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ABSTRACT
A detection algorithm is presented, based on the comparison of the short- and longterm
power spectral densities of monitored input signal sequences from 'fire sensors'. The
detector adapts slowly varying changes in the first and second order statistics of the
monitored signals, which may occur due to environmental influences. The algorithm is
as well suited for single- and multiple input detection. A recursive implementation
reduces the calculation effort. Experimental results are presented, concerning the
detection capability and the false alarm resistance of the detection algorithm in
realistic environmental conditions.
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INTRODUCTION

Currently installed standard fire detection systemsshow good detection capabilities, but
further effort is required to reduce false alarms. Approximately half of the occuring
false alarms are due to malfunction or unqualified handling of fire detection systems.
The other half is due to non-genuine fire phenomena or unknown events [1]. At least
the second half of false alarms may be reduced using improved signal detection
algorithms.
Standard fire detectors are 'one input-detectors', i.e. their decision is based on the
monitored signal input from one 'fire sensor'. In the simplest case the signal is directly
compared with an adequately adjusted threshold value.
One approach to achieve improved discrimination between a real fire in its incipient
stage and non-genuine fire phenomena are preprocessing methods with the aim, to
extract distinguishing features from the observed input data. Evaluation of multiple
sensor signals is very likely to achieve even better results.
A detection algorithm in this sense requires to process an input sequence or input
sequences {{xl(n)},{xz(n)},...} into a test statistic D[{xl(n)},{xz(n)}, ...], which is
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compared with a threshold value to decide, whether the fire hypothesisrHj) or the
nonfire hypothesisrffj) is assumed.
Fire sensor signals in the incipient stage of a fire do not only show significant signal
trends but also a remarkable fluctuation in comparison with the nonfire case. The
decision of standard fire detectors is usually based on the first order statistics by either a
direct comparison of the signal itself or some sort of expected value of the signal
(smoothing or short term integration) with a threshold.
Since the detector to be presented bases its decision on second order statistics, it uses
the change in the short term expected value and the fluctuation as well. Whether or not
the fluctuation component is an additional distinguishing feature can be proved only, if
adequate information on the statistical behaviour of stochastic fire-sensor signals under
fire and non-fire conditions is available.
The Communications Department of Duisburg University, in cooperation with the
SIEMENS A.G. in Munich, started in 1986 a research project supported by the Minister
of Research and Technology FRG. In this project a system was developed, capable of
simultaneously recording the incoming signals of different grouped sensors located in
various environments with the aim of designing new detection algorithms with improved
performance as well as test methods based on the recorded data [2], [3]. The data base
collected with this system contains 'false alarm relevant' signal sequences for years of
observation time. A performance test of the detector with this data is a realistic
measure.

THE DETECTION ALGORITHM

The second order statistic of a stationary random process is described either with the
autocorrelation function (ACF) Bxx (r) or its fourier transform Sxx (r»), the power
spectral density (PSD). In case of instationary processes both of these functions are
dependent on the actual time Rxx (t,r:) , Sxx(t,w).
First two stationary random processes are considered with bandlimited PSD in the
range - Gig < W < wg • The teststatistic D is defined as follows:

D = ~~ (ASxx(w))2dw with ASxx(w) = Sxx(w)-sfx(w) (1)
g

In this formula Sxx(w) represents the PSD of the monitored process and sfx(w) a
reference spectrum the definition of which is given later. With Rxx (k7) the values of

the ACF Rxx (r:) taken at time instances kT corresponding to the Nyquist conditionT=: the PSD's in (1) can be calculated in terms of the sample-ACF:
g

00

Sxx(w) = Rxx(O) + 2 L Rxx(k7) cos(kw7)
k=l

00

sfx(w) = Kxx(O) + 2 L K<xx(k7) cos(kw7)
k=l

With the following definition

(2)

(3)

ARxx(k7) = Rxx(k7) - Kxx(k7) k=O,oo,(l)
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(5)

the teststatistic is recalculated inserting (2) and (3) in (1) and using (4)
wg co

D = I [ARxx(O) + 2 L ARxx(k1) cos(wk1)]2 doi
-wg k=l

Expansion of the square in (5) and interchanging the order of integration and
summation yields

W g co wg

D = I [ARxx(0)]2 do: + 4 L ARxx(O) ARxx(k1) I cos(wk1) dai + ..
-Wg k=l -Wg

co co W g

+ 4 L L ARxx(k1) ARxx.<!1) I cos(wk1) cos(w!1) doi
k=ll=l -wg

This reduces with

(6)

Wg

I cos(wk1) dos = 0
-Wg

for k= 1, 00, (1) (7)

and the orthogonality condition

Wg

I cos(wk1) cos(w!1) dco
-Wg

{
o fUr k'e;t:!
Wg fur k=! (8)

(9)

to equation (9)
co

D = 2wg [ARxx(0)]2 + 4wg L
k=l

Division by 2wg of this formula and use of (4) yields the normalized teststatistic Dn

Dn = (Rxx(O) - Kxx(O)) 2 + ;~1 (Rxx(k1) - Kxx(k1)) 2 (10)

Unfortunately the summation index is up to infinity. The ACF can be written in terms of
the autocovariance function and the expected value

(11)

If the process X and the reference process XR are wide sense stationary and do not
contain periodic signal components, the autocovariance functions decrease with
increasing time shift kT. If in this case the expected values E{X} and ER{X)} are equal,
high order terms of ARxx(k1) = Rxx(k1) - R§x<k1) in (10) can be neglected and the

upper value of the summation index can be limited to a value of q.
Obviously the teststatistic Dn has the following properties:

(12)

the equality sign holding, if the reference ACF equals the actual ACF. Since Rxx (0) is
proportional to the total power of the spectrum SXX (w), Dn contains in addition terms

corresponding to changes of the actual ACF versus the reference ACF.
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Neither in the fire nor in the non-fire case fire sensor signals can be considered as
specific functions of a stationary random process. But in practice they can be viewed at
least in the non-fire case as realisations of piecewise stationary processes.
With

K(nTl = (X(n7),x«n-l)7), ...,x«n-q)7)) (13)

(14)

a sample vector of an arbitrary random process, the autocorrelation matrix (ACM) in
the strong sense is defined as

Rxx = E[K(n)K(n)T]

= E[(X(n7),x«n -1)7), ...,x«n-q)7)l «X(n7),x«n-l)7),...,x«n-q)7))]

Rxx(nT,n7) Rxx(nT,(n-l)7) Rxx(nT,(n-q)7)
Rxx«n-l)T,n7) Rxx«n-l)T,(n-l)7) Rxx«n-l)T,(n-q)7)

Rxx«n-q)T,n7) Rxx«n-q)T,(n-l)7)

with matrix elements:

Rxx«n-q)T,(n-q)7)

Rxx«n-i)T,(n-j)7) = E[X«n-i)7)X«n-j)7)] for all iJ=O,...,q (15)

If the second order statistics are assumed not to change in a time interval
(n-q)T:5 kT :5nT, the matrix elements simplify to

Rxx«n-i)T,(n-j)7) = Rxx«n-j)T,(n-i)7)

= Rxx(nT,k7) mit k = i-j = O, ...,q

(16)

with a corresponding ACM, valid for the time instance nT. Because it is impossible to
determine the ACF from only one observed time function, time averages as estimates
for the ACM-elements are used.

For simplicity of notification, the sample interval is normalized (T=1) in the following.

With observation vectors x(n-k) = (x(n-k),x(n-l-k), ...,x(n-Lp-k))T, consisting of Lp
subsequently sampled observation values, a sequence rxx(n,k) of estimates of the

ACF-values for every time instance n and for each required time shift k is calculated
according to the following rule:

rxx(n,k) = ~T(nh(n-k)) * hp(n) (17)

In this formula hp(n) denotes the pulse response of a window function with the
following properties:

00

hp(n)=O forall n<O and 2: hp(n) = 1
n=O

(18)

Adequately chosen window functions permit a simple recursive calculation of rxx(n,k).
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A rectangular window of length Lp with pulse response:

hF(n) = JiF for 0:5n:5LF-1

lo elsewhere

yields the following recursion rule for the calculation of rxx(n,k):

(19)

(21)

(20)

(22)

for n:5LF

for n>LF

!

rxx(n - 1,k )+iF [x(n)x(n-k)-x(n-LF)x(n-(LF-k»]

rxx(n,k) = L F

L ~-k L x(i)x((i-k»
'F i=k+I

Alternatively a normalized 'Barnwell-window' [4]with infinite impulse response

hen) = {O 2 for n<O 0<,u<1
(n+1)(1-,u),un for n~O

yields the recursion (22).

j
2.u rXX(: - l 'k ) -,u2rxx(n-2,k) +x(n)x(n-k) for n>LF

r-~.fn k) - 1 F
xx" - -- L x(i)x(i-k) for n:5LF

Lp--k i = k+ I

The effective window length Leff of the Barnwell-windowdepends on the parameteru.

Instead of (10) the following time dependent teststatistic is calculated:

2 q ( ) 2dn(n) = C {(rxx(n,O)-rh\n,O») + %~I rxx(n,k) - rh\n,k) } (23)

Whereby C is an arbitrary scaling constant.
For reasons of reduced calculational effort the summation is limited to the order of time
shift q. Both of the terms rRxx(n,k), rxx(n,k) are calculated according to the same
recursion (20) or (22) but different (effective) window length. A great window length
yields slow adaption to time varying second-order statistics and vice versa. Consequently
the reference terms rRxx(n,k) in (23) are calculated with a much greater window
length than the corresponding terms rxx(n,k) with required window length in the order
of the desired detection time. Finally, a threshold comparison yields the decision rule:

Ho
dn(n) 5 S (24)

HI

If the observed process is wide sense stationary, values of the teststatistic dn(n) are near
zero. Changes of first and second order statistics, which may occur due to slowlyvarying
environmental conditions are adapted, as long as they are small within the reference
window length, e.g. the values of the teststatistic remain near zero. Rapid changes within
the reference window length will be detected.
These introductory considerations dealt with one random signal sequence {x(n)},
corresponding to the input from a single fire sensor. The extension of the detection
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algorithm for the multiple input case is possible by weighted superimposition of signals
from different fire sensors according to some rules whereby it is of importance to
differentiate between low pass signals with expected increasing or decreasing trends in
the fire case. In technical systems the dynamic range of measured signals is always
limited. If the j-th signal is limited in the range:

°~ Xjrnin ~ x/n) ~ Xjmax (25)

it is reasonable to assume its expected value in the non-fire case to be either near the
upper or lower limit, tending in the fire case towards the corresponding opposite limit.
The superimposition requires each signal with expected negative trend in the fire case to
be inverted with respect to its dynamic range.

_ {Xj(n) if the expected trend in the fire case ispositive
Zj (n) - Xjmax - XjCn) if the expected trend in the fire case is negative (26)

For m different inputs {xjCn), j = l..m} the sequence {x(n)} to be tested is calculated
after mapping {xjCn), j = l..m} using (25) into {zj(n), j = l..m} as follows:

m
x(n) = 2: Wj Zj (n) (27)

j=l

Adjustment of weights Wj ;:::0 facilitates different monitored fire characteristics to be

more or less dominant in the teststatistic dn(n).
As an answer to the interesting question whether the fluctuation component of the
signals is a distinguishing feature between the fire and nonfire case a seperate
investigation was carried out based on the difference sequence:

x*(n) =x(n) -x(n-l) (28)

(2.29)

The expected value E{x*(n)} of this sequence is very close to zero even in the fire case.
A slightly modified teststatistic

* _ (rx"x"(n,0)'-r}x"(n,0)j2 ~ (rx"x"(n'k) - r}x"(n'k)j2
dn(n) - R + 2..:::. R

rrx"(n,O) k=l rrx"(n,O)

was used for this investigation. The denominator &·x"(n,O) in this formula represents
the variance of the reference process. Normalization serves for the adaption of the
teststatistic to slowly varying changes of the signal variance due to environmental
conditions.

EXPRIMENTAL RESULTS

The detection algorithms based on dn(n), d~(n) were tested with recorded data for
non-fire conditions in different environments as well as for fire conditions with EN 54
testfires [5]. Three primary fire characteristics from different grouped sensors
(temperature and two smoke measurements, backscattering light- and an ionisation
chamber), of simultanously recorded data with sample rate 1/see were at disposal.
The multiple input performance of the teststatistics is presented.
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FIGURE 1: Time series of three different fire sensor signals,
monitored for an open wood fire (TF 1) and corresponding response
of the teststatistics dn(n), d~(n). Vertical scale corresponds to values
of the teststatistic. Vertical scale of sensor signals not plotted. Vertical
bar marks the ignition time.

The results for all of the investigations presented in this chapter were carried out with
the following parameter set:
Weights Wi used for the superimposition of signals according to (27): WI = 1
(temperature); weight Wz =1 (optical scattering light smoke sensor); weight
w3= 1 (ionisation chamber smoke sensor)
Effective window lengths: L~f =5000 ( normalized reference Barnwell window) ,

Leff =500 (normalized main Barnwell window)
Fig. 1 shows three signals for testfire TF 1 and the response of the teststatistics
dn(n), d~(n) plotted in vertical direction on an arbitrary scale against time (n) as an
example for the response behaviour of the teststatistic. The vertical bar marks the time
of ignition. With a delay corresponding approximately to half of the main window
length, the values of the teststatistics increase rapidly. The adjustment of a threshold
value for each teststatistic dn(n), d~(n) according to (24) would indicate the
corresponding alarm times. But adequate threshold setting requires information of the
teststatistic behaviour in various fire- and non-fire environments which is given in the
following.
Both teststatistics were calculated for a total of 45 testfire runs to achieve a profound
test for the detection capability. Signals from six groups of sensors in different locations
at the ceiling of the fire laboratory (4 m height, 1 .. 5 m horizontal distance from the
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Test ­
fire

TF 1 Open wood fire: light smoke and 12
temperature development

13 116

TF 2 Wood smoldering fire: no increase of 9
temperature; light smoke development

82 9 300 253

TF 3 Cotton smoldering fire: no increase of 5
temperature; rapid smoke development

152 6 342 148

TF 4 Polyurethane fire: weak temperature and 6
dark smoke development;

69 13 378 171

TF 5 N-Heptane fire without Toluol additive: 5
slow dark smoke and rapid temperature
development

164 10 598 187

TF 6 Pure methylated spirit fire: no smoke but 8
rapid temperature development

20 3 88 36

of occurrencel-- --i

1.0 E7

absJrequenc

1.0 E6

1.0 E5

1.0 E4

1.0 E3

1.0 E2

1.0 E1

1.0

0.1

o 10 20 30 40

n

50 60 70 dn(n), d*n(n) __

FIGURE 2: Absolute frequency of occurrence of teststatistic values
dn(n), d~(n) in rough ambient non-fire conditions.

Total observation time: - 18 years.
All vertical values below 1 indicate: no occurences at all.
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center of the fire, the location of two groups chosen arbitrarily unfavourable), were
monitored for each of the testfire runs.

Table 1 shows the lowest and highest response maxima of the teststatistics dn(n), d~(n),
ordered for six different types of EN 54 testflres, the lowest (highest) maximum
indicating the worst (best) result of all (6x(No. of testfire runs» calculated teststatistics
in each line.

Fig. 2 shows the absolute frequency of the occurrence of dn(n), d~(n) values for the
non-fire case. Fixing of a threshold on the horizontal axis enables the count out of the
number of threshold crossings (alarm condition). Recorded sensor signals in six
different locations of each a steel factory (production line, cable duct, oil pressure
supply room etc.), the supply rooms of a hospital (canteen kitchen, laundry, desinfection
room, power- and air conditioning supply etc.) and an underground car park were used
for this investigation. All of these installation locations are to be considered as
extremely false alarm sensitive due to abnormal dust-, steam-, smoke- and temperature­
development. The total observation time is approximately 18 years.

T~~t~g:P~~f9rm~ri~~~t~ant~~ij~~#~8~#pi#~lmiil~*hr~~h~taa~i~~(~¥$I
................... ·..·· ..i>· ..<>Tht~$h6td:l'~Iiitiy~tijiii~:tfi~i4fi·lly~fA .. ~;i#20iliiri><>...... .

1

Ionisation smoke
detector

Threshold: 2000
missed detec-

No. No.
of of
Fires Sen- I-"'-==""T''-'-'=='''----II-'''-'=->='T''''-'''=''-f-'''"==~'-''''''"''"'''-I

sors

Testfire

Table 2 shows the performance of 3 one-input threshold detetectors calculated on the
same data base. We are aware of comparing one-input with multiple-input detectors to
be unfair. But the results in this table show as an example for a simple detector that
there are missing alarms and false alarms in each column, which indicates that there is
no threshold setting at all for this detector type to achieve 100% detection rate without
false alarms.
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DISCUSSION

If the highest teststatistic values in the non-fire case are smaller than the lowest
maximum values (worst case) in the fire case, an adjustment of thresholds is possible to
detect all of the test fires without any false alarm. This is true for any setting of the
treshold value in the range from 32 < S < 69 for dn(n), if only the testfires TFI .. TF5
are concerned. The relatively poor response of both teststatistics dn(n), d~(n) against
testfire TF 6 is due to the fact, that there is no smoke development, which is very
unlikely to occur in genuine fires. But with an adequate setting of weights Wi the
detector can be adjusted to meet specific risks and thereby it would even detect a fire
like TF 6.
The presentation in Fig. 2 does not reflect the time instances at which the counted
values occured. Further investigations showed all values between 15 and the maximum
value 32 of dn(n) to belong to only one continuously within 3 minutes recorded
situation, where smoke and temperature developement in the canteen kitchen was very
similar to a real fire situation. Since for all other situations the teststatistic produced no
value greater than 12, a threshold value setting in the range 12 < S < 20 would be
reasonable as well. In this case all testfires inclusive TF6 would have been detected and
1 additional alarm in the situation mentioned above, where unfortunately it is not
known what really happend and consequently there is no hint, whether it has to be
qualified as a false alarm or not.

The comparison of maximum values in the fire case with mainly occuring values in the
non-fire case for the teststatistic d~(n) indicates the fluctuation component of the signals

to be a weak distinguishing feature, because all of the highest maximum teststatistc
values for testfires TFl..TF5 are considerably higher than those in non-fire situations
but overlapping of some values under either hypothesis Ho, Hi would have led to false
alarms or missing of alarms for any setting of a threshold value, if a decision is solely
based on d~(n). For this reason the use of d~(n) is not recommend.

Reversely the results achieved with d~(n) justify the original design rule (1) for the

teststatistic dn(n), which utilizes not only the low pass component of the input signal(s)
but in addition high frequency fluctuation components.

CONCLUSION
The detection algorithm based on the teststatistic dn(n) shows good detection
capabilities for all types of testfires TF 1 .. TF 5 and excellent false alarm rejection,
taking into consideration the worst case environmental conditions for investigations in
both cases.
Its main advantages are applicability for one-input or multiple-input detection and its
adaptive features in the sense, that slowly varying changes of first and second order
statistics do not change the detection capability, as long as they are small within the
reference window length. An additional attractive feature for multiple input
applications is the possibility to adjust the weights Wj (27) in such a way that with respect
to the risk to be met different fire characteristics may dominate.
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