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ABSTRACT 

Three decomposition schemes for cellulose and wood are examined, the one-step engineering 
scheme, the three-step delinked scheme proposed by Shafizadeh and Chin and the three-step 
coupled scheme of Broido. The one-step scheme, though simple, can describe many behaviors 
observed in real problems. These include pyrolysis temperature variation with heating rate, fixed 
change of pyrolysis temperature with successive doubling of heating rate, and the influences of 
variable char yield. In addition, kinetic constants may be chosen that fit the one-step model 
predictions of the three-step schemes. Among the three-step schemes a strong case can be made 
for the superiority of the Broido scheme because it has coupled competition between the two 
main product pathways. 

KEYWORDS: Asymptotic Analysis, Cellulose, Decomposition, Reaction Mechanism 

INTRODUCTION 

Wood is an extremely difficult material to characterize, hence much previous research has 
focused instead on cellulose. The rationale is that pure cellulose is a good model for wood, 
which itself is approximately 75% cellulosic, the remainder being primarily lignin. Intuitively, 
we expect that if an accurate and useful description of a relatively simple substance like cellulose 
cannot be found, our prospects for describing complex materials like wood are slim indeed. In 
reality, the importance of studying cellulose extends far beyond its use as a simplified substitute 
wood. Cellulose is in fact a major constituent material of most households and therefore 
represents an important fraction of the domestic fuel load threatened by fire. 

In spite of the relative simplicity of cellulose, however, the models of its decomposition, or 
pyrolysis, have many forms, see Table 1. The simplest model is the one-step global or 
engineering model, see refs. 1-3. We note that many such one-step models [I-31 are actually 
used to calculate wood pyrolysis rates. Extensions of the simple thermal degradation model have 
recently been made [4] to inciude global oxidation of the cellulose plus global oxidation of the 
final char. Nevertheless, the fundamental fonn of the resultant model is qualitatively the same. 
Each reaction makes products in fixed ratios which must be determined experimentally. Clearly 
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there is competition between the separate thermal and oxidative degradation steps, see Ref. 4 

A more complex family of decomposition models than the one-step model has been developed 
by chemists. Their interest is primarily in describing the separate steps of the process [5-71, 
much as in gas-phase chemical kinetics. The simplest model is the three-step delinked model 
proposed by Shafuadeh and Chin [5] and used thereafter by numerous authors, some extending 
it to describe wood [a] .  In this model the virgin cellulose decomposes directly into three 
different compounds, char, tar, and inert gases (see Table 1). Competition occurs between the 
separate steps, which are delinked. The only W g  between char, tar, gases, and cellulose 

occurs through the mass conservation constraint,x y i= l .  A similar model was proposed by 
i=l 

Lipska and Parker [9] ,  although theirs, for which they never wrote model equations, is zeroth 
order in the initial cellulose unzipping step. However, a zeroth order decomposition step poses 
severe modeling difficulties, especially if the remaining steps are not zeroth order. Nevertheless, 
there is much valuable insight in Ref. 9 concerning the separate rates for the crystalline and 
amorphous regions, and the hypothesis that char and tar are formed after the cellulose has 
unzipped essentially to levoglucosan. However, without any model equations or kinetic 
constants it is difficult to proceed with an analysis based on their observations. 

A three-step model that is at least qualitatively similar to the Lipska-Parker model is the 
mechanism of Broido [7,10]. This model, developed after many years of experimental research, 
is different from the delinked scheme in that the decomposition of cellulose into products occurs 
through processes which are coupled. Hence, a change in the rate of production of one 
component, say char, through increased k c ,  is accompanied by a change in the rate of 
production of y, ,  the active cellulose, which in turn changes the rate of production of tar and 
gases. It is this powerful statement of mass or atom conservation at the molecular level and its 
simplicity of expression, generality and capability for refinement that make the Broido scheme 
an attractive model. Interestingly, Shafuadeh, who originally postulated the delinked three-step 
scheme [5],  later abandoned it (Ref. 6) in favor of one resembling Broido9s even to the point 
of measuring the kinetic constants that we shall use in this article. 

There are some drawbacks of the Broido scheme. For instance, there has apparently been no 
direct proof of the existence of active cellulose [ lo ] .  Hence there is room here for refinement. 
We note, however, that from the viewpoint of modeling this drawback is not serious. We know 
that decomposition does not occur through a single step like cellulose -. active cellulose. In other 
words, the cellulose breaks down through a complex sequence of individual steps involving 
depolymerization, abstraction of various molecules and compounds, etc. But even if we did 
know the individual decomposition pathways, we should still like to represent all of them with 
a single step. Hence, the use of an active intermediate completely fulfiis our modeling 
requirements. 

The most complex family of cellulose degradation models are the various fundamental chemical 
models that attempt to isolate actual single steps. Although these basic studies may eventually 
provide insight into detailed cellulose oxidation mechanisms or the influences of various catalysts 
and impurities, they have not yet made a significant impact on the modeling problem. They shall 
not be further discussed in this work. 

In what follows we shall focus only on the decomposition mechanisms. Hence, the cellulose 



sample is assumed infiitesimally thin thereby eliminating heat transfer and species transport 
effects [ll]. The complicating influences of moisture are also not considered. 

DECOMPOSITION MODELS 

In this section, we examine the solutions of the three models shown in Table I for constant- 
temperature heating. We note that because a sample that is heated to a certain test temperature 
must pass through all intermediate temperatures, constant-temperature heating is, at best, a 
limiting case of variable-temperature heating. 

TABLE 1. The three reaction schemes examined herein and the corresponding parameters 

j,=a,y,,,fi(O), i =c, T 

p = max. char yield 

For the one-step model, we fmd that the normalized residual mass, z=b-y, (~)) / ( l  -y,(m)), is 
given by z=e -', where t is the normalized time. We note that it is impossible to discriminate 

between the remaining separate components of the residual mass during decomposition unless 
additional formulae describing their relative proportions are given. Thus, as far as the solid 
residue problem is concerned, our one-step model is incomplete. 

In order to solve the decomposition equations of the three-step delinked model efficiently, we 



define ai=kikcEL as nondimensional ratios of the kinetic rate constants. Then 
ycELL=exp(-kcELLt), y,=ai(l -yCE&, i=c, T,g. If at time t ,  we should change the heating 

temperature stepwise from T,  , to T,  , we would fmd that y ,  =ycELL(t,)exp [-kc, Jt- t , ) ] ,  
YC=YC(~*) +ac2~CELL(t*) [1  - ~ ~ ~ ~ ~ / ~ ~ ~ ~ ~ ( ~ r ) l ?  etc' Here 2, ' ' ' are at T ,  2. 

T h e  u l t i m a t e  c h a r  y i e l d  f o r  t h i s  t w o - s t a g e  h e a t i n g  i s  

yc(m) = yc(tt)+ac2yCELL(ti) = acl+(ac2-asl)yCELL(t t)~ The f i s t  term is the value if heating 

continued indefmitely at T,  ,. The second term represents the increment produced by changing 

T,,. It is negative when T,  ,<T,, ,, positive when T,, ,>T,,, . 

If the char yield varies, the tar and gas yields must also be modified. The yields of these 
products of decomposition depend strongly on the temperature. A useful measure is the 
crossover temperature, T c ,  for the char and tar reaction rates, given as the value of T at which kT=kc, 
viz., 

When P T c r  we have k?kc. Tar production dominates charring. When T<Tcr the reverse is 
true. Normally, Tc, - 300°C [ l o ] .  

For the three-step Broido model, the equations of Table 1 are easily solved for constant test 
temperature. We obtain 

Note that y,+y,+y,+y,+y,=l by mass conservation. Also, yc(w) = p/(l + a J a J ,  where p is 
the maximum char yield, which is attained in the limit aJac-0.  This occurs when T,, is 
significantly lower than T C ,  where T, is given by Eq. (1). When the test temperature is 
changed stepwise the deductions are the same as with the three-step delinked model. 

Now we shall demonstrate that it is possible to derive reasonable kinetic constants for the one- 
step scheme from the three-step schemes. Our attention is focused on the Broido scheme. As 
our principal measure we employ the nornmlized residual mass. For the one-step scheme this 
is simply z . ,  as defmed in the paragraph on the one-step model. For the Broido scheme the 
remaining mass is ycELL+yA+yc if we count tars as volatiles that no longer belong to the solid. 
The normalized residual mass is z=[(ycELL+yA+yc)-yc(w)]/[l -yc(-)]. Upon substitution of Eqs. 
(2) into this formula we obtain z=[e  -"'-ae -? / ( I  -a ) ,  where a =a,+ac and s=kcEut. 

In order to derive rate constants for the one-step scheme we fix two test temperatures, T, , and T, , 



and calculate from the Broido z - equation the values of t,, , and t,, , needed to reduce z toe -'. 
For the one-step scheme, z=e -' when t = l .  Hence, tfe,=[Aexp(-E/RTfe,)]-l. With the two sets 
of T,, t,, from the Broido scheme we calculate A and E values from 

where X=t,, ,It,, , and T = T ,  ,IT,, ,. Using the values for A,, A,, A ,  EcELL, Ec, E ,  given 
in Ref. 10 and utilizing two test temperatures T ,  ,=550K, T ,  ,=850K gives t,, , = 15064 sec. 
and t,, , = 2.72x10-' sec., yielding E=40.9 kcallmole and A = 1 . 2 4 ~ 1 0 ' ~  sec" as reasonable 
one-step parameters derived from the three step Broido scheme parameters. A test time 
comparison shows that near 500K and 850K the one-step formula is accurate. In between it may 
differ by up to 30%. 

Ideal ly,  we should l ike to  minimize the residual mass difference 

z ~ ~ o z ~ o - z l  - S F P = ~  -akcEut-ae-kcEu~(l-a)-e-r for each T,. For a given T,, we fix a and 
k,,,,, r e q u m g  a choice of k for the one-step expression that minimizes the difference for all 
t .  Note that for small a ,  which occurs when T,2600K=300°C, we have 
zBRoZDo -zl - exp[-(kc+kT)t] - exp[ -kt] when t>klLLL' The latter condition is easily satisfied 
in practice because kcELL becomes very large as T, increases. The difference is zero when k=kc+kT. 
This reduces to kzk,, when T,>Tcr. Hence, for large T,, the choice of parameters for the 
one-step model is largely determined by the volatilization step. We may then write A-A,, EzE, 
in the one-step expression. 

VARIABLERATE HEATING 

Here we must augment the decomposition equations with an energy equation like dT/dt=g(t), 
T(0)=To. This equation simply dictates the heating rate imposed on the sample. We define a 
characteristic heat-up time as t,,,=(T,,-To)/g(0), where T- is the maximum sample 
temperature. Then we defme the reduced temperature 8 ,  which varies between zero and one. 
With t =t/t,, we obtain the energy equation, 

and the species equations shown in the rightmost column of Table 1. The initial conditions 
are z(0) = 1 ,  ycELL(0) = 1 , and yi(0) =O for all the other species. 

These equations are in standard form for a high-activation-energy-asymptotic (AEA) calculation. 
Because of the relative largeness of E and the relative smallness of T,, , the P i  will be at least 
twice as large as for usual gas-phase AEA calculations. Hence, AEA methods should be quite 
accurate. The P i  are fairly insensitive to T,, in the approximate range 300°C 5 T,, 5600°C. 

For large P i  the chemical reaction is frozen until 0 is close to unity. Here T is near T-. 
Hence, we define the rescaled nondimensional temperature 8=1 -Q/P. For the one-step scheme 
the choice of p is obvious, but for the three-step schemes we use P =PC, ,  from the initiation 
step. We now postulate a one-to-one relationship between temperature andtime, so Eq. (4)  can 
be written as d 0 / d t = D - ' G ( t ) = D - ' ~ ( B ) ,  0(0)=0.  Note that 0=1 at r=m and 0 = 0  a t t  =O. 
Hence, H(0) = 1 and H ( l )  =O. The lowest-order equation for Q is dQ/dt = - QO + . . . , where 



61 = I -dH(l)/d0 ID -'. When 6 1 ~ 1  the heat-up time is so short that the temperature rise is nearly 
instantaneous, i.e., H(0)- step function. One then essentially ignores the energy equation and 
puts 0=1 in the species equations to recover the constant -T  solutions. When B<l the heat-up 
time is much larger than the chemical time; not much cellulose is left once the test condition 
T=T,, is attained. This limit is experimentally undesirable. The third limit, 61 -0(1) ,  contains 
features of the other two and therefore is the most interesting. To examine it we substitute 
0 =1-8/P into the species equations and let p -m to obtain f i(0)~exp(-eiO). We also transform 
the left-hand sides of the equations as dyi/dt =-618dyjd@. The resulting systems of equations 
can then be solved, although the solution for the three-step models is quite complicated. A 
considerable mathematical simplification is obtained by putting ec=eT=l This? in essence, 
reduces our analysis to one of the mathematical character of the solution. The results are: 

3-step delinked: y,=e -'; y,=ai(l i=c,  T,g; 

3-step Broido: 

where v = ~ ~ ~ ~ ~ ' e x ~ ( - x ) r l x = 6 1 ~ ~ ~ ~ ( @ ) .  

Some observations can be made from Eqs. (5). First, the residual mass decays at the same rate 
for the one-step and three-step delinked schemes, but for the Broido scheme decays more slowly, 
by the amount (e -"' -e -")/(I -a).  Hence, the ratios z,~,,plzBRoIDo-z,D,L/zBRoIDo are always 5 1. 
At T=T,, we have v -m so that z,,JzBRoIDo-0 when O<a< 1. In other words, more residual 
mass remains to be pyrolyzed in the Broido mechanism. Second, we observe that for z, the only 
scheme that shows sensitivity to the various decomposition steps is the Broido scheme. This 
occurs through the parameter a .  The qualitative nature of the dependence does not change when a 
varies between zero and one. Finally, in the three-step delinked model we have two independent 
parameters, since ac+aT+ag=l whereas in the Broido scheme we have three independent 
parameters. This implies a greater variety of behaviors for the Broido scheme. 

CONSTANT HEATING RATE, T=To+got 

Many experiments are conducted at constant heating rate. Although the upper limit temperature 
is unbounded, in practice it suffices to discontinue heating once there is no further weight loss. 
Although the meaning of T,, is slightly obscured, the notion of a T,, remains relevant. 
Hence, our nondimensionalization of the previous section is still employed here. 

Let us consider first the one-step reaction. Into Eq. (4) we put G ( t )  =1, giving 0 =D -'t for the 
temperature distribution. Substitution into the one-step species equation gives dz,lz=-Dfl0)dO 
subject to z= 1 at 0 =O. Integration gives 

B - u  

z=eap[-(D/p)Z(Q; p,o)]; where I(@; p,o)=/e 'ONPdu; @=p(l-0) .  
e 



When P is large we have I(@;P,a)-Z(O;m,a)=e -e. Consequently we obtain the approximate 
result, 

It can be shown, after a rather lengthy analysis, that for successive values of the heating rate, 
g /g = 2 ,  the change in temperature, ATi = T i + ,  -Ti ,  at an identical stage of decomposition is 

% + I  " i  

given by 

where yi=TjT is a number smaller than 1. If y,=constant we see immediately that 
m i  

a(A Ti)/aTmz>O, Indicating that the temperature difference increases with the heating rate. Note 
that T,, is the value of T at which no more mass loss occurs. It increases monotonically with 
go. Eq. '(7) shows that as E/RT,,,-m, ATi -0 ,  and the ignition-temperature concept is 
recovered. An estimate for AT can be made from Fig. 1. We use the results for the normalized 
residual solid mass, z , versus T for various heating rates for the Broido mechanism. The curves 
are very similar to those obtained from the one-step scheme, in that the curves appear to be 
displaced by nearly fixed amounts and that at the higher heating rates the gaps seem to widen 
slightly. For our comparison we employ the last two curves in Fig. 1 with go = 80"C/min and 
go = 16OoC/min. We use E-40 kcal/mole and choose the decomposition level as z = 0.5 . We see 
that T i ,  the value of T when go = 80°C/min and z =0 .5 ,  is approximately 465°C. we estimate 
that T,,=52SoC. Hence y ,=0.8 , E/RTm=25 and A T=lSqC,  which is very close to the AT 
shown in Fig. 1. 

Consequently, we have demonstrated the general absence of a characteristic pyrolysis 
temperature T p .  Assumption of a pyrolysis temperature is common in fire propagation models. 
The T,- concept appears to be accurate when E/RT,,d)(l). 

Temperature, T [" C] Temperature, T [' C] 

Figure 1. Numerical solution of the Broido Figure 2. Plots of &/dt versus T for the 
model for various fied heating one-step and Broido models for 
rates go various f i  heating rate go 



As already mentioned, the fled heating rate curves for the Broido and one-step mechanisms are 
qualitatively similar. In fact, plots of d y / d ~  versus T, where y is the residual mass, 
ycELL+y,+yA, produce only a single peak (see Fig. 2) thereby indicating --according to Ref. 4-- 
a global one-step mechanism. But the Broido mechanism is not a one-step process, it is a three- 
step process. Hence, we are led to question the generality of deductions made from weight loss 
rate measurements. 

DISCUSSION 

There has been, and continues to be, much interest in the pyrolysis and combustion of wood and 
other cellulosic materials. Typical technological areas of interest are wood gasifiers, waste 
incinerators, and fxe  safety of wood and wood products. A recent issue of importance is the fire 
safety of organic composites consisting of wood fiber and a polymeric filler such as high-density 
polyethylene (HDPE). In the realm of modeling, there are few useful and reliable models for 
standard problems like flame spread over cellulosics, or the flameismolder transition. The 
crucial, indeed central, missing link in these models is a robust, accurate description of the solid 
phase decomposition and pyrolysis. 

Engineers have for many decades employed a relatively simple global one-step decomposition 
reaction, see the first row of Table 1. We have demonstrated herein that this model has positive 
features, among them the capability of reproducing several global features of more complicated 
schemes, as shown in Figs. 1 and 2. Hence, processes like weight-loss rate can be reasonably 
effectively modeled, and the basic physics of the constant heating rate can be explained. 
Nevertheless the global scheme suffers from a serious built-in flaw. The decomposition products 
are formed in fixed ratios. That is, if we consider char and volatiles as our products, for 
example, we can generally say only that their ratios are fixed. The only remedy is to 
painstakingly develop experimentally measured correlations that produce product ratios which 
vary with temperature and the gas-phase environment. But in this case, it would seem to be more 
advantageous to simply develop a more realistic model. 

The three-step models present a viable solution to this problem. Two strong candidates have 
emerged, the delinked Shafuadeh-Chin scheme, which is computationally attractive, and the 
Broido scheme, which is physically attractive. We have determined that the delinked scheme 
suffers a (mitigated) form of the one-step-scheme flaw. This is seen by comparing the 
normalized residual mass for the one-step and the delinked schemes. For the one-step scheme 
under fixed-temperature heating we have z=e -' , and under variable-rate heating z=e -". It is 
easily shown that the delinked scheme gives exactly the same results. The Broido scheme, 
however, is completely different. In fact, it is a built-in feature of the Broido scheme that the 
char and volatile yields vary with the local temperature. Why is this important? Because it can 
be employed in models where a transition phenomenon is occurring. An excellent example is the 
smolderlspread transition phenomenon. Under some conditions, like low temperature, the 
charring pathway is more active than the volatile pathway. In this case smoldering is observed. 
Under different conditions the volatile pathway is preferred, in which case a gas-phase spreading 
flame will be observed. Hence, this competition is in fact necessary to decide the transition 
event. 

Other examples where the charivolatile competition are important are ordinary flame spread 



models (wind-aided or wind-opposed) and the generation of volatiles in biomass gasification 
devices. 

There is another feature of the Broido scheme that makes it attractive from the modeling 
standpoint. For a model to be useful it must be: (1) simple (understandable) and physically 
consistent with the available evidence, (2) complex and variegated enough to produce interesting, 
multi-faceted behaviors. In these respects the Broido model is quite satisfactory. We have used 
Activation-Energy-Asymptotics (AEA) in our analysis of these schemes because the methods 
suit, not because we have sought schemes for analysis by AEA. Interestingly, for the 
temperature range of ordinary pyrolysis, 500Ks Ts850K, the most important parameter of 
AEA, the nondimensional activation energy P , is in a nearly optimum range of values for 
maximum accuracy of the method. For larger and smaller T, P decreases making the AEA 
procedure less accurate. 

CONCLUSIONS 

In this article we have examined three reaction schemes used to describe the pyrolysis and 
degradation of cellulosic materials. The Broido scheme is clearly the most versatile. This fact 
is sometimes misunderstood in the literature, particularly with respect to 1: the maximum char 
yield. Some investigators have taken p to represent a fixed char yield. Actually, p is the 
maximum char obtainable for experiments performed at temperatures lower than Tcr and 
giving a J a , ~ O ( l ) .  The actual char yield will always be smaller than p. Support for the Broido 
model is provided by Lewellen et al. [12], who performed experiments on cellulose at high 
heating rates. They reviewed the previous models, Piding them unsatisfactory, then deduced 
a new one from their data. Ironically, their predictions can easily be reproduced by the Broido 
model for high heating rates although their model does not reduce to the Broido model for low 
heating rates. We conclude that the Lewellen-Peters-Howard model is not a new model but a 
limiting case of the more general Broido model. 

One difficulty with the Broido model that has been mentioned in [43 occurs in variable oxygen- 
concentration environments. Though the Broido and delinked models can probably be recast to 
exhibit oxidation influences, it is not clear how this can be done for high or low oxygen- 
concentration environments. We recall that Ref. 4 added separate global cellulose and char 
oxidation reactions to the existing [I-31 global decomposition reaction. 

Concerning the one-step reaction, we have shown here that it is usebl when qualitative 
predictions are sought. Reasonable chemical parameters can be chosen based on the three-step 
models. It is a useful tool for understanding the variable-temperature heating rate curves, 
providing insight into the pyrolysis temperature question. In many respects, then, it describes 
some features of the more complex three-step mechanisms well. It is possible to generalize the 
one-step model by introducing a variable char yield instead of the fured value. We can use the 
va lue  suggested by Bro ido ,  y,(m)=p/{l+aJa) = p/{l+(AJAc)exp[-(E,-Ec)/~7$ 
= p p l  + K ~ X P [ - ( E ~ - E ~ ) P ( ~ - ~ ) / [ ~  -o(l-e)]}, where K=(AJA,)~x~[-(E~-E,)/RT-] ande,=EJE, 
where E is the activation energy for the overall decomposition reaction. Obviously, if ( E ~ - E $  P - - 
is small then yc(m)=p/(l+~), and we shall return to the case of constant char yield. 

We have quite convincingly demonstrated the absence of a single pyrolysis temperature, Tp. A 



unique value of Tp exists only in the limit E I R T - ~ 0 ( 1 ) .  However, we have also demonstrated 
that the parameters of cellulose pyrolysis [6] produce nondimensional activation energies P, that 
are quite large. Hence, we expect that the condition of large E/RTM, will be fuKied, and that 
most woody and cellulosic materials will appear to possess a characteristic T,, at least when the 
material is thermally thin. As already mentioned, for thermally thick materials the relevant issue 
is not whether we have certain futed value of T p ,  but what the status is of the instantaneous 
competition between the rates of formation of volatiles and char. This determines whether we 
have flame spread or smolder spread. 

NOMENCLATURE 

Ai Pre-exponential factor for i" reaction 
D D=tHEAJtm a Darnkiihler number 

Activation energy for i& reaction 
Exponential integral 
A(e)=exp[-pi(l  - 0 ) l [ l - 4  -011, 
reaction-rate function 
Heating rate function 
N o r m a l i z e d  h e a t i n g  r a t e ,  
G ( t )  =g(t)lg(O) 
Kinetic rate constants 
Universal gas constant 
tm=tCEU=[AcELLexp( -ECELLIRTMX)I 

Time 
Temperature 

'='test Jttest z 

yi Species mass fraction, mass of specie 
i divided by initial sample mass 
@ure cellulose) 

' '='test 11Tm-t 2 

z Normalized residual mass 

Subscripts 

A 
C 

CELL 
cr 
g 
HEAT 
KIN 
MAX 
0 

P 

Active material 
Char 
Cellulose 
Crossover value 
Gas 
Pertaining to heating 
Pertaining to kinetics 
Maximum value 
Ambient value 
Pyrolysis value 

Greek 

a a=aT+ac , sumofa ' s fo rcha rand  
tar steps 

ai ai =ki (T , ) lkCEU(Tm)  = t d t i ( T M X )  

P P i  = o(E/RT-1 

Yi  ri=TITL.4xi 

e,=EIEcEu 
8 0=(T-To)/(Tm-To), n o r m a l i z e d  

temperature 
8 8= P ( 1  -0), normalized stretched 

temperature 
p Char yield 
o 0=1-TJTMx 

v Function defined in Eqs. (5)  

t Nondimensional time, t =t/t,, 



test Test condition or result 
T Tar 
3D.L. Three-Step Delinked 
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