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ABSTRACT

The analysis method, which 1is intended to precisely grasp the thermal
elasto-plastic-creep three-dimensional deformation behavior of steel wide-flange
columns at elevated temperatures, is presented. This method is a combined
nonlinear finite element procedure based on the finite displacement theory of
the thin-walled open cross section, and adopts the mechanical model of structural
steel at high temperature proposed by Furumura et al.

Based on some assumptions, two kinds of examples for thermal elasto-
plastic-creep three-dimensional deformation behavior of steel wide-flange
columns subjected to high temperatures are pursued.
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INTRODUCTION

In the past, several studies on the in-plane elasto-plastic-creep behavior
of steel columns were carried out[l-3]. But, in an actual building framework,
the columns are frequently subjected to biaxial bending in addition to axial
compression. Therefor it is important to advance the studies on the three-
dimensional deformation behavior of steel structures at high temperature to
develop the rational fire resistant design of steel buildings.

In this study, the nonlinear three-dimensional analysis method of steel
columns is described, and the illustrative examples involving out-of-plane
buckling and biaxial bending problems at high temperature are investigated.

METHOD OF ANALYSIS .

In order to compute precisely the collapse beﬂavior of steei building in fire
environment, it is necessary to consider both the material and the geometrical
nonlinearities simultaneously. The analytical procedure for three~dimensional
behavior of wide-flange steel columns is developed by means of adopting the
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mechanical model(b] of structural steel at high temperature for the constitutive
relation of the finite element procedure(9], which is based on the beam-theory
of thin-walled open cross section.

Analytical Assumptions and Modeling of Structures

For the purpose of the analysis, assumptions have been made as follows:

1) The behavior of steel columns is described by a series of incremental time
steps, and the temperature and stress in the steel material are assumed
to be constant over each time step. And the change of temperature and
stress is assumed to occur at boundaries between the incremental time
steps. The incremental creep strain at a time step is considered at the
beginning of next time step.

2) Wide~flange steel columns having three-dimensions are treated as beam
elements with thin-walled open cross section.

3) The stress field in the steel material is idealized to be the isotropic plane
stress condition, in which the normal stress perpendicular to the axial
stress ¢ is assumed to be zero, and the elasto-plastic tangent stiffness
matrix in the { g, T }-stress field is evaluated by using the incremental
theory ( Associated Flow Rule ) based on the von-Mises yield criterion.

4) The multiaxial creep strain at high temperature is evaluated by using
the state equation theory ( Creep Potential Theory )} based on the
assumption of von-Mises creep potential,

5) As for deformation of each element, deformation in axial direction, bending
deformation in biaxial directions, torsional deformation including warping
of section and St. Venant’s torque are taken into account.

6) Local deformation of cross sections in structural members is disregarded,
and deformation due to shear in conjunction with bending of members is
considered negligible.

7) Regardless of plastic or elastic condition of cross sections, it is assumed
that the sections remain plane as far as the bending in biaxial directions
is concerned. A similar assumption is applied to warping function; that is,
a function w(y,z) is used whatever the conditions of elasticity and
plasticity are.

8) The distribution of shear strain caused by St. Venant’s torsion is linear
through the thickness of the component plate even for a partially yielded
cross section.

9) Assuming the existence of the initial strain corresponding to the residual
stress at initial condition, the residual stress is taken into account.

Constitutive Relation of Structural Steel at High Temperature

The constitutive relation of structural steel under the combined stress
condition is required to the analysis of the three-dimensional deformation
behavior of steel columns. In this study, the mechanical behavior under simple
test condition is generalized to combined stresses. The mechanical model of
structural steel[5] developed by Furumura et al. is illustrated in Fig.l, and the
assumption(l) represents the change of temperature and stress in steel to be
step-wise.

Fig.1(A) shows that if the temperature is changed from a constant temperature
Ti:_; to another one T, under the stress point B, the stress—strain curve changes
GBC to GEF. And Fig.l{B) shows that if the stress point D is maintained
constant for a time increment At , the incremental creep strain 4e. is caused
by following the strain-hardening creep law which uses the strain &. in
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FIGURE 1. Mechanical model of steel material at high temperature

Fig.1(B) as the accumulative creep strain, and the stress follows the curve
HKIJ after creep strain increment.

The uniaxial mechanical model shown in Fig.l is generalized to the plane
stress condition as follows.

[ Generalization of mechanical model in Fig.1(A) ]

At the end of (i-1)-th incremental time step, the elastic strain &ei-a
corresponding to the stress (i, must be calculated by the equation
€oi-1 = Des-17*04-1. The elastic matrix Dgj-; must be evaluated by the
temperature at the (i-1)-th time step.

In short, the initial elastic strain & i1 at the beginning of i-th time step
must be obtained beforehand, and the stress ¢, corresponding to the strain
£1= Bei-1t 4&41 must be calculated from the initial unstrained point. Herein
4de, is the strain increment derived in the iteration process for searching the
equilibrium position.

In the elastic range, the incremental stress vector A¢ is related to the
incremental strain vector A& as follows:

40 = D 4de (1)
where
Ex 0 ]
4™ = { 4o, 4T}, 4eT ={ 4e, LY}, Do = E {
0 A S
2(1+)

in which E+ is Young’s modulus at temperature T and v is Poisson’s ratio
of steel.

In the plastic range, the following stress-strain relation[9] is used taking
account of the assumption(3).
40 = (De+Dp)- de (2)

where

S;% 8.8 -
Dp=-{ . :] ,$1=Ex0’,S2=ExT, $S=4T *Hr'/9+(S10" + 2527 ),
S| 8.8z S=
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FIGURE 2. Equations for strain-hardening curve of structural steel

TABLE 1. Modulus of elasticity and coefficients of strain-hardening curves

T(CC) Er/Brt | ay1/ayrt | C1/ ayrt | a1/ € yrT nr

20 1.000 1. 000 0.309 0. 000 3. 941
100 0.991 0. 952 0. 305 0. 000 3.919
200 0. 964 0. 897 0.374 0.000 6.139
300 0.919 0.751 0.315 0.000 4,838
400 0. 856 0.538 0.304 0.737 3. 840
500 0.774 0. 000 0,187 0.166 1.931
600 0.675 0.000 0.105 0.026 0.803

T:temperature, RT:room temperature, E:Young's modulus
oy:yield strength, e&y=0,/E

FIGURE 3. Comparison of predicted and test data of
uniaxial stress-strain curves of steel material
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,

o is the deviatoric stress and Hy ' is strain-hardening rate.
[ Generalization of the mechanical model in Fig.1(B) ]

Following to the assumption(4), the incremental creep strain vector Jeg. at
the plane stress condition[8] is calculated by the next equation.

Asc=—2%-0’ésc (3)
in which ¢’ ={0’,27 } and 4&. is the uniaxial creep strain increment
corresponding to the equivalent stress 0 . Since the creep strain increment
4 &< is taken into account as the same kind of strain as plastic, this must be
added to the equivalent total plastic strain &, , and the incremental creep
strain vector JAe. must be subtracted from the elastic strain vector g. .

The incremental thermal strain is given by the next equation.

AET={A(§:T} (4)

in which & is the uniaxial thermal strain of steel due to temperature.

The experimental formula for 0 - €, curve of steel material is approximated
directly by the digitalized data[6] of stress-strain curves of steel at high
temperature. The yield plateau and the strain hardening part of the curves are
expressed as shown in Fig.2, in which Oy r,¢r,ar,nr are the constants
depending on the temperature of steel materials, and &, is the plastic strain.
The values of these constants are shown in Table 1. The calculated uniaxial
0 - &€ curves are compared with the experimental ones[6] in Fig.3. For the
mechanical properties of SS41 steel at room temperature, O ,r+=244(N/mm%),
Er+=206(kN/mm?), 1 =0.3 are used.

The uniaxial creep strain of steel material at high temperature is evaluated
by the following equation{4].

£ . = 10%/T*® , ge/Trd, t T+ (5)

in which & (%) is the primary creep strain, T(° K) is absolute temperature,
o(kg/mm?® ) is stress, t (minutes) is time and a ~ f are the following constants,
a=-7.45x10% ,b=3.71,¢=1.78x10® ,d=1.82,e=6.47x107* ,f=-1.51x10"" .

The thermal strain & is assumed as follows:

€ = 5.04x107°T® + 1.13x107°T (6)

in which T is degree Centigrade.

Equilibrium Equation of Finite Elements and Computation Procedure

In order to approximate the curves of a steel column after deformation, the
column is divided into some elements shown in Fig.4. Whenever each incremental
displacement is computed, local coordinate system for each element is shifted
and re-defined so that it pasges through the both ends of the element.

The incremental displacement vector { du, 4v, 4w, 4¢ }* on the x-axis of
the element is expressed by the incremental nodal displacement vector deu.
Whether or not an element has vyielded, incremental displacement in the
x~-direction( 4u) is expressed as a linear function of x and incremental
displacements in the y and z-directions{ J4vand 4w ) and incremental torsion
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FIGURE 4. Steel column and finite element
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FIGURE 5. Wide flange section of steel column

(49 ) are expressed as cubic functions of x.
On the other hand, the incremental strain within the element can be expressed

as follows considering large deformation{9].

_ddu d®Av 4% 4w d® 4o 1d4v., 1.d 4w

. - il Py =2
48 dx 7 dx® dx*® WTgx= +2( ax +2( dx )
1 d 4 d® Av d% Jw
d 4 gyt B LT oy L e (0
£ (8)

AY = 2n Epe

where (v denotes the warping function, and n is a coordinate which originates
at any point on the middle surface contour of the plate.
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Applying the principle of virtual work as a usual manner, the incremental
equilibrium equation for the beam element is written as follows:

(( kep * kg ) * dett = ( fos + dfes ) = fin (9)

where ke, is the elasto-plastic stiffness, the matrix ke is the initial stress
stiffness which represents the geometrical nonlinearity caused by finite
displacement, the vector ( fex + Afes, ) is the external load, the vector fy, is
the internal force and the vector Jdeu 1is the incremental nodal displacement.

Based on the assumption(l) about the temperature and stress of the element,
the constitutive relation of structural steel under {¢g., 7T }-stress field, and
the incremental equilibrium equation{(9), the distribution of strain and stress
in the steel column is calculated for each time interval during the heating
process. The equation(9) is reformulated and resolved repeatedly by means of
a step by step method and a iteration method. Stress and strain conditions
within the elements are examined at both ends of elements, not regarding the
intermediate parts, and the stress and strain conditions of the inside were
linearly interpolated from the stress distribution at the both ends.

RESULTS AND DISCUSSIONS

The steel H-column in Fig.4 with the cross section (H-200x200x8x12) was
used for the example. Both ends of this member are simply supported, and
restrained against rotation and warping. The slenderness ratios of the column
are L/r, =30 and L/ry, =51, and the magnitude of axial load is P=0.3P g+ .

The computation was carried out for the half part of the column, and divided
into 10 longitudinal beam elements. The cross section of beam element is divided
into 180 segments ( 10 divisions along the width or the height and 6 layers
along the thickness for both flange and web plates ). The magnitude of residual
stress shown in Fig.b is 0.e/ 0yrr = 0.3 .

The parameter m,, was defined to express the combination of bending
moments M, and M, as follows:

Mye = My/Mpe,y)/ (Ma/Mpe,s) (10)

where Mpeo,y » Mpe,2 are the reduced plastic moments about y,z-axis considering
the effect of axial force.

Next two kinds of analysis were carried out.

(Example 1) Computation of loads versus deformations curves at constant high
temperatures,

(Example 2) Computation of the thermal elasto-plastic-creep deformation
behavior of steel columns under the constant loads P,M, ,M, at
increasing steel temperature.

In Example 1, the creep strain at high temperature is not included, but in
Example 2, all analytical models are computed by the elasto-plastic analysis
and elasto-plastic-creep analysis in order to investigate the effect of creep
strain on the steel column behavior.

In Example 1, six kinds of cases m,, =0.0,0.25,0.5,1.0,2.0,00 are computed. In
the case of "rr—zyz =0.0, the columns were assumed to have the initial crookendness
and rotation of sinusoidal half-wave with the central value of L/1000 and
L/(500H), where H is the height of cross section.
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FIGURE 6. Moment versus end-rotation of wide-flange steel column

The computations are accomplished by the displacement control method, in
which the target axial load P is loaded at the first step, and at after the
second step, the resulting end bending moments M, , M, of the column are
computed by specifying the value of the end rotation 6O, , 0. under the
condition of keeping the axial load constant.

Fig.6 shows the relationship of bending moments to rotations at the ends of
columns for my, = 0.0,1.0. Fig.7 shows the interaction curves of the maximum
moment. The dotted line in Fig.6 indicates the results of the in-plane analysis
for my, =0.0. As can be seen in Fig.6, even at the temperature 300° C~500°C,
the maximum bending moment are affected by the lateral torsional buckling
behavior. The case of my, = 1.0 is a example of steel columns subjected to
biaxial bending moments acting in two perpendicular direction. As can be seen
in Fig.7 , the maximum bending moment \/(Mz/}\/[pc,,)"”r(}dy/M,M_,,)‘3 in this analysis
become lower with larger parameter my, and higher temperature.

In Example 2, two kinds of cases my, =0.0,1.0 with three kinds of bending
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moment loads M/My are used, and the temperature of steel columns is assumed
to change linearly from 0°C to 600° C during 120 minutes. In this case My is
the maximum moment at room temperature shown in Fig.6 and M is the constant
applied load about y and z-axis. The computations are accomplished by loading
the target axial load P and bending moment loads M., ,M, at the first step, and
the temperature of models is increased under the condition of keeping external
loads constant after the second step.

Fig.8 shows the temperature histories of rotation 8. ,8, at the ends of
the column. It is observed that the deformation of columns are developed
gradually at higher temperature, and finally the collapse behavior of steel
columns takes place. From the numerical results, the column is not greatly
affected by creep strain until the steel temperature reaches 450° C. The effect
of creep strain in those cases become significant over 450°C, and the
deformation of columns are made two or three times larger due to the effect
of creep strain. It is also observed that the collapse temperature depends upon
the magnitude of external loads, the greater the external loads M. ,M, , the
earlier the buckling of the column takes place. And due to the creep strain,
the collapse temperature of steel columns are reduced about 20° C.

CONCLUSIONS

Including the mechanical model of steel materials at high temperature in the
nonlinear finite element procedure of the thin-walled member with open cross
sections, the analytical method to pursue the thermal elasto-plastic-creep
three-dimensional behavior of steel column is developed.

Analyzing the examples of wide-flange steel columns at high temperature,
some aspects being important to understand the space behavior of columns in
fire have been found out.
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