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ABSTRACT

If risk management studies in fire protection are to be implemented on a
quantitative basis, it becomes necessary to estimate probability loss models
for each risk management alternative. While actuarial data may exist for
quantifying the risk of situations similar to the alternatives under review,

there are usually enough differences or environmental uncertainties that
direct substitution is considered to be inappropriate, and dependency on
subjectively assessed probability loss models is a reality to be recognized.
In our opinion, a common perception by practitioners in fire protection
engineering is that subjective probabilities are "just guesses" and not to be
used in any serious or rigorous fire protection risk management study. This
paper points out that subjective probability assessments are valid
representations of knowledge, and we seek to communicate guidelines from
decision analysis for generating subjective probabilities within fire risk
management studies. Keywords: Fire Risk Assessment, Subjective
Probabilities, Probability Loss Models.

INTRODUCTION

Risk management for fire protection often reduces to a basic decision
making problem. Given that certain assets have an identified fire risk
exposure, then a choice may exist between accepting the current level of risk
(i.e. the status quo alternative) or spending certain dollars in an effort to
transfer, prevent or control the risk, and thereby reduce the 1ikelihood of
future loses. To make choices on a quantitative and systematic basis, it is
necessary to perform quantitative risk assessment and generate probability
Toss models for each risk management alternative. The problem is that
probability loss models are usually not known for the specific alternatives.
While actuarial data may exist for quantifying the risk of situations similar
to the alternatives under review, there are usually enough differences or
environmental uncertainties that direct substitution is considered to be
inappropriate.
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The fire protection engineering literature contains excellent surveys on
fire risk modeling ([1], [2]). The literature reveals a variety of methods
for modeling fire and assessing probability loss wmodels ([3], [4] [5]).
Despite the diversity that exists among these methods they share common ground
in their dependence on subjective probabilities as inputs to the modeling
process. A common perception by practitioners in fire protection engineering
is that subjective probabilities are "just guesses" and not to be used in any
serious or rigorous fire protection risk management study. This paper
addresses the role of subjective probabilities in fire risk assessment. Our
position is that, in the pragmatic world of risk management decision making,
subjective probability is a valid representation of knowledge, and in the
practice of fire protection engineering there will always be risk management
studies which require the use of subjective probabilities. While criticism
for risk assessment methods which fail to explain how model inputs should be
obtained or criticism for studies which employ subjective probabilities in a
casual manner is certainly well justified, the reaction of either doing
nothing or falling back to performing only qualitative risk assessment is
inappropriate. The discipline of decision analysis has made considerable
progress in understanding how humans process information for making subjective
probability assessments; guidelines for making subjective assessments more
effectively have been identified. This paper reviews these results and
interprets them for application in risk management studies. We hope that this
improved understanding of subjective probability assessment will enable the
fire protection community to practice quantitative risk assessment more
frequently and more effectively.

PROBABILITY VIEWPOINTS

There are three viewpoints for probability. The objectivist viewpoint
regards the probability of an event as the 1imit of the frequency with which
the event occurs as the number of trials increases without Timit. The
objectivist considers the probability of an event to be a property of the
event, and their concern is how to make an actuarial estimate of the event
probability. The objectivist views the actuarial estimate as a measure of the
empirical evidence. The subjectivist viewpoint, on the other hand regards the
probability of an event as a number which represents a person’s degree of
belief that a statement about an event is true. The subjectivist considers
a probability to be an attribute of the person making the assessment, and
thereby disaliows the notion of the assessment as being right or wrong.
However, the subjectivist does require that encoded probabilities adhere to
the basic axioms of probability and that evidence or knowledge be used in a
rational and consistent manner. The mathematical viewpoint on probability
works from assumptions of symmetry (on underlying elementary events) in
conjunction with a rational or logical model in order to deduce the
probability of higher level events.

To understand the conflict between the first two viewpoints, consider the
probability of a fire next year in the building that you are in right now and,
if there is a fire, consider the probability that the severity will exceed a
specified level. There is a large volume of actuarial data on fire frequency
and severity levels for various types of buildings. Also, there is a growing
number of rational deterministic models for predicting fire growth over time.
Can these different sources provide the information to answer relevant risk
management questions? In general, one finds that as you seek data which
provides good association with a specific building, the availability of
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objective data quickly dwindles, and may well vanish.

Suppose the building is a warehouse and one must evaluate the cost
effectiveness of a sprinkler system installation. The evaluation requires
estimates on the frequency of fire and the expected severity for the warehouse
in question. For discussion purposes, focus on frequency. There is a good
chance that you will be able to get an actuarial estimate on fire frequency
for warehouses in general, but you may not be comfortable in assuming that
this warehouse is typical with respect to frequency. Empirical evidence exists
which shows that fire frequency in warehouses depends on a number of factors
(e.g. type of building, type of materials stored), and, considering these
factors, you feel that the warehouse in question presents greater than average
risk. Consequently, you may wish to stratify the actuarial data on frequency,
and focus on a data subgroup. It should be noted that frequency estimates
require two types of actuarial data, fire incidence data and exposure level
data. Therefore, we are really talking about being able to stratify two data
bases. It is necessary to do this on each of the frequency relevant factors
if one is to retrieve an actuarial estimate which is representative of the
specific occupancy being assessed. However, the feasibility for stratification
diminishes as the number of relevent factors increases because there is a
progressively greater chance that either the data base of fire incidence or
the one on exposure level will not contain the information that is necessary
to perform stratification.

Suppose one is unable to stratify the actuarial data to obtain a subgroup
which is representative of the warehouse in question. The pure objectivist
will say that the frequency estimate is not available since representative
actuarial data is not available. A subjectivist who understands the basic
principles of decision analysis would recommend using an integration of the
available objective (i.e. actuarial) and subjective data (i.e. expert opinion}
with appropriate weights assigned to each data source. In this manner, an
estimate of the frequency of a fire for the warehouse may be constructed.
Later in this paper, some quidelines for doing this are provided.

When using any type of probabilistic analysis, subjective judgment and
objective data are always Tinked. When actuarial statistics are used directly
in risk assessment, one must make the judgment that the particular facility
(or class of facilities) under study presents substantially the same
experiment upon which the actuarial data was based. This is a subjective
Judgment.

Fire science models are deterministic and, by themselves, cannot yield
probability loss models. Nevertheless, they also represent a source of
objective data that can be linked to subjective judgement. For example, if a
fire growth model predicts that a certain physical Toss outcome will occur
under a given set of conditions, then one can assess subjectively a degree
of belief in how well the model represents the actual condition being
assessed. Also, if the fire science model requires a set of input conditions,
and these conditions are not known with certainty, then subjective (or
actuarial) probabilities on the conditions can be introduced to generate a
probability Toss model.

The statement is sometimes made that, given enocugh time and effort,
improvements in actuarial data bases and fire science models will make
subjective assessments no Tonger necessary in risk management studies. This
is misleading. Although advances will continue to improve the scope and
accuracy of fire science models and actuarial data bases, changes also will
continue in building designs and fire protection technology. For many risk
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management studies a gap will always persist, and subjective probability
assessments will continue to play a key role. The process of using fire
science models to generate probability loss models is illustrated in more
detail later in the paper.

GUIDELINES IN SUBJECTIVE PROBABILITY ASSESSHENT

Although subjective probabilities are opinions and cannot be viewed as
right or wrong, one still may judge the quality of the assessment. A
consideration of decision analysis refers to normative and substantive
goodness in assessments made by experts ([6]). Substantitive goodness refers
to the amount of knowledge that the experts bring to the assessment process
while normative goodness refers to the skill in translating the expert’s
knowledge base into probabilities. That is, does the expert fully utilize his
or her knowledge and do they adhere to the basic axioms of probability?

A1l probabilities are ultimately conditional, and it should be reasonable
that if substantive and normative goodness are to exist, then the event (and
its qualifying conditions ) should be defined clearly. This advice may seem
trivial. However, recently we participated in an experiment for integrating
subjective judgment and output from a fire science model to estimate the
probability of compartment full room involvement. During the experiment,
approximately half of the interaction time among the three experts was spent
on trying to get agreement on what constitutes full room involvement.

As an analyst seeking to assure substantive goodness when eliciting
subjective assessments from an expert, one must clearly understand the nature
of the expert’s knowledge base and construct an interface to access the
expertise effectively. Procedurally, this means that one should avoid asking
an expert to assess highly aggregate events. A fundamental principle of
decision analysis is to exploit decomposition fully to more effectively solve
a decision making problem [7]. 1In probability assessment, decomposing an
event into subevents can provide the key to unlock the expert’s knowledge
base.

Event trees, fault trees and inference trees are established
decomposition techniques. An event tree uses inductive logic to go from an
initiating event to a set of possible final or complete events. For example,
given that established burning has occurred in a building, one may wish to
assess directly the probability of various loss levels. Alternatively, one
may utilize an event tree to consider various scenarios for outcomes after
established burning. Each scenario is a sequence of subevents that occur
through time. The subevents address issues of fire growth, intervention
response times and suppression effectiveness (see Figure 1}. Presumably, the
expert’s knowledge base for assessing a probability Toss model will be more
fully utilized using the event tree rather than asking the expert to assess
the 1ikelihood for loss directly.

498




DETECTION/

PRE-INTERVENTION |SUPPRESSION
ESTABLISHED |FIRE GROWTH RESPONSE SUPPRESSION SEVERITY
BURNING OUTCOMES TIME EFFECTIVENESS |OUTCOME($)
LOW
O memmm
FAST
R e ) e —————
HIGH
INITIATING 27 EVENT
EVENT MODERATE AVERAGE MODERATE SCENARIOS
FROM
INITIATING
LOW EVENT
SLOW
S — [0 SR
HIGH
[ J
FIGURE 1 -  EVENT TREE FOR MODELING SEVERITY (3 EVENT CATEGORIES FOR
DECOMPOSITION) ,

A fault tree uses deductive logic to decompose the system by going from
a complete or final event and branching backwards to consider all possible
ways that the final event could occur. Inference trees allow one to explain
an unobserved event (i.e. a hypothesis) in terms of observable events (i.e.
data). Inference trees are commonly used in the insurance industry under the
heading of risk scoring models [8], but their potential value in assisting
quantitative risk assessment is probably not fully appreciated. Figure 2
illustrates one type of inference tree.
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FIGURE 2 - INFERENCE TREE (i.e. SCORING MODEL) FOR ASSESSING A COMPARTMENTS
PROBABILITY FOR FULL ROOM INVOLVEMENT
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After decomposition one is confronted with a variety of probability
assessment tasks. In each case, one is either dealing with a single event or
with a random variable. To provide for normative goodness some guidelines are
available. When assessing probabilities of singie events (e.g. probability of
ignition or probability of full room involvement), one should avoid asking
experts to assess probabilities directly. The expert should use a reference
event whose probability of occurrence is known (e.g. an actuarially known
event), and then proceed to assess a relative probability. For assessing
probability models of random variables (e.g. response time or severity of fire
loss), the method of fractiles is recommended [9]. If there_.is a random
variable, RV and the Probability {RV<x} = p, then x is called the p-th
fractile of RV. Under the method of fractiles, the expert assesses a discrete
approximation to the random variable’s probability distribution function by
focusing on a few special fractile values, namely the .01, .25, .5, .75 and
.99 fractiles. The assessor should not be asked to specify fractiles
directly. The 0.5 fractile is determined by varying the x-value until
indifference is assessed between the RV being above or below that value. The
.01 and .99 fractiles are set by finding approximate lower and upper bounds.
Research has shown that assessors tend to be overconfident or over
conservative and not set the .01 and .99 fractiles as wide as possible. By
making the assessor aware of this tendency, one can neutralize it to some
extent. To continue, by conditioning the RV to be above the 0.5 fractile, one
again can find an x-value which probabilistically divides that subrange
evenly; the value is the 0.75 fractile. The 0.25 fractile can be assessed in
a similar manner. The method of fractiles is similar to the quideline for
assessing single event probabilities in that the procedure avoids assigning
probability values directly. Figure 3 illustrates how the five fractile
values can be smoothed to generate a cumulative probability distribution

function for the RV in question.
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FIGURE 3 - CUMULATIVE PROBABILITY DISTRIBUTION ON RESPONSE TIME

500




Experimental research in subjective assessment has shown bias on the part
of human decision makers [10]. Humans display overconfidence in scientific
knowledge, understate how human error can occur and have great difficulty in
estimating rare events. To understand better the nature of human bias in
performing subjective assessment tasks, we consider two types of information
or data which experts utilize 1in applying subjective Jjudgment ([11]).
Singular information is case specific. It distinguishes the specific case from
others in the same category. Distributional information is base rate data and
concerns outcomes for a larger general class of situations. Subjective
assessments require experts to draw upon both types of information. However,
humans do not integrate this information well. Humans employ a number of
heuristics to process information. Unfortunately, the heuristics can entail
bias and detract from normative goodness. Under the representativeness
heuristic, the probability of an outcome is approximated by the degree to
which the outcome represents the essential features of the evidence. This can
lead to overemphasizing singular information and ignoring prior or base rate
statistics.

Using our previous example, suppose one needs to estimate the frequency
of a fire in a warehouse which has no sprinkler system. Suppose that on an
acturial basis the probability of a reportable fire during a year in any
warehouse (i.e. sprinklered or not) is 1%. Also, 90% of all reported
warehouse fires had no sprinkler system and 75% of all warehouses have no
sprinkler systems. If F denotes the event of having a reportable warehouse
fire and NS denotes the event of a warehouse having no sprinkler system then
Bayes Rule for probabilities can be used to determine precisely the
probability of a fire in a warehouse with no sprinkler system (i.e. the
conditional event, F/NS). Using P(-) to denote probability, then Bayes Rule
gives

P(NS/F)

P(F/NS) =[ NS ]P(F) :[-_3%%}}(1% =1.2% (1)

The frequency of fires for all warehouses, P(F), is an example of
distributional or base rate information while P(NS/F), the evidentiary data
linking reportable fires and the lack of sprinkler systems is an example of
singular (i.e. more site specific} information. If actuarial probabilities on
the events NS/F, NS and F are available, then Bayes Rule is the mechanism for
integrating the singular and distributional information and, thereby,
estimating P(F/NS). However, if P{NS} is not known, then one must estimate
P(F/NS) subjectively.

The representativeness heuristic warns us that, as information
processors, assessors may overemphasize the evidence Tinking fires to the
absence of sprinklers and ignore the base rate data by estimating P (F/NS} to
be much greater than the value of 1.2%. In the extreme, the
representativeness heuristic is called the Bayesian fallacy where one equates
the Tikelihood of a fire for a certain type of occupancy to the 1ikelihood of
finding that occupancy type, given there was a fire (i.e. P(F/NS) = P(NS/F)).

The anchoring heuristic can introduce bias in the opposite sense. Under
the anchoring heuristic, assessments are formed by using a reference class for
which outcome probabilities are known (i.e. distributional information) and,
then adjusting the probabilistic value to include singular information. Bias
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occurs when conservatism and fear of uncertainty leads to underadjustment in
utilizing singular information.

Another heuristic in subjective assessments is the availability heuristic
which Teads to approximating the probability of an outcome by the degree to
which one can imagine the event. This can lead to bias toward retrievability
of instance and improperly ignoring the longer term distributional
information. For example, if a highly catastrophic fire recently occurred,
one might overestimate the likelihood of such a fire occurring in a current
risk management study. By understanding which type of bias which can exist,
and by focusing on the two distinct types of information (i.e. singular and
distributional), a risk analyst can do a better job in bringing normative
goodness to the process of subjective probability assessment. More practical
guidelines follow.

First, the concept of substantive goodness for risk assessment should be
interpreted in the pragmatic world of risk management decision making.
Substantive goodness 1is relative; it {is maximized when one uses all
information that is available within the time and monetary constraints of the
particular risk management study. If there is interest in making a greater
conversion of qualitative risk assessment studies over to quantitative risk
assessment, it may be more reasonable to focus first on low cost assessment
methodology which has a greater chance for adoption. In any event, fire risk
analysts should recognize that one could have two widely differing risk
assessment methodologies, each of which may offer a similar degree of
substantive goodness even though a commensurate difference in the time and
cost requirements for the iwo methods may exist. Whatever methodology is
uded, an awareness for the two types of knowledge or information available to
the probability assessment task is necessary. Distributional information will
include actuarial data and usually can be formatted in term of probability
loss model parameters. Singular information concerns site specific
observations or data for the particular subject of the risk management study.
It is less likely that singular information can be formatted directly as
probability Toss model parameters.

When assessing the parameter of a probability loss model subjectively,
one must first select a reference class for which actuarial or fire science
data is available. While it is desirable to relate the reference class as
closely as possible to the specific case under investigation, tradeoffs must
be made between the similarity of the reference class to the specific
assessment task and the quality of the actuarial or fire science data
available for the reference class. Using an actuarial risk parameter estimate
as an anchor, one must focus on the singuiar information that is available
(i.e. information which distinguishes the specific case from the general
characteristics of the reference class), and subjectively assess how much the
actuarial risk parameter should be adjusted (i.e. subjective assessment =
(adjustment factor) x (actuarial risk parameter)). The adjustment factor can
be determined by a direct subjective judgment, or it can be enhanced by
exploiting decomposition and the use of scoring models (i.e. inference trees).
For the latter case, one can examine the available singular information and
identify a set of observable factors (F,, i =1,...1) which can be scored for
both the specific situation and the reference class. The factors chosen
should be explanatory with respect to the value of the risk parameter. The
relative importance of the factors for predicting the risk parameter can be
assessed subjectively, and then calibrated to conform to the reference class.
That 1is,
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Assessment

Subjective _{
b

I
)y wiFi} X {Actuarial Risk Parameter} {2)
=1

I
where X w,F; =1 and (Fj, i=1, -, I) denotes the factors scored for the
i=1
reference class.

When the source of objective data is not an actuarial probability but
output from a fire science model, the adjustment process is different. The
fire science model will simulate the physical conditions for some stage of a
fire process over time (e.g. a compartment’s upper layer temperature before
intervention, T). If one can define the critical event(s) in terms of
threshold conditions on the physical variables being modeled (e.g. FL denotes
flashover which occurs when T > T*), then one can use the fire science model
to estimate the probability of flashover (i.e. P(FL)). The human expert makes
a subjective judgment on how well the fire science model represents reality.
If the representation is not perfect, then the model either understates or
overstates the physical variables and the expert must come to terms with the
nature of this approximation. When T » T* and you believe that the model
understates T then P(FL)=1. However, if you believe that the model overstates
T, then one must integrate that opinion subjectively with the difference,
T-T*, in order to estimate a value for P(FL) between (0, 1). Conversely, if
T < T* and you believe the model understates T, the expert again must
integrate the objective knowledge, T*-T, with the subjective judgment on the
model’s quality in order to generate an estimate on P(FL).

Uncertainty can be appended to fire science models in a second way. If
the model requires specifying a set of input conditions (denoted by I) and
these conditions are not known with certainty, one then must consider a
probability model where (I, n=1,...,N) denotes the set of N possible input
conditions. For each condition, one has an objective or subjective

N
probability, p,. The final result, P(FL) can be given by 2 P(FL,) p,.
n=1i

The discipline of decision analysis has made considerable progress in
understanding how humans process information for making subjective probability
assessments. Guidelines for making more effective subjective assessments have
been presented with the hope that improved understanding of subjective
probability assessments will enable the fire protection community to use this
tool more effectively in research and practice.
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