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ABSTRACT

Using full non-stationary two dimensional equati9ns for the gas
combustion, the problem of flame propagation in a planar channel with cold
side walls is considered. The processes of flame quenching are studied
comprehensively. The values of critical Peclet numbers are found
numerically and analytically, depending on the value of one dimensionless
parameter, which characterizes the combustion heat and the composition of
the fresh mixture. It is shown that the critical parameters, obtained in
the numerical calculations are in satisfactory agreement with the
experimental data. The mechanism of the flame propagation and its
structure without quenching is considered.
KEYWORDS: flame propagation, flammability limits, flame extinction.

INTRODUCTION

Two-dimensional flame propagation in a closed planar channel was
investigated numerically in [1]. To simplify the problem the side walls
were considered as adiabatic. In reality heat losses to the side walls
take place. The heat losses into cold walls give rise to a number of new
effects, the main of which is flammability limitation: under definite
critical conditions the flame loses ability to propagate through the fresh
mixture. Because of the importance of critical phenomena for the
understanding of fundamental flame properties, as well as for their
application, much work has been done on flammability limits and there are
extensive experimental results [2].

The main principles of the limit theory were developed in [3].
Considering the burning in the narrow tubes, Ya. B. Zeldovich showed that
due to feedback between the normal flame velocity and the value of heat
losses from the reaction zone, there is the critical normal velocity which
is Ie times smaller than the normal velocity of the adiabatic flame.
Quenching is the result of the conductive heat losses to the walls in the
narrow tubes and of radiation heat losses in the wide ones. In [3] the
temperature fall at the flammability limit was also calculated. Later
similar results were obtained in [4}.
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In this study the flame propagation in a planar closed channel with
cold side walls is studied by numerical integration of non-steady
two-dimensional equations for the viscous compressible gas. The quenching
process is investigated in detail. Critical Peclet numbers are found
numerically and analytically. The features of flame propagation in the
absence of quenching are considered.

FORMULATION

Let us consider an immovable combustible mixture in a planar channel
with rectangular cross-section ° ~ X ~ Ho, -L/2 ~ Y ~ L/2 (Ho, L-the
length and the width of the channel, the coordinate system is shown in
Fig.I) and solid impenetrable boundaries. In the initial stages the
mixture is ignited by hot burning products, filling a small domain near by
the center of the left end channel wall. A one-stage exothermic chemical
reaction of the first order of limited component and the Arrhenius law for
reaction rate is assumed. Thermal properties of the burnt and unburnt
gases are considered to be the same. The end channel walls are adiabatic
and the side ones have the initial temperature To of the cold mixture.

Motion of the reacting mixture is described by the system of
two-dimensional unsteady ,equations. Dimensionless variables are
considered as follows. The channel width L; velocity of the flame
propagation from the wall Ub (as defined by Zeldovich - Frank-Kamenetsky
formula [2]); time L/Ub, initial temperature and concentration of the
limited component in fresh mixture To and ao; initial gas pressure Po is
chosen together with the scales of length, velocity, time, temperature,
reagent concentration and pressure. The density scale is expressed from
the gas state equation: po = Po/R To, where R is the gas constant.

In dimensionless variables the system of governing equations is
written as:
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Dm=Re'Pr'EZ'(8a - 1)ZI2·ea
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Here t is the time; P, P, e, a - the pressure, the density, the gas

temperature and the reagent concentration; U(u,v) -the gas velocity. The
dimensionless complexes take the form: Mz=uzb/yRTo - is the square of the
Mach number (y=cp I Cv ) , Re=LUb Po I 11, Pr=c l1/A, Le=Po Cp D/ A - the Reynolds,
Prandtl and Lewis numbers (11,A,D the coefficients of the dynamic
viscosity, the conductivity, the diffusion; the values of 11, A and pD are

considered to be constant); E=E/RoTo, q=Qao/cvTo (E and Q are the
activation energy and the heat of the chemical reaction, Ro - universal
gas constant); eo l+q/y - the dimensionless adiabatic temperature of
combustion, Dm the Damkohler number, which with the usual way of
consideration of dimensionless values is not independent an parameter, but
is given by the above formula.

The formulated problem was integrated numerically by finite-difference
method [5]. The main calculations were carried out on uniform grid with
the space step h=1/20 and the time step, corresponding to the Courant
number, which was defined by means of the sound velocity in the hot gas
and equal to 4-5. The following values of parameters were used in the
calculations: y=1.4, MZ=O.Ol, Re=20+300, Pr=Le=l, q=3+7, H=4, E=33.

RESULTS

For low Reynolds numbers (Peclet number Pe=UbLpoCp/A for gases is
approximately equal to the Reynolds number inasmuch as Pr=l) the flame is
not capable of propagating in the channel with the cold side walls because
of heat losses. Calculations showed that for given q the flame quenches
within a definite range of the Reynolds number values. Quenching is
quicker, the lower the Re number.

Flame quenching is shown in Fig.l. The hot region ignites the
surrounding mixture. As a result the flame front, that is the narrow
zone, where the heat release and the chemical reaction takes place, is
formed (Fig.l,a). Near the cold walls the chemical reaction does not take
place because of the low gas temperature. Unlike the burning in the
adiabatic channel [1] there is no similarity between the temperature and
the concentration fields, that may be explained by the difference in
boundary conditions for those values at the side walls.

Because of the heat losses to the walls the hot gases are continuously
cooled. Chemical reaction heat is not enough to maintain the high
temperature in the burning zone. That is why the zone of the intensive
chemical reaction gradually moves away from the channel walls, and
concentrates in the middle of the channel, where it eventually disappears,
- flame quenches (Fig.l,b,c).
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FIGURE 1. The flame quenching, Re=35, q=5. a) t=O.4, b) t=1.2, c) t=2.4.
Shaded region is the burning zone.

The flammability limit is usually characterized by the critical value
of the Peclet number Pe*. Numerical modelling carried out here enabled
Pe* to be defined as a function of dimensionless parameter q, which is
proportional to the heat of the reaction and the initial reagent
concentration (Fig.2, curves 1,2). In the range of parameters disposed
above curve 2, the flame propagates allover the channel. For the
parameters between the curves 1 and 2 only partial burning down takes
place. Finally for the system parameters below the curve 1 the mixture
cannot be ignited. Let us compare results of numerical two-dimensional
solution with the analytical ones, following from the one-dimensional
theory. With that end of view, it's necessary to define the critical
Peclet number on the basis of the approach developed in [3].
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FIGURE 2. Dependencies of the critical
parameter q=Q·ao/Cv·To. 1,2 numerical
calculation by the formulae (5),(6).

Peclet number Pe. with the
calculations; I' ,2' the

Using a one-dimensional approach let's consider a steady flame front
propagating in a half-infinite channel with the cold side walls from the
closed heat-impenetrable end. In the coordinate-system (0', X'),
connected with the flame front this end moves in the negative direction
with the velocity Ub. The end coordinate is Xo=-Ub·t, the reaction
products occupy the region X'o < X' < 0, the fresh mixture - 0 < X' < ~;

for X'=O is taken as the point where the reaction is finished; the
chemical reaction zone is considered to be infinitely narrow. The heat
balance per unit of the flame surface area may be written as:

dT

dX' I x " =0

+
L

ce

J
o

(T-To ) dX' (1)

and determines the fall in burning temperature in comparison with the
adiabatic one; Ta,Tb are the combustion temperatures under the adiabatic
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conditions and with concomitant heat losses; Pb is the density of the
combustion products (PbUb=PoUn - for the one-dimensional steady state
flame); a is the heat transfer coefficient, considered as constant; v
characterizes the symmetry of the problem: v=2 for the planar channel, v=4
for the round tube; L is the width of the channel or the diameter of the
tube.

The left hand term in the right side of (1) describes the heat losses
from the burning zone to the cooling reaction products, the right hand one

the heat losses from the preheated flame zone. Substituting in the
integral of the right part of (1), the Michelson's temperature
distribution in the preheated flame zone, we have:

L
J (T-To)dX'

o

(2)

To define the value ~(dT/dX')K'=o, let's find the solution of the
following problem:

dT

dX'

d

dX'

dT

dX'

V· a' (To-T)

L
(3)

X'=X' 0:
dT

dX'
0;

which describes the temperature distribution in the reaction products.

Substitution of (2) and obtained solution of problem (3) in (1) gives:

1 (l+v'Nu/Pe' ) 'v'Nu' (1-exp(kl-k2)'Xo) v'Nu
+

f5. Pe' 2. (1+v'Nu/Pe,2) + v'Nu'exp(kl-k2)Xo Pe'2

L'Ub' Pb -c, cx'L
where f5. (Tb-To)/(Ta-Tb), Pe' , Nu

x x

Pe'

(4)

L Pe,2 L'Pe'
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The most interesting cases are: X'o ~ 0 - the flame is close to the
end wall and X'o ~ - ~ the flame moves away from the igniting end over
long distance as a stationary one.

In the first X'o ~ 0, we may obtain:

Pe'l (5)

In the second case corresponding to X'o ~ - ~, from (4) it follows the
expression:

Pe'2 (6)

From (5) and (6) with an accuracy of Ro·Ta/E it follows from the
connection between difference in temperature of the burning zone and the
flame velocity is obtained in [3] Ta-Tb - U-2. Therefore it is possible

to use the result obtained in [3]: at the limit Ta-T* = Ro·T a2/E and
u*=Ualle (Ua the flame velocity in the adiabatic conditions).
Consequently for the limiting conditions the value 6 is known and is equal

to 6* = (Ta-T o)·E/Ro·T a 2 = q·E/Y06a. The substitution 6* in (5) and (6)
gives critical values of the Peclet numbers - Pe'l and Pe'2.

Thus for Pe'2Pe'2 the flame is capable of propagation without
quenching; for Pe'l < Pe' < Pe'2 it quenches, after passing some
distance, and for Pe' < Pe'l it quenches near the left wall.

In Fig.2 the calculation using formulas (5) and (6) gives v=2, 6=6,
Nu=3.75. The qualitative coincidence of the variations of Pe*(q) allows
the use of the obtained analytical formulae (5), (6) as rather good
estimations.

For the study of the processes in the case, when the flame is able to
propagate along allover the channel length, the series of calculations
was carried out for different Reynolds numbers in the range Re=50+300 by
q=5.

In Fig.3 are shown the time variations of the flame front coordinate
Xf (the point at the axis X, in which a=0.5), the average volume
concentration <a> and the average volume temperature <8> for different
Reynolds numbers. There are two distinctly marked parts of the curves
<a>(t) and Xf(t) - at the initial stage of the process where the curves
are more steep, than later.

It can be explained by the fact that at first the flame spreads from
the closed wall with the dimensionless velocity close to 1. Then as the
hot products of the reaction cool, the heated gas expanding behind the
flame front has less and less influence on the flame propagation speed and
it becomes close to the normal flame speed U=Pb·Ub/po=0.22 (the
inclinations of the curves at the sloping parts ~ 0.2). It's worth
mentioning that in all the investigated range of the Reynolds numbers 50
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FIGURE 3. The time characteristics of the flame propagation process.
- <a>(t); - Xf(t); - <e>(t). 1,1' ,1" - Re=50;

~,2" - Re=100; 3,3' ,3" - Re=200;-4,4' ,4" - Re=300.

SRe~ 300 the quasi-stationary thermal regimes exists, when the rate of the
heat losses to the walls is balanced by the rate of chemical reaction heat
release, this may be proved by the existence by Fig.3 close to horizontal
parts at the curves <e>(t).
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