLATURE

cp specific heat of ceiling jet gas at constant pressure
E entrainment coefficient, Equation (1)

f friction factor, Equation (2)

g acceleration of gravity

g =g PLP_P_ cffective acceleration of gravity, Equation (5)

h heat transfer coefficient, Equation (3}

H = h do/th ¢, heat transfer factor, Equation (22)

m ceiling jet mass flow per unit width, Equation (1)

+ The experimental measurements suggested a very low {riction. Thus, the friction factor of
f =.046907 required to put the node at the end seems unreasonably large.
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N

I ®R)'"™ (2 + Ri)

n

dRi

numerator of —d_g Lquation (35)

]

useful analysis variable, Equation (30)

f (Rig'"?
Ri=g' 8/u? Richardson Number, Equation (4)
Rig Richardson Number at jet source, Equation (16)
T temperature
u ceiling jet velocity
X distance along corridor  [m]
y =878 ceiling jet depth, Equation (20)
) ceiling jet depth  [m]
¢ & curve on which  dr/df =0, Equation (30)
p ceiling jet density
§ = hx/mh ¢y coordinate along corridor
SUBSCRIPTS
a ambient
c critical (Ri = 1)
e open end of corridor
ENT entrained
n node
0 source of ceiling jet
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