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ABSTRACT 

Flame heights and air flows in a two dimensional rack storage were investigated. The 
width of the vertical flue is found to be the predominant geometrical parameter controlling the 
flue flow. The mass flow rate increases nearly linearly with the width. Variation of the 
horizontal flue heights was found to have negligible effects on the vertical flue flow. For a 
certain vertical flue width, the mass flow rate is found to be nearly constant independent of the 
heat output. 

Experimental results indicate a linear relationship between the flame height and the ratio of 
heat output to the vertical flue width. A ratio of entrained air to the stoichiometric air 
requirements at the flame tip is found to be 7.5. Experiments were carried out using inert 
boxes and a diffusion propane line burner located at the bottom of the rack. The rack was 0.59 
m long and between 1.14 m and 1.34 m in height (4 boxes). The size of the rack is about 113 
of what can be expected in a real rack storage. 
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NOMENCLATURE 

Cp specific heat (kJ/kg K) 
g gravitational acceleration (m/s2) 
H height of horizontal flue (m) 
AH, heat of combustion (Wg) 
h height of rack storage (m) 
KL entrance loss coefficient 
L two dimensional length (m) 
Lf mean height of the flame tip (m) 
Lffie, mean height of the flame tip 

for a free-burning line burner (m) 
m air mass flow rate (kgls) 

fuel flow rate (kgls) &If total heat output from burner (kW) 
Q, convective heat output from burner 

(kW) 
Q'  heat output per metre of burner 

(kW1m) 

ambient temperature ("C) 
mean gas temperature within a flue 
("C) 
mean temperature rise above 
ambient ("C) 
mean "cold" velocity in a stack 
(mls) 
mean velocity within a flue (m/s) 
width of the vertical flue (m) 
height from floor (m) 
height of virtual origin (m) 
ambient density (kglm3) 

density within a flue (kg/m3) 

ratio of entrained air to 
stoichiometric air requirements 

INTRODUCTION 

Fire growth rate and flame propagation are dependent on how the burning material is 
stored. In rack storage fires this become extremely important as the upward flame propagation 
is usually very rapid. The flues created between adjacent pallets of stored goods tends to work 
as chimneys and subsequently they enhance acceleration of flames up to the ceiling. Rack 
storage fire protection usually consists of in-rack sprinklers which are placed at different 
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elevations in the vertical flues or on the faces of the rack storage. The efficiency of such 
protection measures depends on the geometry of the stored goods, their height, the flue 
spacing and the flammability of the stored goods. The time over which the in-rack sprinkler 
operates is extremely important as it may be critical for control of the fire. To calculate the 
response time a knowledge of the flow conditions close to the sprinkler is necessary. The 
investigation presented here aims at outlining the mechanisms and the parameters controlling 
the flue flows in a two dimensional rack storage. 

Many practical problems in fire engineering require a knowledge of flame heights. 
Correlations to determine flame heights have been presented by a number of researchers 
[1,2,3,4]. The flame height correlations are applicable to freely-burning turbulent fires and not 
to rack storage fires. To better understand the rapid flame spread in rack storage fires it is of 
interest to outline the major parameters controlling the flame heights. Due to the complexity of 
rack storage fires it was found appropriate to begin the investigation by using a simple 
experimental set-up. The experiments presented here were carried out using inert boxes in 113 
real scale. To further reduce the complexity of the study the rack was built in two dimensions. 

The present study is the first phase in the development of a model to predict flow 
conditions within a two dimensional rack storage. Analysis of the data and description of the 
experimental set-up are given in this paper. Prior to the present study similar type of tests have 
been performed both by Ingason [S] and Karlsson et. al. [6]. These tests are to be regarded as 
pilot tests. 

EXPERIMENTS 

The following combinations of parameters were used; 
W=50 mm, 75 mm, 100 mm with H=50 mm 
W=50 rnm with H=75 mm 
W=50 rnm with H=100 mm 
where W is the width of the vertical flue and H the height of the horizontal flue. 
The following four heat release rates were used in each of the combinations above; 
Q=18.84 kW, 24.8 kW, 34.7 kW and 44.5 kW 

A schematic figure of the experimental arrangement is shown in Figure 1. The rack storage 
consisted of rectangular Navilite N boxes, 0.59 m long, 0.235 m high and 0.22 wide, held up 
by two narrow steel columns. The rack storage was two boxes wide and four boxes high. In 
the following each level of boxes will be called a "tier". Walls were put at each end of the 
boxes to create two dimensional conditions. Specially made wings were mounted at each wall 
in order to minimise the boundary effects of the air flowing in through the horizontal flues 
(see the plan view in Figure 1). These wings were made of plywood and extended 500 mm 
from the rack. 

The Navilite N plates used to build the boxes were 9.5 mm thick, which means that the 
boxes were almost empty, except for the strips of wood used to fasten the plates together. The 
thermal data for the Navilite N is as follows; heat conductivity 0.12 Wlm 'C, specific heat 800 
kJ/kg and density 700-780 kglm3. 

Prior to the tests, the line burner was calibrated for the heat outputs used in the test series. 
This was done by measuring simultaneously the weight loss in a gas tube filled with propane 
(AH,=46.45 kJ/g) and the heat release rate from the burner by oxygen depletion calorimetry. 
The heat release rate was measured with a "furniture" calorimeter as described in the Nordtest 
standard NT Fire 032 [7]. 

During the test series the different heat outputs were manually adjusted with aid of a 
rotameter. A relationship had been found between the values on the rotameter and the heat 
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FIGURE 1. A 2-dimensional rack storage with non-combustable material. Dimensions 
g~ven in mm. 
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FIGURE 2. The dimensions of the line burner are given in mm. The gas used was propane. 

release rate measured by the calorimeter. It has been shown in [5] that putting the line burner 
inside the rack does not affect the total heat release rate compared to free burning. As this test 
set-up is very similar to the one presented in [5] it was thought unnecessary to measure the 
heat release rate from each test. The instrumentation consisted of thermocouples and bi- 
directional probes located at the centreline in the vertical flue at different heights. In Figure 3 
the instrumentation layout is shown. To avoid influence of the bi-directional probes on each 
other they were mounted in a staggered form. To each bi-directional pressure flow probe 
(D=16 mm and L=32 mm) was attached a type K thermocouple with a diameter of 0.25 mm. 
The thermocouples were located about 10 mm from the edge of the bi-directional probe head. 
Within the rack a total of 8 measuring probes were used for velocity and temperature 
measurements whereas 4 probes were mounted above the rack. The probes used in the 
analysis presented here are shown in Figure 3. 

Data were collected in a data acquisition system. The temperature was recorded by a 3530 
ORION Data Logging Systems and stored on a Digital PDP 11/23 Plus main-frame computer. 
Every 10 seconds the temperatures were recorded during a period of 6 minutes (steady state 
tests). The pressure difference for the velocity measurements was recorded using a pressure 
scanner and the data were stored on a PC. The scanning time was 23 seconds. The 
relationship between pressure and velocity includes corrections for variation in the Reynolds 
number according to calibration curves reported in [8]. The results were averaged over the 
time interval during which the measured gas temperatures and velocities were reasonably 
steady. It was found that this time was about four minutes, i.e. the final four of the six 



0.25 mm K-type thermocouple and 
a bl-directional probe (D=l 6 mm) in 
the centre of the flue 

FIGURE 3. The figure shows the layout of the instruments used. All dimensions are in mm. 

minutes of the test. In the beginning of the test the walls were relatively cold causing large 
heat losses. After about 2 minutes the gas temperature was found to increase moderately until 
the end of the test. The temperature measurements were corrected for radiation effects. In [5] a 
formula for the correction of a 0.25 mm thermocouple is given. 

DATA ANALYSIS AND RESULTS 

The mean height of the flame tip was determined. The problem with the tests presented 
here is that the flames were mostly hidden by the boxes. Consequently, the determination of 
the flame height was rather subjective. In those cases where the mean flame tip, see Figure 4, 
was hidden above approximately half the box height, the flame height was determined by 
observe the fluctuations of the flame strips through the horizontal flue above the box. Using 
the highest top of the flame strips (existed periodically) as a reference a judgement was made 
of the distance below the top of the box were most of the flame strips were expected to exist. 
The distance was measured by a measuring stick placed in front of the rack. In the cases were 
the mean flame height was expected to be below half the box height, the flame strips were 
observed through the horizontal flue below the box. Using the lowest top of the flame strips 
(existed periodically) as a reference a judgement was made of the distance above the bottom of 
the box were most of the flame strips were expected to exist. If there was any doubt about the 
height of the flame strips an extra observation was made above the rack (see Figure 4). 

The measured flame heights are presented in Table 1. The fluctuations of the flame tip 
within the rack were much smaller than those of the freely burning line burner. The accuracy 
of the visual flame height determination here is deemed to be about +I- 50 mm. Also, for 
comparison, flame height data for a freely burning line burner is given. The height of the 
visual flame tip was averaged by eye. From Table 1 it is noticed that for the smallest flue 
width, W=50 mm, the ratio LfLf free between the flame height in a rack storage and the height 
for a freely.burning line burner is in the range 2.5 - 2.9. At the doubled width, W=100 mm, 
the corresponding figures are 1.9 - 2.3. It is found from the experimental data, that the mass 
flow rate (entrained air) at each tier is nearly doubled when the flue width is doubled. This can 
be indirectly seen in Figure 6 where the dimensionless stack height (z/h) versus the ratio of 



mass flow rate to the flue width (m/W) is plotted. This increase in entrained air may explain 
the reduction of the ratio Lfnfk,, when the flue width is increased. 

estimation by eye 
above the rack 

Lf=mean f l  ame ti p 

FIGURE 4. The flames are mostly hidden by the boxes and thus a subjective estimation of 
the mean height of the flame tip was made. 

TABLE 1 The table give the observed flame heights within the rack and for a freely burning 
line burner. The data were obtained by "visually" averaging the height of the flame tip. 

TEMPERATURES WITHIN THE VERTICAL FLUE 

In Figure 5 the temperature at the centreline of the vertical flue is plotted as a function of 
the dimensionless flame height z/Lf where z is the height of the temperature measurements 
above floor and Lf is the mean height of the flame tip. In the literature [9,10] the temperature 
distribution within the flame region of a free burning axisymmetric buoyant diffusion flame 



can be found. Based on MaCaffrey's data 191, Drysdale 1111 discusses the axial temperature 
distribution in two different flame regions. For freely burning methane fires the average 
centreline temperature is approximately constant (AT=800°C) in the persistent flaming (steady 
yellow) region (214215 < 0.08) but falls in the region of intermittent flaming (0.08 < z/Q2/5 < 
0.2) to about 320°C at the boundary of the buoyant plume (z/~2/5=0.2). Thus, one would 
expect the temperature at the average flame height as defined by Zukoski et al.[12,13] (visual 
averaged by eye or the distance where the intermittency has declined to 112) to lie in the region 
of 500-600". Heskestad 1211 plotted a centreline temperature in logarithmic coordinates in a 
form attributable to MaCaffrey 191, and Kung and Stavrianidis [22], throughout the length of 
the plume, including the flames. The mean flame height corresponded to values in the 0.15 to 
0.2 range for ( Z - Z ~ ) / Q ~ ~ / ~  and an associated temperature rise (AT) of about 500 "C was 
indicated. In the range (z-zo)/Q,2/5 < 0.1 the average centreline temperature is found to be 
nearly constant (AT=900°C). 

FIGURE 5. The temperature at the centreline of the vertical flue plotted as a function of the 
dimensionless flame height z/Lf for different flue widths, W. 

In Figure 5 we observe that similar tendencies are obtained here, i.e. there are two different 
temperature regions within the flame. Below about half the flame height the temperature is 
nearly constant and above it starts to decrease. The temperature T at the mean flame tip (as 
defined in Figure 4), i.e. z L f  = 1, is found by a curve fit (least square) for the measuring 
points zLgO.5 to be 450°C. By averaging the data in the region zLf<0.5, i.e. the 
approximate region with steady yellow flames, the temperature T is found to be 870°C, or 
AT=850°C. From Figure 5 it is observed that narrower flue widths tend to give higher 
temperatures than wider flues. 

MASS FLOW RATE WITHIN THE VERTICAL FLUE 

The mass flow rate in the vertical flue can be expressed as 

where T, is the ambient temperature, T is the gas temperature and u is the velocity within the 
flue. The experimental temperatures and velocities are based on single point measurements at 
the centreline of the vertical flue and thus one could expect that the maximum values are 



measured. It is very difficult to make any corrections for the temperature and velocity profiles 
as the measuring points are relatively close to the intersections between the tiers (distortion of 
the flow) which might very well have great influences on these profiles. In the study it was 
decided not to make any corrections due to this fact. Further analysis or refined measurements 
are required. In Figure 6, the dimensionless stack height ( z h )  versus the ratio of the calculated 
mass flow rate (equation (1)) to the flue width ( m N )  is plotted on a logarithmic scale, where 
h is the total height of the rack. The ratio (m/W) was chosen as it was observed from the 
experimental data that the mass flow rate tended to double when the flue width was doubled. 

FIGURE 6. Dimensionless stack height (zlh) versus the ratio of mass flow rate to the flue 
width (m/W). 

As can be seen in Figure 6, the data points tend to overlap although the heat outputs were 
varied between 18.8 kW to 44.5 kW. This indicates that the mass flow rate through each tier 
is not changing very much for different heat outputs. Furthermore, there is clearly a 
relationship between the amount of air passing through each tier and the flue width, W. To 
investigate the reason for this we can make a very simple model of natural convection through 
a rectangular stack. This is analogous to the work by Heskestad and Yu [14] and Delichatsios 
[15] for a cylindrical stack. We assume that the stack has width W, length L and height h (see 
Figure 7). To simplify the model we neglect all effects of wall friction. 

Ambtent air, Tm, 1s heated over 
a shallow helght t o  a uniform 
bulk temperature T. 

,W, 

FIGURE 7. A simple model to calculate the mass flow rate within a rectangular flue. 



It is assumed that all the gas entering the base of the stack is ambient air and that 
combustion occurs over a shallow height just inside the stack, raising the air temperature from 
the ambient value,T, , to the bulk value, T. In other words, the gas temperature is assumed to 
become uniform shortly after it enters the stack. A force balance can be made where the 
gravity force is set equal to the resistance force created at the entrance of the stack and the 
force due to change in momentum of the heated gas inside the rack, 

(p, -p)ghWL = 1 / 2p-ul WL(K, + 1) + p_u: WL(T 1 T_ - 1) (2) 

KL is the entrance loss coefficient for the stack (KL=0.5), u, is the "cold" velocity created by 
the draft in the stack, p is the density within the stack, p, is the ambient density, m is the 
mass flow rate (m = p,u,WL ) inside the stack and the second term on the right hand side of 
equation (2) is obtained from m ( u  - u,). The relationship between the "cold" velocity u, and 

the velocity u within the stack is u_ = u L  (continuity). Other parameters are defined in 
T 

Figure 7. With aid of equation (2), the "cold" velocity can be obtained, 

where the ideal gas law ( p  = T-p, / T )  has been used. If equation (3) is plotted for various 
values of T (100 "C < T < 800 "C) the velocity u, is found to vary by less that 20 %. This 
means that the cold velocity is nearly constant for the expected temperature range within the 
stack. Furthermore, it is noticed that the "cold" velocity is independent of the vertical flue 
width, W. As the "cold" velocity is nearly a constant for most temperatures, and thus most 
heat outputs, the mass flow rate ( m  = p,u_ WL ) divided by the width W can be expected to 
be nearly constant. This may explain the overlapping of the data at each tier in Figure 6. In 
that case we can expect the flow at each tier in the rack to be determined in a similar way as for 
a single stack. A relationship between temperature T and heat output Q can be obtained from 
the energy equation, 

where m =.p_u-WL . With aid of equations (3) and (4) we can plot the ratio of mass flow 
rate to the width (rn/W) versus the total heat output (Q) (see Figure 8) by varying the 
temperature (T) from 20 to 800 OC (corresponding to 0 - 60 kW). In the calculations we have 
assumed Q,=0.7 Q, a stack height h of 1.14 m (which is the height of the experimental set-up 
for H=50 rnm), an ambient temperature T,=2OoC and Cp=lOOO J/kg "C. As can be seen in 
Figure 8 these results verify the tendency of the mass flow rate to be nearly constant 
independent of the heat output (within the range 6 to 60 kW). If we plot the experimental data 
obtained at the highest tier, were all the air has been entrained, we achieve remarkably good 
agreement between this very simple model and the experiments. The calculation results and 
the experimental data are shown in Figure 8. 

The simple model applied here presumes that all the entrainment occurs at the lowest level 
(at the bottom of the stack) and not stepwise, as in the experiments. Yet, these results 
encourage the development of more sophisticated model which take into consideration the 
stepwise entrainment through the horizontal flues. Thus, mass flow rate, temperature and 
velocity at each tier can be calculated and presumably the flame height within the rack. 



W=50  mm calc 
X W=75 mm calc + W=100  m m  calc 

W=75 m m  exp 
W=lOO rnm exp 
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Total heat output Q [kW] 

FIGURE 8. Mass flow rate divided by flue width (fl) versus total heat output Q. 
Experimental data are plotted for comparisons at the highest tier. The plot show that the mass 
flow rate becomes nearly constant independent of the heat output ( 6 < Q < 60 kW). 

THE FLAME HEIGHT 

We can rewrite equation (4) as follows, 

where Q'=Q/L is the heat output per metre. We can expect the following relationship, Q'IW= 
f (AT), from equation (5) because u, is nearly conserved for most temperatures 
(100 < T < 800 "C). Furthermore, we notice from Figure 5 that the height of the flame tip tends to 
correspond to a certain temperature difference AT and subsequently we can expect Lf to be 
proportional to Q'IW, or more generally, L F ~  (Q'IW). To investigate this hypothesis we can plot 
Lf versus Q'/W using the experimental data. The results are shown in Figure 9, where we observe 
a tendency to a linear relationship between Lf and Q'/W. A curve fit of data gives the following 
equation, 

Thus, in a two dimensional system with a constant geometrical width the height of the 
flame tip tends to increase linearly with the heat output. 

AIR ENTRAINED AT THE TIP OF THE FLAME 

For open buoyancy-controlled diffusion flames Heskestad [l] assumed that the flame 
extends to a height where the total flux of air entrained at lower levels is just sufficient to 
complete the combustion reactions. The air demand from the surroundings is proportional to 
the stochiometric requirements of the pyrolysis gases 



FIGURE 9. The mean height of the flame tip, Lf , plotted as a function of Q1/W. 

where m is the total mass-entrainment rate of air below the level of the flame tip, mf is the 
pyrolysis or mass burning rate and r is the stoichiometric mass ratio, air to volatiles. The 
proportionality constant will be greater than unity, because much of the air entrained never 
participate in the combustion reactions. According to Delichatsios [16], the air entrainment 
rate can be as much as ten times the stoichiometric requirements for buoyant turbulent 
diffusion flames (based on measurements presented in [17,18]. There are two major 
differences in the present study and earlier studies [I,  16,17,18], namely, the air is entrained 
stepwise (through the horizontal flues) and the flow is bounded by solid boundaries (walls). 
Nevertheless, it is of interest to determine the ratio of entrained air to the stoichiometric air 
requirements at the mean flame tip from the experiments. The ratio of entrained air to 
stoichlometric air requirements for complete combustion (air-to-fuel stoichiometric fraction 
[19,20] or "equivalence ratio" [14]) is defined as 

This ratio can be determined from the experiments since we know the mass flow rates and the 
total heat output. The mass burning rate mf in equation (8) can be found from 

Q m =- 
AH, 

where Q is the total heat release rate and AH, is the heat of combustion per unit mass of the 
fuel (AH,=46.45 kJ/g for propane). If we combine equations (8) and (9) and use mass flow 
rates and flame heights from the experiments we obtain the results presented in Figure 10. 

Apparently, Q, varies considerably depending on the flue width. For the widest flue, W=100 

mrn, Q, is found (by curve fit) to be approximately the same at the flame tip ( z / L ~ l )  as for free 
flames (16), or $=lo, whereas for the smallest width, W=50 mm, $ at z / L ~ l  is 6. For 

W=75 mrn $ at z L ~ 1  is 7.6. The reason for this variation is not known but a possible 
explanation is that the temperature and velocity profiles are not uniform for the tested widths. 
This may be reflected in the values of the mass flow rates (based on single point 



FIGURE 10. The dimensionless flame height (z/Lf) versus the ratio of entrained air to the 
stoichiometric requirements ($=m AH,/Q r) determined from the experiments. 

measurements of temperature and velocity) used for determination of @. These results require 
further analysis where corrections of the single point measurements should be made. 
Nevertheless, a curve fit (see Figure 10) was made for all the data points and the value at the 
mean flame tip is found to be 7.5 which is 25% less than the ratio found for free flames. 

CONCLUSIONS 

Effects of different flue widths on flame heights and air flows in a two dimensional rack 
storage were investigated. The width of the vertical flue is found to be the predominant 
geometrical parameter controlling the flue flow. The mass flow rate increases nearly linearly 
with the width. Variation of the horizontal flue heights was found to have negligible effects on 
the vertical flue flow. For a certain vertical flue width, the mass flow rate is found to be nearly 
constant, independent of the heat output. 

An empirical correlation for flame height is given showing a linear relationship between the 
mean flame height Lf and the ratio of the total heat output per metre to the flue width (Qt/W). 
The experiments indicates that the flame tip corresponds to a certain temperature which is 
found to be about 450 "C. The temperature distributions along the flame height obtained in the 
case with a rack storage are found to be similar to freely burning fires. Below about half the 
flame height, z/Lf<O.5, i.e. the approximate region with steady yellow flames, the temperature 
tends to be constant. An averaging of the data yields a temperature of 870 O C .  Above about 
half the flame height, z/Lf>O.5, the temperature starts to decrease. It is also found that 
narrower flue widths tend to give hgher centreline temperatures than wider flues. 

The ratio of entrained air to the stoichometric air requirements at the flame tip was found to 
be 7.5. 
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