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ABSTRACT

Experiments were carried out to investigate the effect of burning
conditions on combustion of Douglas fir wood in a proposed smoke toxicity
test: a plastic 200 L exposure chamber with a radiant furnace. Research
included effects of: incident heat flux, sample surface, initial oxygen
Tevel and endpoint criteria.

Wood board sample mass can vary broadly even at equal surface and
thickness, suggesting that surface may not be an ideal surrogate for
amount of material. The effect of carbon black on ignitability is
erratic. Ignitability of blackened wood samples is higher than that of
unblackened samples only if both are ddentical. Irreproducibility
increases at low incident fluxes.

Tests carried out with the IT50 concept are hazardous to the operator
{(oxygen addition can cause explosions) and lead to high irreproducibility
(sixfold variations of CO doses in identical tests).

Yields of CO depend on exposure protocol and on sample size. At high
initial oxygen 1levels, however, CO/C02 ratios are very low, unless big
samples are burnt to completion. This Tleads to excessive smoke for
toxicity purposes. The CO yields and C0/C02 ratios are adequate when
using very Tlow oxygen levels (0-5%) and high heat fluxes, conditions
which simulate those in ventilation controlied fully developed fires.

INTRODUCTION

In the 1970’'s and early 1980’s test methods were developed to measure
smoke toxic potency. The ones most widely used are in refs. 1-4. These
tests differ in several respects bul they have served to show that the
toxic potency of smoke from most materials is very similar [5-8]. In
fact, the range of toxic potency for almost all combustible materials is
less than an order of magnitude. These small differences were the cause
for. the different rankings in a study of toxic potencies of 14 materials
by two methods [9]: the material ranked most toxic by one protocol was
ranked Tleast toxic by the other one! Neither of these protocols is in
use now, but the work illustrates problems of such toxic potency tests.
Smoke is not a uniform material: its composition depends on generation
conditions. The same material can thus give smoke of very different
composition and toxicity, depending on combustion conditions.
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The NFPA Quarterly discussed in 1933 [10] that the main direct cause
of death in fires has always been combustion product toxicity. Smoke has
two main types of toxicants: asphyxiants and irritants. The individual
toxicant associated with the largest fire hazard is carbon monoxide (CO).

CO, a combustion product of any organic material, appears in all
fires. When present in blood, it forms carboxyhemoglobin (COHb). While
the exact Tethal COHb level depends on individual characteristics, values
> 20% can lead to death [11]. At least 60% of fire deaths have 50%
COHb, while > 91% of fire victims have levels > 20% COHb [12]. Recent
statistical analyses of Tlarge data bases involving carbon monoxide from
fire and non-fire sources have shown that, once the controlling factors
of age, disease and blood alcchol level have been accounted for, the COHb
distribution from fire and non-fire fatalities are very similar [13].
Although many other gases are contained in smoke, two studies where fire
fighters visited actual buildings on fire, equipped with gas monitors
[14, 15] concluded that the main hazardous toxicant in fire is CO.

In the United States, most fire fatalities (specially if they are
overcome by smoke inhalation) are remote from the fire origin room and
foilow a fire that has ieft its original room [7], suggesting that the
fire may have reached "flashover". For such fires, specially if they are
controlled by ventilation, smoke toxicity is dominated by CO levels. In
such fires too, full scale (0 1levels are determined mainly by oxygen
availability, which is, in turn, affected by variables such as geometry,
ventilation, configuration, turbulence and mixing, and only somewhat
influenced by chemical properties of the products being burnt [16].
Thus, €O levels in such fires are critical for toxic hazard [17].

As a first approximation fires can be subdivided in three types [18]:

(1) Non flaming/smouldering fires
(2) Early or small flaming fires
(3) Fully developed Targe scale (post flashover) fires.

Smouldering fires occur with Tow heat inputs ( 20 kW/m*2) and high
oxygen levels. They generally give high carbon monoxide/carbon dioxide
(CO/C02) vratios, but within JTow yields of smoke altogether, and rarely
affect people other than those intimate with ignition (typically seated
in the upholstered furniture or bedding item first ignited). Small
flaming fires occur with higher heat inputs (20-35 kW/m*2) and fairly
high oxygen Tlevels. The yields of smoke are much higher than in
smouldering fires but not yet high enough to affect people far from the
fire, i.e. only in the room of fire origin. Fully developed fires
generally involve very high heat inputs ( 35 kW/m*2) and very low oxygen
levels (close to zero). The results are extremely high smoke yields and
C0/C02 ratios. These fires are overwhelmingly responsible for the fire
fatalities found away from the source of the fire. In these cases, most
products are virtually pyrolysed and CO is the dominant toxic factor.

This study Tlooks at several issues associated with using a radiant
apparatus with a protocol suggested for smoke toxicity. The fuel used in
the 1investigation was Douglas fir, mainly becausé wood combustion has
been studied very widely and is well understood. In view of the crucial
importance of CO 1levels in wood smoke toxicity, the emphasis of the
research was placed on carbon oxide yields, under various conditions.
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EXPERIMENTAL
Materials

The fuel wused for these experiments was Douglas fir wood, 19 mm
(0.75") thick. -All the wood used had a single source, so that its water
content and density were fairly uniform. The wood was kept at ca. room
temperature and 50% relative humidity until use.. The carbon black used
to blacken the surface was Raven 410 (Columbian Chemicals).

Apparatus and Procedure

The apparatus used has a plastic exposure chamber, (Volume ca. 200
L), didentical to that used in the NBS cup furnace toxic potency test [2]
and a quartz combustion chamber. The heat source are 4 infrared lamps,
set out symmétrically on two sides of the sample; the incident energy can
be varied by changing incident flux or irradiation time (IT). The sample
dimensions can vary, up to .a maximum of 76 x 127 mm (3" x 5"), with a
maximum thickness of 51 mm (2"). The igniter is a sparker, placed 25 mm
above the centre of the sample. Gases were analysed by pumping smoke
through standard analysers (non dispersive infrared for CO and C0Z and
paramagnetic for oxygen} and recirculating the smoke. Mass loss was
measured with a load cell. A carbon black Tayer was added with a brush,
in some experiments, in order to get a homogeneous black surface.

Tests I.1 and II.1 both invoived normal air and samples were burnt
for a long time (until burning virtually ceased). Tests 1.2 and II.2
differed from I.1 and II.1 only in that the starting atmosphere had 18%
oxygen; in I.3 and II.3 starting atmospheres had just enough oxygen to
cause flaming dignition (12-14%). In tests 1.4 and I1.4, burning started
in air, but nitrogen was added rapidiy, to ramp the oxidant concentration
to 4% oxygen 1in a few minutes; in 1.5 and II.5, oxygen was added, to
ensure oxygen concentrations 16%. In tests labelled 11I, the initial
sample surface was 9677 mm*2 (15 in*2), and the end point was a smoke
concentration sufficient to cause a lethal CO atmosphere (1750 mode).
Tests Tabelled IV were carried ouf to investigate the effect of very low
oxygen levels (0, 5, 10%), at a fixed surface area simulating pyrolysis
in vitiated atmospheres (high intensity ventilation-controlled fires).
The V-VII series of tests had carbon black on the sample surface, while
the VIII series were tests similar to I.1 or II.1, but with pairs of
samples specially selected from the same ODouglas fir wood board, to
investigate ignition time, in the absence and presence of carbon black.

RESULTS

The procedures followed were designed towards investigating different
different ways 1in which the apparatus could be used as a smoke toxicity
test. In particular, two protocols have been proposed for use with this
apparatus. The Smoke Toxicity Working Group at NIBS (National Institute
of Building Sciences) [19] suggested the use of an IT50 concept (time of
irradiation vequired to create a lethal atmosphere killing half (50%) the
exposed animals). More reécently, NIST (National Institute of Standards
and Technology) suggested a novel way of measuring smoke toxicity with
the hardware, based on corrected LC50 values [20]. Table 2 contains some
basic results of the present study and will be discussed in detail.

617




Table 1. Exposure procedures used

Type Flux Init. Oxygen Oxygen Addition  End point C Black IT range

- kW/m*2 % - - min
I.1 50 21 No Consumption No 11-24
1.2 50 18 No Fixed time No 20
1.3 50 13 No Fixed time No 20
I.4 50 21 Add nitrogen Fixed time No 20
I.5 50 21 Yes: to 16% Fixed time No 20

IT.1 30 21 No Fixed time No 20

1.2 30 18 No Fixed time No 20

1.3 30 13 No Fixed time No 20

11.4 30 21 Add nitrogen Fixed time No 20

I11.5 30 21 Yes: to 16% Fixed time No 20

I11.1 50 21 Yes Predicted CO No  IT50
I11.2 30 21 Yes Predicted CO No  IT50
I111.3 50 18 No Predicted CO No 1750
I11.4 50 13 No Predicted CO No IT50
IT1.5 50 21 Add nitrogen Predicted CO No IT50
I11.6 30 18 No Predicted CO No IT50
I11.7 30 13 No Predicted CO No  IT50
I11.8 30 21 Add nitrogen Predicted CO No  IT50

IVv.1 50 0 No Fixed time No 20

Iv.2 50 5 No Fixed time No 20

Iv.3 50 10 No Fixed time No 20
V.l 50 21 No Ignition Yes Ignition
V.3 50 14 No Ignition Yes Ignition
V.5 50 21 Yes: to 16% Consumption Yes Ignition

VI.1 30 21 No Fixed time No 20

VII.1 50 21 Yes Predicted CO No ITS0
VIII.1 50 21 No Ignition Yes Ignition
VIII.2 50 21 No Ignition No Ignition
VIIT.3 30 21 No Ignition Yes Ignition
VIII.4 30 21 No Ignition No Ignition

The first interesting result 1in this study was variability of mass
for a specified surface area and thickness (Figure 1). In fact, the mass
range for the 5800 mm*2 samples is > 30 g {while the average mass is only
50-60 g). This has already been found before in other wood burning
studies, but it indicates an inherent irreproducibility inevitable when
using surface area for wood toxicity results rather than sample mass.

The effect of carbon black on ignitability yielded curious results.
In series VIII, sets of identical samples were cut from a single wood
board; half of them were tested covered with a carbon black layer and the
other half uncovered. The blackened samples ignited more readily than
the unblackened ones, but with poor reproducibiiity. Samples, at random
(series V-VII), were also tested covered with carbon black, and compared
with samples run under apparently identical conditions, but not designed
specifically for direct comparison. The results showed no clear trends.
It appears that the vrelative Tlocations of sample and igniter although
fixed 1in the apparatus are critical and thus smoke can pass close to the
sparker without becoming ignited. This is especially noticeable at the
Tower incident flux, and is exacerbated by the use of carbon black.
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The most important issue investigated was the yield of carbon oxides:
€0 and carbon dioxide (C02). Peak concentrations of CO or €02 both
increase roughly proportionately to the initial sample surface, to the
mass charged, and even to mass lost. However, this finding in itself is
of little real interest, since it simply indicates that more carbon
oxides are generated when more smoke is produced, without an indication
of whether the quality (or toxicity) of the smoke changes. Of much more
interest is the effect of mass lost {or mass charged) on carbon oxide
yields, and their ratios, in different experiments.

The yield of a combustion product is the mass of product generated
per mass of sample burnt (g/g). For species that do not decay, yields
can probably be calculated equally well from peak concentrations or from
integrating the concentration-time curve over a fixed time period {which
for all these experiments was set at 30 min). In fact, the two values
turned out to be quite different, with the value calculated from peak
concentrations invariably higher than that calculated from integrated
amounts. Interestingly, differences between results were not the same
for both carbon oxides: in almost all cases the ratio of carbon monoxide
to carbon dioxide calculated from peak values appeared higher than that
calculated from integrated amounts of carbon oxides. Results discussed
in this paper vrefer to yields from integrated values. Carbon balances
were not made, since no soot or unburnt hydrocarbons were measured.

Results of Individual series

Tests of type 1.1 were carried out with small sample surfaces ( 3870
mm2, 6 in*2); CO yields (from integrated CO values) ranged between 0.006
and 0.056, with a weak positive dependence on mass loss (almost within
experimental noise). Carbon dioxide yields ranged from 0.26 to 0.75,
with a strong negative dependence on mass loss. The ratio of carbon
oxides (€0/C02) was low, but ranged from 0.025 to 0.165, with an
accelerating positive dependence on mass loss. This refers to successive
experiments, indicating that yields of both carbon oxides are affected by
sample mass charged and time of exposure. Time to ignition ranged from
0.55 to 1.75 min; the differences, however, seem unrelated to mass Toss
or sample surface, so that time to ignition is 1.02 + 0.27 min.

Tests of type Il.1 (with incident flux Tevel of 30 kW/m*2) had higher
C0 yields than the corresponding type 1.1 tests. There did not appear to
be a dependence on sample mass Tloss. The C02 yields were lower than
those for type 1.1 tests, but had a very similar negative dependence on
mass loss. The vratio of carbon oxides appeared to be slightly higher
than for Type 1.1, with a similar type of dependence. Time to ignition
was much higher than for Type I.1 tests, which is very logical because
less energy 1is applied. It ranged from 2.4 to 4.95 min, and appeared to
increase with sample surface.

Tests of Type 1.2 gave higher CO yields and Tower C02 yields than
Type 1.1 tests. They resembled Type II.1 tests in their carbon oxide
yields. They vresembled the Type 1.1 tests, however, in terms of their
time to ignition, although the time to ignition appeared to be slightly
higher than for Type I.1 tests. If the same type of test was carried out
at a lower incident flux (Type I1.2} this did not seem to make much
difference tfo carbon oxide yields, but it raised the time to ignition,
which, again, seemed to increase with sample surface.
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Tests of type 1.3 again resulted in higher C0 yields and lower CO2
yields, but the C0/C02 ratios were higher than in type 1.2 tests. The
times to ignition were somewhat higher than in earlier type I series, but
did not seem to be greatly affected by sample surface area. If the same
type of experiment was carried out at lower incident flux (I1.3) the CO
yields decreased, the carbon dioxide yields increased and the C0/C02
ratios became very small. The times to ignition were similar to those of
type 11.2 samples, viz. > 3 min.

A comparison of tests of type 1.4 and 1.3 shows substantial effects
on the (0 yields due to the change in conditions: they were much higher
for 1.3! However, the carbon dioxide yields were much less affected by
the changes. The times to ignition were lower for 1.4 than for I1.3.
Similar trends can be found on comparing 11.3 and I1.4.

Tests of Type 1.5 and I1.5 required severe precautions, because of
the hazard involved 1in adding oxygen. In spite of this, an explosion
occurred 1in one test. Such conditions pose serious risks to the test
operator. These tests generated the highest C02 yields of any test, as
well as high CO yields and CO/C02 ratios. Times to ignition were low,
averaging at < 1 min, and appeared unaffected by surface sample area.

The NIBS protocol suggests that tests be stopped artificially at the
time calculated to give an IT50, which, in the case of wood is determined
exclusively from the CO concentration. For this work it was important to
investigate the vreproducibility of this. The tests carried out in the
IT50 mode, i.e. done with the objective of determining the irradiation
time needed to obtain a smoke concentration required to cause a lethal
atmosphere to be created (Type III.1), gave low CO, high COZ yields and
very low times to ignition (< 1 min). This was, at least partially, due
to the oxygen addition. At the lower incident flux carbon oxide yields
were similar, but times to ignition, naturally, increased considerably.

A series of experiments were made ' in which it was attempted to
determine the reproducibility inherent in measuring an IT50. This was
done through running an analytical pretest, by irradiating at 50 kW/m*2,
and maintaining oxygen concentrations at a level 16%. The initial test
run was used to measure the idrradiation time required to obtain an
integrated CO concentration time (CT) product of 100,000 ppm min.

It was determined that, for a Douglas fir board 9677 mm*2 x 19 mm, it
took 290 s to obtain smoke containing a CO dose of 100,000 ppm min.
Seven additional experiments were thus run, all of which were interrupted
after an IT of 290 s. The original sample masses were reasonably close,
ranging from 86.9 to 108.8 g, i.e. well within the range indicated in
Figure 1. The 30 min CO CT product was determined in all experiments and
it ranged from a low of 52,000 ppm min to a high of 311,800 ppm min
(average: 172,512 ppm min t 79,590 ppm min): a sixfold variationl

In the experiments at very low initial oxygen levels the CO yield was
virtually unaffected by the initial oxygen concentration, but the C02
yield showed two distinct areas: values of 0.05-0.1 g/g at initial oxygen
levels < 12% and values of 0.25 at initial oxygen levels > 12%. Thus,
the C0/C02 ratios also show the same dual trends: values of 0.9-1.4 g/g
at low oxygen levels and < 0.4 g/g at high oxygen levels. None of the
Tow oxygen experiments ( 10%) caused ignition of the wood.
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An interesting overall observation is that if a similar sample mass
was exposed to vradiant heat, the C€0/C02 ratio increased with IT. In
fact, paraliel straight 1lines could be drawn when increasing amounts of
wood were exposed to irradiation times ranging from 11-12 min to 24 min
(Figure 2). Both oxygen consumption rate and mass loss rate appeared to
increase with the sample mass charged, although they did so at different
rates: the mass Tloss rate increased faster than the oxygen consumption
rate. The oxygen consumption rate can be equated to heat release rate,
an indication of efficiency of combustion. Thus, the results mean that
burning becomes Tless efficient as time goes on, as heat is released more
sTowly. On the other hand, oxygen consumption rate per unit area
decreased as mass charged (or sample area exposed) increased (Figure 3).

DISCUSSION

The yields of carbon oxides (both CO and C02) depend on several
aspects, mainly the test conditions used and the sample mass burnt.

Perhaps the most important finding of this study is that the CO yield
is Tow for most experiments, ranging up to a value of ca. 0.16 g/g mass
Tost. There is a very weak positive linear dependency of CO yield on
mass of sample burnt. The carbon dioxide yield, on the other hand, is
much higher (ranging up to > 0.9 g/g mass lost). Moreover it has a very
strong negative linear dependency on sample mass lost. The combination
of the two previous results means that the fitted ratio of C0/C02 ratio
has a hyperbolic dependency on sample mass lost. In other words, this
fitted ratio is very Tow at low sample mass lost values and increases
until it vreaches values of > 1. However, by then over 90 g of sample
have been burnt. Figure 4 shows the dependence of CO yield, €02 yield,
their fitted values and the fitted C0/C02 ratio on sample mass lost.

Innumerable smoke toxic potency tests have shown that typical toxic
"~ potencies are not too far away from values of ca. 30 mg/L. Thus, in
order to obtain a lethal atmosphere in the exposure chamber considered in
this work (ca. 200 L), smoke concentration above ca. 30 mg/L, i.e. ca. 6
g, would have no toxicological interest. At such levels of smoke, the
C0/C02 ratio is only ca. < 0.1 for most experiments with high oxygen,
i.e. very much Tlower than that for fires where there has been full room
involvement. On the other hand, the tests carried out under lTow oxygen
conditions resulted 1in reasonably high C0/C02 ratios, probably quite
representative of those found in fully developed fires. Thus, this
chamber might be ideally suited for use to simulate fully developed
fires, if low initial oxygen levels are used. However, this would result
in non flaming processes. If this is undesirable, it may be necessary to
adjust the CO yields to obtain a value that fits the level found in fully
developed full scale fires, e.g. as proposed by NIST [19].
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