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ABSTRACT

Glass breaking in compartment fires is an important practical problem since a window acts as a
wall before breaking and as a vent after breaking. If sufficient excess pyrolyzates have accumulated in
the hot layer, this sudden geometric change can lead to backdraft and flashover. As Emmons
explained at the First Symposium, windows break in fires due to thermal stress from the differential
heating of the central portion and the shaded edge. The focus of this paper is on quantifying the con­
nection between the compartment fire and the glass temperature to predict the window breaking time,
tb. Techniques are presented for accurately calculating the history of the central glass temperature
profile, T (x .r), for any fire exposure. Two-dimensional temperature histories, T (x ,y ,t), where x is
depth and y is toward the center, and mean stress histories, azz (y ,t), are also calculated. It is deter­
mined here that breaking occurs when the mean glass temperature difference is ~T = (ablE ~)g,

where ablE is the maximum glass tensile strain, ~ is the thermal coefficient of linear expansion and
g is a geometry factorpf order one. Calculations suggest that the edge remains at its initial tempera­
ture, T; , so that ~T = T (tb) - Ti, when the shading is large, sIL ~2, and the heating is fast, atb Is2::;1,
where L is the glass thickness, s is the shaded edge width and «is the glass thermal diffusivity,

KEYWORDS: Window breaking, Glass temperatures, Compartment fire venting, Glass thermal
stresses, Backdraft.

1. INTRODUCTION

Professor Emmons identified the problem of window breaking in compartment fires as an
important unaddressed structural problem in his exemplar article on needed fire science at the First
Symposium [1]. The mechanism he suggests for window breakage in fires is thermally induced ten­
sile stress. AIl window glass has its surrounding edge covered by an opaque frame or gasket. Since
glass is a relatively poor conductor, the edge remains unheated while the fire raises the temperature of
the central portion by infrared radiation and hot gas convection. The thermal expansion of the
uncovered window glass places the covered edge in tension until it cracks. Once the fracture begins,
it bifurcates and very quickly propagates across the window; the glass falls out, creating a new vent in
the compartment. Wired glass works, not by preventing fracture, but simply by holding the broken
pieces in the frame and thereby avoiding a new vent. Double pane windows take longer to break than
single pane because each pane sequentially undergoes the breaking process. Tempered glass also
takes longer to break since the thermally created tension must first overcome the compression
manufactured into tempered glass.
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In a review of fire physics at the Second Symposium [2J, we suggested a simple strain criterion
for the glass temperature increase, tiT, required to break windows in fires,

(1)

where 13 is the thermal coefficient of linear expansion, ab is the tensile strength at breakage and E is
the Young's Modulus of the glass. Window (soda-lime) glass properties [3-6] are listed in Table 1
along with the corresponding strain, alE, and tiT given by Eq.(l). The large range is due to the
uncertainty in the ab applicable to a particular window.

TABLE 1. Reported glass properties and calculated breaking strains and temperature increases in the
limit s IH ~O. The lower portion of the range is appropriate for typical window installations.

Ref. No. I3x1Q6 (K-I) abxlO-7 (N1m2) Exlo-IO (N 1m 2) strain(%) st (K)

3 9.5 4.7 7.0 0.07 70

4 9.2 2.0-5.0 7.2 0.03-0.07 30-75

5 8.5 5.5-13.8 7.24 0.08-0.19 90-220

6 9.0 3.5-7.0 7 0.05-0.10 55-110

A

s
x

l(b)

Section A-A

f {l.- ---'
H

S z

---------------~-----CL·- --

""\\\ Y

~~ r
~

Section A-A

A

I (a) l(c)

Fig. 1. Windowgeometry. x is the depth,y is normalto the shaded regionand z is along the shading. s is
the width of the shading,H is the half-length andL is the glass thickness.

Figure 1 shows window glass schematics. Here s is the shaded width under the frame, H is the
half-height of the unshaded window and L is the glass thickness. In the case of large shading, s IL"?2,
and fast heating, atb Is2:::';1, this tiT corresponds to the temperature difference between the initial tem­
perature at the unheated outer edge and the transient temperature of the uniformly heated central sec­
tion of the glass. Full-scale experimental confirmation of this method for predicting the time to win­
dow breakage, ts, in compartment fires has been reported [3J. This method has also been applied to
the reconstruction of fires where the breaking of windows has resulted in backdrafts [7]. Copius
amounts of excess pyrolyzates had accumulated in the compartments. When the windows broke,
fresh cold-air gravity currents mixed with the fuel-rich hot layer gases and migrated to the fires where
the mixed layers were ignited. Turbulent flames then rapidly progressed through the accumulated
pyrolyzates producing flashover. The conventional wisdom that windows break when the hot layer

792



gas temperature reaches 530 to 650K (5OQ-700°F) [8] is a reasonable first approximation. This tem­
perature could be specified in FIRST [9] to estimate the times at which windows become vents.

The purpose of this paper is two-fold: 1.) to quantify the connection between the compartment
fire and the glass temperature and 2.) to provide detailed unsteady, multidimensional temperature and
stress fields within the glass to extend our understanding beyond the simple strain criterion. The time
to initial window breakage is our primary interest. We have not addressed the separate, but poten­
tially important, question of the additional time required for all of the glass pieces to fall from the
window frame [10].

In the next sections, several thermal analyses of the heating of glass by compartment fires,
including the exponential decay of in-depth absorption of incident radiation and non-linear surface
radiation, are presented. The stress fields produced by these temperature fields are then calculated.
The article ends with suggestions for practical implementation.

2. HEATED GLASS TEMPERATURE HISTORY, T(x,t)

Consider the window shown in Fig. la and lb. The goal is to calculate the temperature in the
large central section of the glass as a function of depth into the glass, x, and time, t. Significant gra­
dients, aTlax, exist since the heat source is on the inside of the window and the sink is on the out­
side. All symbols are defined in the nomenclature. The unshaded glass is uniformly heated, so a/ay
and a(dz are zero. The governing equation is

»r a2T e-x!l
ped[ = kaxz + I (t )-1-' (2)

,
where I (t) is the incident radiative flux directly from the fire which is at sufficiently short
wavelengths that its distributed internal absorption needs to be included [11] and I is the decay length
in the glass (see e.g, Fig, 2 of Ref. 12). With the assumption that the glass is grey to other radiation,
the initial and boundary conditions are

at t = 0, T = T, ,

where side 1 is toward the ambient and side 2 is toward the hot layer in the compartment.

With the definitions

j:_x,,,._at,'V=.I'e_T-Tj'T_~/ER."_ ql ,"_ q2.
'0 - L' • - V' '-L' - ----r;-' c - vb 1-" '1'1 - kTclL' '1'2 - kTclL'

the dimensionless governing equation is

ae = a2e +J'(t) e-t,/y
d-t ~ y ,

with dimensionless initial and boundary conditions
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(7)
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Explicit expressions for the dimensionless heat fluxes, 1\Ji(1:) and $Z(1:) , are given in the Appendix.
This equation is solved using a Laplace transform on time,

The solution to the transformed problem is

-f!y r r0' =A I}*T + 8 Icosh( P ~) + Clcosh( P (1-~»,

where

_ 1 . _Ad'e-IIY - 'Y z$i.
AI---l-' 81- ,

P-----r 'Y z";p sinh..JP"
'Y

(11)

(12)

(13)

where }*, $t and $2' are the transformed fluxes. Regrouping Eq. (13) to explicitly identify the
coefficients of those fluxes gives the transformed surface temperatures as

0' (0) = / I' (O,p )$1' +/Z' (O,p )$z' +t13' (O,p))*

and

O'O)=/I'(1,p)$I' +/z'(1,p)$z' +t//(l,P)}*'

(14)

(15)

where / i ,/2 and /3 are kernels which are functions of 'Y, x and p [13]. An advantage of this tech­
nique [14] is that the inversion need be performed only at the boundaries, to obtain 0(0,1:) and 0(1,1:).
Using the convolution theorem and other simplifications, the equations to be solved are

~ ~ ~

0(0,1:) =f$1(11)/1(0,1:-11)d 11 + f$Z(l1)/ z(O,1:-11)dll + .Lfj (11)/3(O,1:-11)d 11
o 0 'Y 0

and

(16)

(17)

(19)

(18)

~ ~ ~

0(1,1:) = f$1(11)/ l(I,1:-11)d11 + fM11)/z(1,1:-11)d11 + l fj (11)13(1 ,1:-11)d 11 ,
o 0 'Y 0

where / I, / z, and /3 are kernels which are functions of 'Y, x and 1:[13]. These Volterra equations of
the second kind are non-linear because the radiative parts of $z and $1 are non-linear functions of
0(0,1:) and 00,1:). To avoid integrands which are unbounded as "liZ at 1:=0, the transformation
U=..J1:-11 is made. The final equations become

-r; -r; -r;
0(0,1:) = 2 f uP I(O,U )$j(1:-u Z)du + 2 f uFz(O,u )$z(1:-uz)du + 1. f uF 3(O,U)j('C-uz)du

o 0 'Y 0

and
-r; -r; -r;

0(1,1:) = 2 f uP 1(I,u )$j('C-uz)du + 2 f uF z(1,u)$z(1:-uz)du + 1. f uF 3(I,u)j ('C-uz)du,
o 0 'Y 0

where the F, (~,u ) are evaluated from the I, (~,1:) given in [13]. The numerical procedure chosen was
a trapezoidal rule with constant time steps and thus varlable az since the $i are functions of 0 which
are known only at each time step. The Newton-Raphson method was used to find roots of the non­
linear equations.

Figure 2 shows the temperature history of the hot gas layer (calculated from FIRST[lO] for a
recent full scale fire) along with the surface temperatures given by Eqs. (18 and 19) from initiation to
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breakage. The I = Dcase represents a window far from the fire; I = lOkW1m z represents a window
adjacent to the fire. The lOOs difference in tb, defined by [T (D,tb) + T(L ,tb )]/2 = ablE~, allows the
conditions in the compartment to change dramatically, as indicated by the hot layer temperature,
T Zoo(t). The temperature of the exposed side is sufficiently greater than that of the unexposed side to
justify the detailed analysis of T (x .r), Here hz, hI and I were taken as constants; the future compart­
ment fire programs will hopefully provide these as functions of time. This section has quantified the
coupling of the glass temperature to the compartment fire. The next section explores T (x ,y ,t) to per­
mit calculation of tensile stresses and quantification of geometric effects on tb.

750,......------------------.---,
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3. GLASS TEMPERATURE PROFILES, T(x,y,t)

Consider now the glass pane section shown in Figure lc. The range of interest is --oc<y +=, so
that the temperature field under the frame can be explored and the s IL ratio at which the edge tem­
perature increases can be determined. This range is reasonable since the frame and gasket have some
non-zero conductivity. The origin of y is on the inside edge of the frame. Here the goal is to calcu­
late the temperature distribution along the pane from the shaded edge to the unshadcd central section.
The governing equation for this system is

(20)

where H; is the Heaviside function and all other variables are as defined earlier. The initial condition
and boundary conditions are
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t=D, T =Ti; Y ~±oo %=0,

x=D, -k*=q2(t)Hv(Y); x=L -k*=Ql(t)HV(Y)'

(21,22)

(23,24)

The heat fluxes, Q2(t), Ql(t) and let) are assumed here to be specified apriori . Using the definitions
given in Eq. (6), the governing equation is

and the initial and boundary conditions are

't =0, 0 =0; S-7 ±oo,l =0,

~ =0, -* =<l>2('t)Hy(S); ~ =1, -* =(\l!('t)Hy(S)·

(25)

(26,27)

(28,29)

In order to Fourier transform on S, 0 and aOtas both have to ~proach zero as Sapproaches ±oo. So
the energy generation term and the fluxes are multiplied byes where 0 is a small parameter. After
obtaining the solution, the limit 0-70 is taken. The Laplace transform is defined as in Eq. (11) and
the Fourier transform is

(30)

(31)

The solution to the Fourier and Laplace transformed temperature as a function of ~, p and 0) is given
by

e' (~,O),p ) = r,t~ [<1>,' f " (p ,~) + <P2' f 2' (p ,~) + if-f 3' (p ,~)] ,

where it' ,f2' andf 3' are the same kernels as in Eq. (IS) and <p,' , <P2' and t are the transformed
fluxes. Applying the convolution theorem to invert the Fourier and Laplace transforms and taking the
limit as 0-70, gives the solution for the temperature field,

where the kernels f ,(~,.t), f 2(~,'t)and f 3(~,'t) are the same as previously given. Here we again make
a change of variable as u =;!'t-T\ and evaluate the temperature field. The numerical integration pro­
cedure chosen was the trapezoidal rule with constant Au steps. Since the fluxes are known apriori ,
the calculation of the temperature field is simplified as iteration is no longer necessary.

Figure 3 shows dimensionless isotherms for the cases listed in the figure captions at times when
the dimensionless surface temperature becomes 1. The Q1= 0 condition in Fig. 3a is clearly artificial,
since the calculation gives O(1,'t) = 0.4 so that significant heat loss would occur to the ambient. How­
ever it represents a useful limit where the only heat sink is at S-7-<>O, so the thermal penetration under
the window frame is maximized. Fig. 3b shows another example of that limit at a later time with
gentler heating. Fig. 3c shows the effect of significant cooling at ~=1. Figures 3 b and c represent
conditions similar to Fig. 2. The slow fire in Fig. 3d produces a larger thermal penetration 'han 3b or
3c because of its longer duration.
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Keski-Rahkonen did an excellent analysis [15] of the limiting case where: 1.) there arc no tem­
perature gradients across the glass thickness so a constant radiative input ean be treated as a
volumetric heat source; 2.) convective and linearized radiative heat loss is constant and identical on
both sides of the glass so it can also be treated as a volumetric heat sink and 3.) all gas temperatures,
the initial temperature and the temperature of the outer edge are constant and identical. His analytic
result confirms Eq. (1) for most geometries of interest Because of these restrictive heat flux assump­
tions, listed above, his analysis cannot be readily applied to compartment fires. However, it could
describe small-scale experiments with a constant radiative flux [16].
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Fig. 3. Two-dimensionaltemperature contours, a= (T - Ti)l«JbIE~) for times at
which a(O,H.IL,'t) = 1. a: Fast fire next to the window, 't = 0.66, q 1 = 0,
f =5 kW 1m2 and q2 = 1 kW 1m2 exp(tI30s). b: Medium fire next to the window,
't= 1.40,ql =0, f = 100 Wlm 2exp(t/30s) and q2=200Wlm2exp(t/30s).

c: Same as b, except q *0, 't =1.42, q 1 =0 for t < 30s and
lOOW1m2 exp«t-30s)/30s) for t ~ 30s, f = 100 W 1m2 exp(tI30s) and
q z == 200 W 1m2 exp (tI30s). d: Slow fire away from the window, 't =3.17, q 1 =0
for t <30s and IOWlm 2exp«(t-30s)/60s) for t ~30s, f 0 and
q2 = 100 W Im 2(t/60s).
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4. STRESS FIELD

It is assumed that the temperature field is unaffected by the stress field and that the stresses
instantaneously accommodate to changes in the temperature field. Since there are no z temperature
gradients, changes in stresses with z are neglected. Let azz and ayy be normal stresses in the z and y
directions and azy and ayz be the shear stresses on the z and y planes. All stresses are normalized on
the tensile strength 0b ,'1' = O/Ob. To avoid a three dimensional stress analysis, we integrate over the
glass thickness, x [17]. Although significant temperature gradients have been shown, in the previous
two sections, to exist across the window pane, the curvature these gradients produce does not affect
the breaking stress since the window glass is assumed to be held in a flexible gasket. The dimension­
less mean stresses are

I I I I

Nzz =J\jIzzd~; Nyy =f'l'yyd~; Nyz =Nzy =J\jIyzd~ =J\jIzyd~.
o 0 0 0

The local force balances in the z and y directions respectively are

(33)

(34)

The boundary conditions are that there are no external forces acting on the plate and that the stress
reaches a constant value near the center of the window,

uti. dNJNzzdr"=0 and _z_z =0, asr,,-7oo .

-sn. dr"
(35)

The stress field is related to the temperature field by the compatibility relations [18J. These
relations are obtained from the definitions of displacements and are basically relations for strain. The
strains are then represented as stresses using the strgss-straln relationships. After noting that a/az =0
and defining the mean dimensionless temperature, (T - T, )ITc , as

I

NT = J6d~,
o

the compatibility equation simplifies to

:~2 [N zz +NT] =0.

(36)

(37)

Integrating Eq. (37) twice and applying the boundary conditions, Eqs. (35), gives the stress
throughout the range -s IL <r,,<H IL, which by symmetry represents the entire window as,

L HIL
Nzz(r","C) = 11+S JNT(r","C)dr" -NT(r","C).

-siL
(38)

Setting N« (-s IL ,"Cb) = 1 in Eq. (38) shows that the mean temperature, NT, not the surface tempera­
ture, 6(0,"C) , determines the time to breakage. Note however that it is still necessary to find 6(~,"C),

since the glass heat losses depend strongly on 6(O,"C) and 60 ,"C). The mean temperature may suffice
for the stress history but it does not suffice to determine the temperature history. Figure 4 presents
the mean stress from Eq.(38) as a function of r" for the temperature fields given in Figure 3. For this
case s IL = 3.0 and s IH = 0.02. The large tensile(+) stress at the edge of the shaded region drops to a
small compressive(-) stress in the unshaded region.
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Fig. 4. Profiles of stress,
Nzz , in the shaded, S< 0
and central, S> 0 regions
for the temperature fields
shown in Fig. 3. When
any Nzz reaches 1, the
glass breaks.
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5. APPLICATION

Evaluating the dimensionless temperature field given by Eq. (32) for a large range of parameters
[13] suggests that the variation of the mean temperature, NT, with distance normal to the window's
shaded edge, ~, can be well approximated, when the window is about to break, by a hyperbolic
tangent (see Fig. 5). Therefore, we can reduce the application of Eq. (38) to simply the problem of
predicting the window central temperature, if we assume a hyperbolic tangent profile and substitute

NT(~,'tb) = f [1+ tanh~] in
L NIL

1 = H+ r NT(~,'tb)d~-NT(-sIL,'tb)'
s -}/L

(39)

This yields a geometric factor g which depends only on sIL and s IH given as

g =2/[tanh(sIL) + In(cosh(HIL)/cosh(sIL»LI(s +H)] (40)

1.2r---------------~----,

tanh _

Fig. 3(8) _

Fig.3(b) ...

Fig. 5. Comparison of the
NT profile at breakage,
Nzz = 1, with a hyper­
bolic tangent profile.

~

Figure 6 shows that g remains near 1 for all reasonable s ILand s IH. In the limiting case of a step
temperature profile; NT =0 for ~ < 0 and NT =g for ~ > 0, Nzz =g l(l+s IH) for ~ < 0 and
-g 1(l+HIs) for ~ > 0, so that g =1 + s IH. The compression in the unshaded region is 1 - g. The
variation in g for the step and the hyperbolic tangent profile for s IL ;::: 2 are quite close, indicating
that the edge temperature remains close to the initial temperature (see Fig. 3). This suggests the
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criteria that the mean temperature at -s can be taken as T;, if s IL ;::: 2 and (JJb Is 2 ::; I, so that only
the central temperature history, T(x .r ), obtained in Sec. 2, is needed to find the glass breaking time.
The correct approximate expression for the glass breaking time, fb, is then

(41)

L
where T(tb) = fT(x,H,fb)dxIL. This simply says the thickness-averaged temperature rise at the

center of the wfndow over that at the edge produces a thermal stress which exceeds the glass tensile
strength. Typical values of the parameters in Eq.(41) suggest that the glass will break in a fire if
sIL :?: 2. If these criteria are not met, the full temperature field, T (x ,y ,f) as in Sec. 3, is needed. The
breaking time is then found from Eqs. (38, 36 and 32).

1.4 1.4

1.2 - - 1.2

~. -
1.0 - 1.0

l.l Fig. 6. Increase in tern-
~ step perature rise at breaking

~
O.B - - 0.8 due to compression in the

tanh heated glass. For a step]
l- .3 temperature profile, g=

j 0.6 I- 0.6L - l+sIH, for a hyperbolic
1- .2 tangent temperature pro-... L

0.4 '- ..!. ... 1 file, g is given by Eq.
L - 0.4 (40).
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0.0 I I I I I
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I I I I 0.0
0.02 0.D3 om O.Q7 0.1
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Good compartment fire temperature histories are needed, as well as good estimates for convec­
tive and radiative heat transfer parameters to obtain the glass temperature, T (x ,f). In addition, Eq.
(41) requires a value for window glass tensile breaking stress, (Jb. We have conducted a series of
experiments measuring (Jb [13], which suggests a Weibull distribution for (Jb. This distribution
implies that larger windows may break more easily since the probability of finding a low stress frac­
ture initiation site increases with window area. Our data also suggest that for any size window the
value of (Jb = 4xl07 Pa (5800 psi) should be a good approximation to the lower limit of the breaking
stress distribution. Perhaps the most fruitful approach to developing a glass which does not break in
fires is to modify the glass formulation and manufacture to minimize the glass thermal expansion
coefficient, i.e. design the glass so that P-tO. Future work will include additional experimental com­
parisons and development of guidelines for selecting optimal convective, radiative and glass property
input parameters.
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Nomenclature

subscripts

1 compartment side of glass pane
2 ambient side of glass pane

A--G
c
E
f,F
g
H
Hv(y)
h
I
j (t)
k
L
I
q
s
T
Tc

constants
specific heat
Young's modulus
kernels
geometry factor
half-length of the window
Heaviside function 0, for y ~O and l , for y >0
heat transfer coefficient
radiant heat flux directly from the flame
I (t)UkTc

thermal conductivity
glass thickness
decay length
dimensional heat flux
shaded length
temperature
crb/EI1

b breakage
c characteristic
i initial

ambient

Greek Characters

a thermal diffusivity
11 thermal expansion coefficient
y dimensionless decay length
8 arbitrary small parameter
e emissivity
~ dimensionless coordinate, y /L
11 dummy variable
e dimensionless temperature, (T -t, vr,
J..l dimensionless coordinate, z IL
o stress
.. dimensionless time, at /L 2

~ dimensionless coordinate, xlL
<\> dimensionless heat flux, ql.tkt;
'If dimensionless stress, cr/crb
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8. APPENDIX

The heat fluxes in Eqs. (9) and (10) are

<pz(t) = A + B 0(0,1:) + C OZ(O,1:) + D 03(0,1:) + E 04(0,1:)

and

where

A
hzL(Tz~(t)-Ti) E~crLTz~4(t) EcrLTi4

• B __ hzL + 4EcrTi 3L
= ----u;-- +--~ - --,;:r;-' - /( --r-

(1)

(2)

(3,4)

(5-7)

(8,9)
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