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ABSTRACT 

An approximate theoretical model of foam spreading on a liquid surface has been formulated. 
The model is analogous to the spreading of oil slicks on water surfaces. Viscous friction is 
assumed to be the dominating mechanism in opposing the foam spread. The friction is 
described by a lumped friction constant. The spreading process is decoupled from the mass 
transport due to evaporation and drainage of water contained in the foam. This work 
constitutes the first step in an attempt to formulate a model describing foam spread on a 
burning surface. 

Preliminary experiments have been carried out with foam spreading in a circular water basin 
without external heating. The friction coefficient is determined from experimental data. The 
model fits reasonably well with the experimental results for a wide range of volume flow 
rates and foam expansion numbers. Thus it can be concluded that the model correctly 
describes the basic phenomena of the foam spread. 
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NOTATIONS 

foam thickness (m) 
friction coefficient (Nslm3) 
foam layer extension (ID) (m) 
mass flux (kg/m2,s) 
radiative flux ( ~ l m 2 )  
foam extension (rot symm) (m) 
foam expansion ratio (pl/p) 
time (sec) 

velocity ( d s )  
volume flow (m2/s alt m3/s) 
longitudinal co-ordinate (m) 
transverse co-ordinate (m) 
friction parameter (11s) 
dynamic viscosity (Ns/m%) 
density of foam (kg/m3) 
friction force (Nlm2) 

Subscripts: 

0 inlet conditions vr vaporisation due to radiation 
d drainage 1 liquid 
dr radiation induced drainage cr critical extension due to radiation 
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INTRODUCTION 

The spreading of foam on burning liquid surfaces is an important practical problem. A 
prediction of the spreading process would create a better basis for design of suppressing 
equipment and also for fire fighting tactics. It would also give information about the relative 
importance of different foam properties for a successful suppression. Very little has been 
done in formulating engineering models for the practical design and use of foam suppressing 
systems, though there is a substantial knowledge about foam flows in general, [I]. 

The problem with a spreading foam layer is analogous to the spreading of oil slicks on water. 
This latter problem has been treated in a number of papers, a review of the literature is given 
in [2]. 

The objective of the present study has been to develop a physical model describing the 
spreading process in order to enhance the understanding of the underlying phenomena. The 
model is based on the assumption that the spreading process is governed by a quasi steady 
balance between the driving force due to gravity and a resisting force due to viscous friction. 
Inertial effects are neglected. The mass transfer due to drainage and evaporation is decoupled 
from the spreading process by treating the foam flow as a pure volume flow with a constant 
mean density. The model is to be considered as a first order theory, future work may show it 
necessary to improve the model to account for certain effects not contained in the present 
formulation. Such effects could be inertia and changing shape of the foam layer. Furthermore, 
the model needs to be extended to include a calculation of the mass loss and the density once 
the spreading process has been solved. The bulk density can then be used to assess the 
capability of the foam to block fuel vapours to diffuse through the foam. 

The present work is a first step in formulating a complete model describing foam spread on a 
burning surface which includes the prediction of the foam consumption due to radiation from 
the fire. The idea is to determine the foam properties and the friction factor in small scale 
experiments and then use the model to predict the full scale behaviour. 

THEORY 

The basic theory is outlined and applied to the case with a one dimensional foam flow 
(channel flow) without any radiative exposure. The foam is assumed to be supplied at x = 0 
with a constant volume flow rate v [m3/m,s] (i.e. volume rate per unit width of a channel) 
and advancing in the positive x-direction, see Figure 1. The instantaneous thickness of the 
spreading foam layer is denoted by h(x,t), the thickness at x = 0 is ho, and the 
instantaneous location of the foam front is given by x = L(t) . In Figure 1 the submergence of 
the foam is indicated. In the following analysis this submergence is neglected and the 
interface between the foam and the liquid is assumed to be aligned with the undisturbed liquid 
surface. However, the effect of the submergence is accounted for in determining the 
hydrostatic driving force. 

The viscosity of the foam is several orders of magnitude larger than the viscosity of water and 
ordinary hydrocarbon liquid fuels, [3]. This implies that the velocity gradients in the foam 
will be small compared to the gradients in the fluid and consequently the velocity in the foam 
layer can to a good approximation be assumed to be constant across the layer. The local 
velocity of the foam layer is denoted by u(x,t) . 

Considering a unit width of the layer, the continuity equation for the foam flow can be 
expressed 



In eq.(l) p denotes the local density of the foam layer i.e. p is generally a function of x and 
t . The function G(x,t) denotes the mass loss due to drainage and evaporation and can be 
written 

where md is the mass loss due to drainage, mdr the additional drainage caused by radiation 
and m,, the mass loss due to vaporisation. 

I 
L(t) 

FIGURE 1 Schematic picture of a foam layer spreading on a liquid surface. The foam is 
applied from the left with a constant volume flow rate v and the spread is 
opposed by a friction force zf. The foam is exposed to a radiative flux q, 

causing an evaporation m,, and a radiation induced drainage md, in addition 
to the conventional drainage md. 

Experimental results reported in [4] indicate that the drainage is an internal process in the 
foam that does not influence the layer thickness but merely the density. Furthermore, the 
experiments show that when a foam is exposed to radiation, part of the water in the foam will 
evaporate while part of the mass loss will appear as an increased drainage. The mass loss 
caused by the radiation is accompanied by a decrease in the layer thickness. The rate of 
decrease of the foam layer is uniquely determined by the radiative flux q, and can be 
considered as being independent of the mass loss. These findings indicate the possibility of 
decoupling the variation of the foam thickness from the mass transport. 



The variation of the bulk density of the foam with account taken of the mass loss can be 
expressed 

Carrying out the differentiation in eq.(l) and making use of (3) yield the following simplified 
continuity equation 

A balance equation for the axial momentum in this case takes the form 

Here the left hand side expresses the rate of change of inertia, the first term on the right hand 
side is the driving force caused by the hydrostatic pressure across the foam layer and the last 
term, zf  , denotes the resulting friction force. The latter term is a complicated function of 
several parameters describing the friction forces between the foam layer and the liquid 
underneath. The parameter S denotes the ratio between the density of the water pl and the 
density of the foam p . This parameter is called the expansion ratio or foam number and is 
sometimes used as a quality parameter of the foam. In this analysis the foam number is 
treated as a constant. 

In the momentum balance equation the bulk density serves as the link between the spreading 
process and the mass transport. To maintain the decoupling approximation the density is 
considered as constant and is introduced as a suitable mean value. Note the relationship 
between the foam density p and the foam number S. 

The foam spreading process is assumed to be quasi steady, determined by a balance between 
the friction and the driving forces. The momentum balance equation (5 )  then simplifies to 

The quasi steady assumption is partially vindicated by applying an order of magnitude 
analysis of the experimental results given in [ S ] .  The analysis shows that the inertia terms in 
eq.(5) can be neglected compared to the terms on the right hand side provided the volume 
flow is sufficiently low or the spreading time is sufficiently long. No attempt has as yet been 
made to establish the exact limits when the approximation is valid. 

The basic equations governing the foam spread are now given by eqs. (4) and (6).  An 
additional condition is needed at the interface between the foam and the liquid to determine 
the viscous force zf . A picture of the velocity fields set up in the foam and the liquid is 
shown in Figure 2. 



The retarding friction force can in the general case be written 

where the gradient has been rewritten by introducing a fictitious boundary layer thickness 6[, 
u is the velocity at the interface i.e. the local foam speed. Suffix "1" denotes liquid, pz is the 
dynamic viscosity of the liquid and the co-ordinate y is perpendicular to the plane of the 
spreading foam. 

FIGURE 2 Velocity distributions in the foam and the liquid. 

The boundary layer thickness can be estimated by making use of handbook formulas for the 
viscous friction in liquid flows, expressing the friction as a function of the local Reynolds 
number, see e.g. [6] .  However, in view of all uncertainties appearing in the present model, 
this Reynolds number dependence is disregarded and the variation of 4 is lumped into a 
friction constant kf. The friction term can then simply be expressed 

Equating (6) and (8) yields 

where the friction parameter p is defined as 



Another boundary condition to the present problem is provided by the foam flow at the inlet. 
Assuming a constant volume flow V ,  the boundary condition at x = 0 can be expressed 

uoho = v 

where suffix "0" indicates inlet conditions. 

SOLUTION PROCEDURE 

An approximate solution will be formulated based on the integral solution technique [6]. In 
this technique information about the functional form of the solution is needed e.g. the shape 
of the foam layer. From [5] it is evident that the foam layer to a good approximation can be 
assumed to have a triangular shape during the spreading history. Thus, the thickness 
distribution of the foam layer is assumed to be 

where account has been taken of the fact that the foam layer has zero thickness at the front. 

Here hO is the thickness at x = 0 and L(t) is the instantaneous location of the foam front. 

With this assumed foam distribution it is possible to formulate an integral balance equation 
by integrating equation (4) along the foam layer from x = 0 to x = L .  

The resulting equation takes the form 

Inserting (12) into (13) yields after integration (noting that uohO = v is constant) 

Another relation between uo, hO,  and L can be obtained by making use of (9) and 
performing a formal mean value formation along the foam layer thus giving 



Note that the friction parameter p in (15) is different from the one in (9) due to the mean 
value formation. This is only a formality and the bar will be omitted in the following. 

Now we have three equations at our disposal, ( 1  I ) ,  (14) and (15) to determine the three 
unknowns ug , ho, and L . 

ONE DIMENSIONAL FOAM FLOW WITHOUT RADIATION 

In this case equations ( 1  I), (14) and (15) can be directly used to formulate the solutions which 
take the form 

No direct comparison with experimental results are given for this case because appropriate 
experiments are missing. 

AXISYMMETRIC FOAM SPREAD WITHOUT RADIATION 

The basic equations in this case take the form 

d d 
- (prh) + - (pruh) = -rG(r, t )  
at B 

where r now denotes the radial co-ordinate. 

These equations can be simplified in exactly the same way as for the one dimensional case 
thus giving 

d d 
- (rh) + - (ruh) = 0 
at dr 

for the continuity equation. 

The momentum equation turns out to be exactly the same as before i.e. given by (6) with x 
replaced by r .  

In this case it is assumed that the foam is introduced in a circular cylinder with radius Ro 



and with a constant volume flow v [m3/s] (note the different definition of v compared to 
the one dimensional case). The boundary condition for r = Ro then reads 

27cRou0ho = v (21) 

Integration of (20) between r = Ro and the outer edge of the foam layer at r = R gives 

The shape of the foam layer is again assumed to be linear i.e. 

Introducing this into (22) and making use of (21) gives after integration 

In the derivation of (24) it has also been assumed that Roc< R which is an acceptable 
approximation except for the very first part of the spreading process. 

Applying the same frictional relationship as in (9) and performing the mean value formation 
leads to 

ho2 u,, =p.- 
R 

The resulting solutions are obtained by combining (21), (24) and (25) i.e. 

COMPARISON WITH EXPERIMENTS 

The comparison between theory and experiments is based on the axisyrnmetric case to avoid 
any disturbances of wall effects. Experiments have been conducted for two different types of 
foam, Detergent and AFFF, in a circular water basin with a diameter of 20 m, [S]. Figures 3 - 
7 show a comparison between the measured and the calculated foam thickness and extension 
according to equations (26) - (27). The friction coefficient kf = 0.1 [ ~ / m ~ ]  has been 



determined by making a best fit between theory and experiments for the set of data used in 
Figures 3 - 7. The foam expansion number S and the corresponding foam density used are as 
measured in the experiments. 

A theoretical estimate of the friction coefficient can be obtained by using the theory for flat 
plate boundary layers, [6]. With Reynolds numbers based on the foam extension as the 
characteristic length, the rate of growth from Figure 3 - 7 as the characteristic velocity and 
with table values for the viscosity of water, one gets kf values ranging from 0.05 to 0.15 
depending on the time. Thus the selected value 0.1 is a reasonable mean value over the time 
span considered. 

FIGURE 3 Comparison between predicted and measured extension for Detergent foam. 
Volume flow 25 Its, S = 7.5 and kf = 0.1 [ ~ / m 3 ] .  

FIGURE 4 Comparison between predicted and measured layer thickness for Detergent 
foam. Volume flow 25 lfs, S = 7.5 and kf = 0.1 [ ~ / m 3 ] .  



FIGURE 5 Comparison between predicted and measured extension for Detergent foam. 
Volume flow 107 Us, S = 12.3 and kf = 0.1 [ ~ / m 3 ] .  
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0 5 10 15 20 25 30 35 
Time [sl 

FIGURE 6 Comparison between predicted and measured extension for AFFF foam. 
Volume flow 194 Us, S = 28.9 and kf = 0.1 [ ~ / m 3 ] .  



FIGURE 7 Comparison between predicted and measured layer thickness for AFFF foam. 
Volume flow 194 Us, S = 28.9 and kf = 0.1 [ ~ / m 3 ] .  

As is seen from Figures 3 - 7 the agreement is acceptable over a wide range of volume flow 
rates and foam expansion numbers. The model tends to under predict the spreading rate which 
is probably a result of the neglected initial momentum of the foam. The prediction of the layer 
thickness is less god than the prediction of the extension. This is due to the assumed linear 
thickness distribution of the foam layer. However, overall the model predicts the spreading 
process reasonably well and indicates the possibility of using a constant lumped friction 
coefficient for describing the resistance against the spreading foam. 

CONCLUDING REMARKS 

An approximate model describing the spreading of foams on liquid surfaces has been 
formulated. The model is based on simplifying assumptions regarding the influence of inertia 
and viscous friction. Nevertheless the model seems to contain the main ingredients necessary 
for predicting the spreading process once the friction constant has been determined. 
Preliminary comparisons with experiments are promising. Thus, it seems feasible to 
formulate a simple theoretical model for foam spreading along the lines presented here, at 
least with sufficient accuracy for engineering purposes. 
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