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Abstract

Equations for a Boussinesq model describing transient buoyant convection driven by a heat
source in a rectangular enclosure are presented and solved by finite difference methods. Grav­
ity is allowed to have an arbitrary direction relative to the enclosure so that the enclosure is
inclined to horizontal. Computational results for three-dimensional dissipation-free flows and
for two-dimensional flows with and without dissipation are presented. The hydrodynamics is
based directly on the time-dependent Euler or Navier-Stokes equations. No turbulence model
or other empirical parameters are introduced. The previous algorithms had been verified by
comparisons with exact solutions to the equations in simple, special cases, and overall predic­
tions of the model when the viscosity and thermal conductivity are zero have been compared
with experimental results. The use of Lagrangian particle tracking allows one to visualize the
flow patterns. The effects of a fire-induced flow in a corridor, and a stair well (or escalator)
are examined.
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1 Introduction

Fires in buildings involve the transport of heat and mass by gravity-induced or buoy­
ant convection. Generally, this convection occurs in rectangular enclosures where the
direction of gravity is parallel to the surfaces of the enclosure, the walls. However,
under certain circumstances, such as a fire in a stair well or an escalator, the enclosure
may be sloped relative to gravity. A very important example of a fire in a sloped
enclosure was the devastating fire in the King's Cross underground station in England
in 1987, where there was significant loss of life as well as property damage. N umer­
ical simulation of this fire [1] uncovered an unexpected phenomenon which caused a
very rapid spread of the fire and led to much of the devastation. This phenomenon
was termed "the trench effect," and caused some controversy during investigations
of the King's Cross fire in England. The phenomenon was ultimately confirmed by
experiments and additional simulation [2], but transient aspects of the fire simulation
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are still of interest. It is the purpose of this paper to report an examination of this
phenomenon using a very different mathematical and computational model than those
used in the cited references; our model had been especially constructed to examine
time-dependent buoyant convection and has been used to examine fire-driven flows.

The authors have previously published descriptions of the mathematical model and
algorithm which they developed for computation of the buoyant convection induced
by a fire evolving in a room [3], [4], [5], [6]. The model is for a dissipation free,
thermally expandable fluid, i.e., one for which density and temperature variations
can be large, but pressure variations are small [3], and for a Boussinesq model, one in
which the density variations are also small. All of the work reported in this paper is for
the Boussinesq model only. For the three-dimensional computations, the dissipation­
free model described in the papers cited above is used. This model is used because
one is unable to resolve both large-scale motions associated with room-scale buoyant
convection and motions at the dissipative length scale with computational resources
available. However, with the revolution in computational capability currently taking
place, an ability to resolve both small scale and large scale features of the flow is now
possible in two dimensions. In tills document the authors report computational results
obtained from a generalization of their model and algorithm, in two dimensions, to
include viscous dissipation and thermal conduction. We present a brief description of
the algorithm. When the model is restricted to two dimensions, very high resolution
computations can be performed, and these computations allow us to resolve both large­
scale buoyant convection and small scale dissipation for Reynolds numbers of interest
for enclosure fires. The two- and three-dimensional results are compared because the
"trench effect" phenomenon is essentially two dimensional we believe. First, we present
the model of buoyant convection in Section 2, then a description of the finite difference
equations used to solve the model is presented in Section 3, and finally, results, together
with interpretation of the physical phenomena observed in the numerical computations
are described in Section 4.

2 Hydrodynamic Model

Traditionally, two approaches to the computation of fire-induced buoyant convection
have been reported: direct integration of the Navier-Stokes equations using molecular
values for viscosity and thermal conductivity or integration of these equations using
a turbulent viscosity and conductivity to account for fluctuations occurring at the
large Reynolds numbers of practical interest. The former approach, although most
desirable, is not practically feasible in three dimensions with todays computers, but
has become practical in two dimensions. Alternately, the use of a turbulence model in
the equations introduces functional forms and empirical constants which do not have
a fundamental theoretical basis at tills time. Direct simulation of the Navier Stokes
equations at Reynolds numbers of practical interest for fire-driven flows is now possible
in two dimensions, and these simulations are the subject of this paper.

We consider a Boussinesq fluid with constant or zero values of the viscosity and
thermal conductivity in a rectangular enclosure driven by a prescribed heat source.
The essence of the buoyant convection model is described as follows. We start with
the Navier-Stokes equations for a Boussinesq fluid and combine them as described in
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[3J. The nondimensional equations can be written as follows:

where
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Here, all symbols have their usual fluid dynamical meaning: p is density, u is the
velocity, p is pressure, g is the vector describing the direction of gravity, Re is the
Reynolds number, Pr is the Prandtl number, t is time and Q is proportional to the
spatially and temporarily prescribed heat source.

All symbols have their meanings in dimensionless form. If we let all variables with
tildes denote dimensional quantities and those without denote dimensionless ones,
then the dimensional and dimensionless variables are related as follows: ii = Uu, p =
PoU2p, P= Po(U2/ gH)p, i = H X,i = (H /U)t, where U is the velocity scale, H the
height of the enclosure and po is the ambient density. To define the velocity scale,
we introduce the following quantities. Qo is the rate of heat addition in the three
dimensional case (energy per time), q« is the heat addition per unit length in the
two-dimensional case (energy per length per time), g the acceleration of gravity, To is
the ambient temperature, and C p is the constant-pressure specific heat. Then, in the
three-dimensional and two-dimensional cases respectively,

(2)

The Reynolds and the Prandtl numbers are defined as follows: Re = UH/v and
Pr = pCp/k, where 11 is the viscosity, k is the thermal conductivity and v = p/ po is
the kinematic viscosity. See [4J and [7J for more information on the scaling.

Boundary conditions used for these equations are that there be no inflow or outflow
at boundaries, that either there be a no-slip or free-slip condition at boundary walls
and that the walls are either adiabatic or kept at a constant temperature. The initial
conditions are that the fluid is quiescent.

3 Numerical Methods

Equations (1) are either a mixed parabolic/elliptic system of partial differential equa­
tions, or, if v = k = 0, a mixed hyperbolic/elliptic system; i.e., the equations for the
density and for the velocity components are parabolic (hyperbolic), whereas that for
the pressure is elliptic. The incompressible equations of hydrodynamics are well known
to have this mixed character.
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When v k = 0, there is no dissipation in these equations, and it is important
not to introduce any through the numerical scheme. Analytical studies of the abil­
ity of several candidate finite difference schemes to calculate internal gravity waves
[8] led to the conclusion that methods of second order accuracy in space and time
would be necessary; the scheme chosen is dispersive, but not dissipative. All time
derivatives are replaced by central differences over twice the time step size (a leap-frog
scheme). Other terms in the evolution equations (the first two of Eqs. (1)) are in
general evaluated at the mid level of the three level leap-frog scheme. An exception
arises in the vertical momentum equation, where in the buoyancy term the density is
taken to be the average of the density at the top and bottom of the three level scheme;
this semi-implicit nature of the scheme is required for stability (see [8], [4] and [6] for
details). Small-scale numerical fluctuations arising during computation are removed
by stopping periodically the calculations, smoothing and restarting [12]. When viscos­
ity and thermal conductivity are present, a second-order leap-frog (Fromm) method
or a lagged-diffusion scheme have been used for temporal updating, causing no addi­
tional stability limitations and only a straight-forward generalization of the algorithm
discussed in the references cited above.

The spatial grid is taken to be uniform in each of the two or three directions,
although the mesh length may be different in each direction. Within each mesh cell,
a parallelepiped, vector components are evaluated at the faces and scalar quantities
at the center of the cell. The staggered grid permits central differences to second
order accuracy for all linear operations. The nonlinear terms must be considered
separately. The density evolution equation in continuous form is the mass conservation
equation minus the expression for the velocity divergence. Each of these two equations
is approximated by central differences and then subtracted. The density at all faces
is approximated by the mean of the density at the centers of adjacent cells. This
procedure ensures global mass conservation as well as second order accuracy.

The momentum equation is differenced in the vector invariant form. This en­
sures nonlinear stability and complete compatibility between the "primitive variable"
formulation presented here and a vorticity, stream-function formulation (in the two­
dimensional case), see [10] for details. When dissipation is absent, the finite difference
scheme for the momentum equations is presented in detail in [4] and [10].

The pressure equation is the discretized version of the time derivative of the incom­
pressibility (zero velocity divergence) condition, using the central difference approxi­
mation to the divergence of the velocity and with the time difference of the velocity
replaced using the discretized momentum equations. Mathematically, the calculation
of the pressure requires the solution of an elliptic partial differential equation. The
linear algebraic system arising from its discretization has constant coefficients and can
be solved by a fast direct method, see [6] for details. The solution to the pressure
equation constitutes the bulk of the numerical computation since the density and the
velocity are updated explicitly once the pressure gradients are known.

Finally, stability of the computational scheme imposes a limit on the time step size
relative to the spatial mesh sizes, [4] and [8]. Also, accuracy of the computation is an
important consideration, which has been examined in [8], [4] and [6], and verification
that the numerical methods solve the partial differential equations, at least in special
cases, has been addressed in these references. In addition, the basic features, such
as the plume rise-time in a uniform density environment, have been compared with
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experimental results to verify the predictive capability for the dissipation-free model,
[7]. With such careful consideration of the basic Euler model and numerical methodol­
ogy, we have confidence in the predictions of the large-scale phenomena made by these
computations, and feel justified in interpreting large-scale physical features arising in
them.

The computations reported here were performed on the N.I.S.T. Convex C120
obtained for computational combustion. Each computation requires between eight
and thirty CPU hours depending upon the conditions of the computation. The most
satisfactory means for visualization of the computational output, we have found, is to
display the locations of Lagrangian particles introduced into and convected by the flow
field: These displays can be dynamically performed using color to show the tempera­
ture field for example, arid have been implemented on Silicon Graphics Personal Irises
which are also part of the computational combustion facility. Several frames taken
from the screen of the SGI workstations displaying these particles are presented, and
the physical interpretation of the results are discussed. It should be emphasized that
still pictures cannot convey the sense of movement obtained when the viewer observes
the dynamical display on the graphics device. Similarly, depth perception for these
three-dimensional calculations and Lagrangian particle plots, which is provided on the
graphics device, is diminished in the static figures. Finally, color adds immeasurably
to the fluid-dynamical interpretation.

4 Results

Computations of many cases for both two-dimensional and three-dimensional enclo­
sures tilted at a variety of angles have been performed. In the three-dimensional cases
and in the 2-D case shown in Figure 3, calculations were performed using the Euler
equations (but with periodic smoothing) as described in earlier papers of the authors
[3]-[10], [12]. In the two-dimensional case, very high resolution computations have been
run, using over one quarter million cells in many cases. In most of the 2-D calculations,
the Navier-Stokes (N-S) equations were integrated. The Reynolds number is limited
by the resolution of the computations; it must be less than, but can be of the order
of the number of grid cells. There are two effects of dissipation: there is a smoothing
of the flow by viscosity and conduction, which occurs in the interior of the flow field,
and there are boundary-layer effects, which can generate small-scale structures at the
boundary. In the 2-D N-S computations, dissipative smoothing occurs while changes
produced by altering boundary conditions have been examined. The results shown in
Figure 3, where the Euler equations have been integrated, are virtually indistinguish­
able from results computed from the N-S equations with large Reynolds numbers when
adiabatic, free-slip BS are imposed. In the following subsections, several results are
presented and discussed which show the effects on buoyant convection of inclining an
enclosure relative to horizontal.

4.1 3-D Horizontal Corridor

In Figure 1, we present one frame from a sequence generated by the computation of
a corridor (four times as long as the height or width of the corridor) flow induced by
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a heat source (fire) located at a position on the floor one quarter of the length of the
corridor and one quarter the width from the end wall and side wall respectively. This
calculation shows the full three dimensional nature of the flow. The viewing orientation
is from the end of the corridor opposite to where the fire is located and from the wall
closest to the fire. The particles rise in a buoyant plume above the fire, hit the ceiling
and spread across the width of the corridor and down the side walls, forming a heated
gas wedge that overlies the cool ambient gases in the corridor. This heated wedge of
gases propagates down the corridor in a gravity current. The undulatory character
of the upper layer, as shown in Figure 1, is due to the three-dimensional nature of
the flow, a sloshing of the upper layer as internal waves are excited as the corridor is
filled by heated gases. Finally, the gravity current hits the back wall, is reflected and
returns toward the heat source (not shown here).

. .....~

.::i";'
Figure 1 The dimensionless time shown is 4.5 units.

4.2 3-D Corridor Inclined 35 Degrees

Figure 2 shows two frames of a corridor flow generated as described for Figure 1 with
the heat source similarly placed. In this case, however, the corridor is inclined 35
degrees with respect to horizontal; the end of the corridor opposite to the heat source
is higher. The viewing angle is from the side of the corridor, and the time associated
with each of the two frames is given in the figure caption. The initial buoyant plume
begins to rise above the heat source at a 35 degree angle (opposite to the direction
of gravity, which is pointed downward). The plume hits the ceiling and spreads both
laterally toward the side walls and up the corridor toward the far wall. Because the
corridor is inclined up toward the far end, the heated gases are accelerated toward the
back wall as shown in the first frame. At similar times, the heated gases progress much
further toward the far end than in the horizontal-corridor case. The high end, or end
away from the fire, is filled by the smoke and hot gases, with vigorous mixing taking
place in the filling volume as shown in the second frame of Figure 2. These results
are essentially as expected for buoyant convection from a heat source in the inclined
corridor.

4.3 Corridor at 35 Degrees - 3-D and 2-D Compared

In each of the calculations shown in the preceding figures, there are many interesting
fluid-dynamical phenomena occurring; close examination of the results on the dynami­
cal display on the workstation shows these phenomena. However, we will focus on only
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one phenomenon here, a very curious effect, which we believe is the "trench effect"
uncovered and discussed in the Kings Cross investigation.

Figure 2 A three-dimensional flow in a corridor inclined at 35 degrees;
the flow is shown at two dimensionless times, 2.25 and 8.0.

Figure 3 A two-dimensional Euler flow computation in a 35-degree
inclined corridor The dimensionless times are 5, 7, 9 and 11.
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In Figure 3 a collage of four frames from a high resolution 2-D computation of
the Euler equations is shown. The resolution of all of the 3-D computations shown
in the preceding figures is 144x36x36 (186,624 grid cells) in the 4xlxl corridor; in
Figure 3, the resolution is 1024x256 (262,144 grid cells) in the 4xl corridor, a factor
of 7 more resolution in each direction. Because the computation shown in Figure 3
is a two dimensional version of the code used to compute the results shown in the
preceding figures, the nondimensionalization is different; therefore, the dimensionless
times ascribed to the various frames in Figure 3 cannot be compared with the times
shown in the preceding figures. In this figure, the plume rises, but is bent back toward
the back wall. After the hot gases hit the ceiling, they progress both toward the back
wall and up the ceiling toward the high end. However, the hot gases leaving the heat
source are pinned along the floor and form a hot gas jet which progresses up along the
floor, shedding hot gases near its front; this phenomenon we interpret as the "trench
effect" .

To confirm this unexpected behavior, we performed a 3-D calculation identical
to that shown in Figure 2 except that the heat source was spread across the width
of the corridor. In the previous 3-D calculation, the heat source, although spatially
distributed, was confined to a small region around its center; the center was located
along the floor with its intensity decreasing in an axially symmetric Gaussian fashion
with a half-width of one tenth of the width of the corridor. In the 3-D calculation
with a 2-D source, the half-width of the Gaussian in the direction across the corridor
was increased by three orders of magnitude so that there was essentially no decrease
in source intensity across the corridor width. The computation qualitatively showed
the same behavior as that shown in Figure 3; hence, we confirmed that the "trench
effect" is essentially a 2-D effect, requiring that the heat source be spread across the
corridor.

4.4 Corridor at 35 Degrees - Effects of Boundary Conditions

All of the results shown above were computed from a model in which there is no
dissipation, i.e., no viscosity or thermal conductivity to diffuse (dissipate) momentum
or heat. In the following figures, results will be shown from computations of the
model in which viscous and thermal diffusion are included, i.e., the Navier Stokes
equations are integrated as described earlier. All computations shown were performed
on a 1024 X 256 grid, for a Reynolds number of 0.5 x 10 5; this grid allows stable and
accurate computations with resolution of the boundary layer at the Reynolds number
used. Since previous computations were dissipation free, the boundary conditions used
were those appropriate to the Euler equations, namely, no normal momentum and heat
fluxes at the boundaries.

To determine the effects of changing boundary conditions (B.C.), we performed
a series of two-dimensional computations with varying B.C. The B.C. selected were
adiabatic, no-slip (ans), cold-wall, free-slip (cfs), cold-wall, no-slip (cns), and a base
line computation with adiabatic, free-slip (afs). The degree of realism of the various
B.C. for any given physical situation (e.g., fire-driven flows, or salt-water driven flows
in fresh water) can be debated, but the comparison between the various cases is of
interest because one can imagine scenarios in which each of the B.C. is appropriate.
Figure 4 shows a comparison between the computations with the different boundary
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conditions. It is composed of a frame at the same dimensionless time (5.0) from
each of the four computations. The lower left plot is the base line computation with
adiabatic, free-slip (afs) boundary conditions; the lower right plot shows adiabatic,
no-slip (ans) boundary conditions; the upper left cold boundary, free-slip (cfs}; and
the upper right shows cold-wall, no-slip (ens) boundary conditions. Figure 5 shows
a simliar comparison but at a later dimensionless time (9.0). Note that the plots in
the lower left corner, the base-line ones, exhibit vividly the "trench effect", whereas,
those in the upper right exhibit a more traditional plume rise above the heat source.
The other sets of boundary conditions show intermediate behavior, with the hot gases
clinging to the floor of the inclined corridor, interrupted by periodic separation of the
hot gases from the floor into the enclosure. We interpret these results as indicating
that the buoyant gases will cling to the floor when a fire spreads across the width
of an inclined corridor (the trench effect) when boundary layer effects do not disrupt
the weak buoyant flows. However, either vorticity generated along the floor by the
boundary layer or cooling of the flow by a cold wall tend to break up the "trench
effect" .

The computations described here are induced by a heat source prescribed as a
function of space and time with no combustion model. A very interesting extension
of the model would be to include the effects of fire spread, which would affect the
flow behavior determined above. This extension can be accomplished by including an
appropriate combustion model [11]. We hope in the future to make such an extension.

Figure 4 A composite of frames from four calculations at dimensionless time, 5.0.
The computations are similar to those described in Figure 3, except with dissipation
(Re = 2 x 105 ) . The lower left frame is for adiabatic, free-slip BC, lower right for
adiabatic, no-slip, upper left for cold-wall free-slip, and upper right for cold-wall no­
slip BC.
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Figure 5 A composite of frames at dimensionless time 9.0 from the four calculations
described in Figure 4.
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