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ABSTRACT 

The application of multi sensor detectors and/or sophisticated signal processing systems 
are two of the most important developments in fire detection technology. Due to the 
increasing complexity involved the layout of fire detection algorithms becomes more and 
more elaborate. Based on a representative set of recorded sensor signals layout proce- 
dures and performance studies of fire detection algorithms can be aided by simulation 
techniques. This requires adequate and efficient modelling of the signal recordings by a 
stochastic model. This paper presents a modelling technique based on a vector autore- 
gressive (VAR) model. This model takes into account the cross correlations between the 
single sensor signals and is therefore well applicable in the field of automatic fire detec- 
tion. It can serve as a basic component of a development tool for the design of detection 
algorithms in automatic fire detection technology. The applicability of the model will be 
shown by simulation results for signals of a ionization chamber, an optical scattered light 
smoke sensor and temperature sensor used for automatic fire detection measurements in 
the field. 
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NOMENCLATURE 

VAR model parameter 
postprocessing integration constant 
detection quantity 
vector white noise process 
spike tolerance factor 
length of signal vector 
spike detection window length 
mean value interpolation interval 
threshold detector parameter 
number of channels 
model order 
maximum model order 
autocorrelation matrix of lag T 

spike detection quantity 
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discrete time 
detection time 
weighting factor of detector 
detector input signal 
signal vector 
synthesized signal vector 
differentiated signal vector 
one step time delay 
noise process correlation matrix 
ionization chamber 
optical scattered light 
Schwartz Bayesian Criterion 
Temperature 
vector autoregressive 

INTRODUCTION 

In the past and to great extent even now automatic fire detection systems consist of sen- 
sors known to be useful in this area (ionization chamber, optical scattered light smoke 
sensor and temperature sensor) with more or less simple signal processing and detection 
principles. These systems have proved their capability to detect fires in practical appli- 
cations. But with the increasing number of installations the problem of unwanted alarms 
becomes more and more apparant. In extreme cases fire brigades had to reject any fur- 
ther connections to automatic fire detection systems because they were mainly serving 
unwanted alarms. An unwanted alarm is any alarm given by a fire detection system when 
there is no fire. This may be due to failures of some component in the detection systems, 
misuse by personel or a misinterpretation of the current environmental condition based on 
the monitored signal(s). To address this problem (especially the case of misinterpretation) 
fire detection systems equipped with multiple different sensors linked together for the fire 
detection purpose have emerged. The use of more than one sensor provides additional 
information on the environmental condition and allows a less erroneous distinguishment 
between the fire and no-fire case. 

The layout of multi-sensor detectors with signal processings beyond threshold detection 
and alarm delay offers lots of degrees of freedom. The problem of parameter tuning and 
comparative studies between different principles can be carried out practically only in 
the fire case. So as in many other areas there is the need for a simulation technique for 
studying multi-sensor fire detection algorithms. We will formulate a model for the signals 
of common sensors in automatic fire detection technology and thereby provide the basis 
for a simulation tool for the design and study of multi-sensor fire detection algorithms. 

The paper is organized as follows. First the theory of the VAR signal model will be dis- 
cussed. Next the the necessary extensions to  apply the VAR model to the modelling of 



FIGURE 1: Block diagram of the VAR(p)-model 

fire signals will be introduced. Then simulation results for an example study of the perfor- 
mance of a multi-sensor based fire detection algorithm will be given. A short conclusion 
with perspectives for future work finishes the paper. 

THEORY OF THE VAR SIGNAL MODEL 

The vector autoregressive (VAR) model is defined by 

with the matrices a ; ,  i =, . . . , p being the model parameters, p the model order and {F(t)) 
a multichannel stationary white noise process distributed as N(O, E) . The signal vector 

z( t )  = [xl(t), xz(t), . . . , z,(t)lT at time instant t has the n signals from the n sensors 
xj(t),  j = 1,. . . , n as components. This vector signal model with matrices as parameters 
allows the adequate description of correlated sets of signals since it takes into account 
these intercorrelations through the non-diagonal matrix components. 

For a set of signal vectors Z(t), recorded from t = 0 , .  . . , L - 1 the task is now to estimate 
the model paramete~s a; ,  the model order p and the residual correlation matrix of the 
white noise process C. 

The so called YULE-WALKER equations for the VAR-model are [I], [2], [3] 



The residual correlation matrix E of the white noise process is given by 

To estimate the parameters of a VAR model the cprrelation matrices P,,(T) in (2) and 
(3) are replaced by their estimated counterparts P,,(T) from a set of L signal vectors 
+ x(t),  t = 0 , .  . . , L - 1 according to 

The model order can be determined based on a set of p,,, estimated models for p = 
1,. . . ,p,,, and the selection of an "optimal" order by the use of Schwartz's Bayesian 
Criterion [4] 

E, denotes the estimated residual correlation matrix for a model of order p. The optimal 
model order is the one which minimizes SBC(p) in p = [l,p,,,]. 

With equation (2) to ( 5 )  the estimation of a VAR(p)-model including the model order can 
be achieved for a set of signal vectors Z(t), t = 0, .  . . , L - 1 assumed to be stationary. In 
general and in most practical situations this stationarity assumption will not be fulfilled. 
But in most applications signal characteristics will not change drastically from one time 
step to another so that blocks in the signal recordings can be defined, which can be 
described by stationary signal models. Once these blocks (segments) have been identified 
the above model estimation procedure can be applied to each of the identified segments. 
This segmentation procedure can be performed with the General Likelihood Ratio (GLR) 
algorithm by APPEL and BRANDT [5] extended to the multichannel case by KLOSE [6]. 

Due to the possible numerical problems and computational load being involved with the 
block matrix inversion in (2) the application of algorithms circumventing these disad- 
vantages is advisable. The First Splitted Generalized LeRoux-Gueguen-algorithm for the 
multichannel case of SOKAT [7] is a time- and order-recursive algorithm for the solution of 
(2) in the time-variant case. The order-recursive feature is especially helpful for the order 
estimation problem since the estimation of a model of order p,,, produces all necessary 

information (5,) for the lower order models. So the algorithm has to be run only once 
even for the order estimation. 



FIGURE 2: Original and preprocessed (Ls = 30 and ks = 3) signals (I, 0 ,  and T )  for EN 
5419 test fire 1. The position of detected spikes is indicated by small vertical lines at  the 
top of the right windows. 

APPLICATION TO FIRE SIGNAL MODELING 

Figure 2 left shows a set of three recordings of sensors used in fire detectors xI(t), xo(t) and 
xT(t) corresponding to the measurements of an ionization chamber (I), an optical scattered 
light smoke sensor (0) and temperature sensor (T) during a test fire TF1 according to 
EN 54 part 9 [S]. 

Because of the properties of the white noise process { t ( t ) )  in (1) the VAR model is only 
capable to model signals with zero mean. Obviously this is not the case for the above 
shown fire signals. So the signals have to be preprocessed before subjecting them to the 
model estimation procedure. The preprocessing should cover the following two aspects: 

1. The preprocessed signals should have zero mean. 
2. Signal characteristics strongly disturbing the model estimation should be eliminated. 
The averaging in (4) over a time interval of length L is strongly influenced by single large 
positive or negative signal values (spikes). 

The applied preprocessing reduces the mean to zero by differentiating and clips each re- 
sulting signal value to ks times the standard deviation determined over a surrounding of 
length Ls around the actual signal value. 

~ j ( t )  = 
sign (zj(t)) ksS(t) if lz3(t)l > ksS(t) 

else 



T The preprocessed signal vectors i ( t )  = [ z l ( t ) ,  z 2 ( t ) ,  . . . , z,(t)] , t = 0 , .  . . , L - 1 whose 
components are shown in FIGURE 2 right are then modelled by the VAR model described 
in the theory section. 

Signal synthesis then has to follow the process discussed so far the other way round. First 
the preprocessed signals z , ( t )  can be synthesized ( Z j ( t ) )  with the estimated model param- 
eters according to ( 1 ) .  Then spikes have to be reinserted, if desired, the differentiation has 
to  be inverted and finally the slowly varying part of the signals has to  be added. So we have 

for j = 1 , .  . . , n  and t = 0 , .  . . , L - 1  with { e j ( t ) )  = N (0 ,  k P t j j ) .  

The white noise process is assumed to have diagonal correlation matrix so it can be realized 
by n scalar white noise processes with variances Cp, , , ,  j = I , .  . . , n. If desired spikes have 
to be inserted in the signals i , ( t )  according to a protocol created during the detection 
and removal of them. The insertion moment of the spike is given by the protocol and 
the amplitude is based on a statistical model. (10)  is the inversion of the differentiation 
process in ( 6 ) .  A value of 0.7 for b has been found to be reasonable [6] due to the stability 
condition lbl < 1 for (10 ) .  To have synthesized signals i?,(t) correspond to the originally 
recorded signals x j ( t )  it is necessary to restore the slowly varying part being lost by the 
differentiation procedure. This is done on the basis of a set of estimated mean values 

which are interpolated using AKIMA'S technique to obtain ? R j ( t ) .  FIGURE 3 shows the 
synthesized preprocessed signals i j ( t )  and recorded signals i j ( t ) .  A comparison with 
the corresponding signals in FIGURE 2 gives good reason for the applicability of the 
VAR-model to these signals. 

The whole modelling procedure will now briefly be summarized. The analysis (i.e. esti- 
mation part) consists of the steps: 



FIGURE 3: Synthesized preprocessed signals zj(t) (p,,, = 4, LteSt = 60, D,,, = 120) 
and synthesized original signals f j ( t )  (LR = 30) for EN 5419 test fire TF1. The segment 
boundaries are indicated by tics at  the top of the windows. 

1. signal preprocessing (parameters: spike window length Ls and tolerance factor ks) 
2. determination of the interpolation points xR,j(k) for the slowly varying part of the 
signals (parameter: interpolation distance LR) 
3. segmentation and VAR model estimation (parameters: maximum model order p,,,, 
segmentation test window length L,,,, and boundary detection threshold D,,,) 
4. storage of all necessary information for synthesis in a database 

The signal synthesis procedure has to follow the steps: 

1. synthesis of a VAR process with the model order, coefficient matrices and noise vari- 
ances from the data base 
2. integration of the resulting signals 
3. insertion of spikes 
4. addition of AKIMA-interpolated slowly varying part 

SIMULATION RESULTS 

In this chapter we will study the influence of the different parameters on a simple multi- 
sensor fire detection algorithm. The detection algorithm is a multi-sensor threshold de- 
tector with alarm delay. It will operate on the weighted sum 

of the monitored signals. The weighted sum is a signal with positive trend in the fire 
case resulting from all applied sensors. For the I and 0 sensor the expected trend of the 
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FIGURE 4: Block diagram of the 3-channel threshold detector 

recorded signal in the fire case is negative and for T it is positive. 

The detection quantity of the threshold detector (FIGURE 4) then is 

with a ( x )  = 1 for x > 0 and 0 else. With the alarm threshold SD fixed at LT - 0.5 
the detector will give an alarm if the last LT values of xd(t) are greater than or equal to 
ST. The adjustable parameters of the threshold detector are the threshold ST and the 
length of the alarm delay line LT. The following parameter combinations will be studied: 
ST = 0.6,0.7,0.8,0.9 and LT = 30,60,90,120. The weights w ~ ,  wo and WT in (13) were 
set to during all simulations. 

The following figures show the results obtained with a simulation based on the VAR 
model with the adaptions discussed in the previous section. The simulation study of this 
example detector will treat the fire case based on recordings of the test fires according to 
EN 54 part 9 [8] and the non-fire case based on recordings from two false alarm relevant 
installations (a hospital and a steel work). 

The parameters of interest are the detection times and rates for the 6 test fires and 
estimates of the false alarm rate. The database for the fire case consists of 9 recordings of 
each test fire. 20 runs over the database lead to 180 simulations each for the test fires. In 
the non-fire case the database contains a total of 2 years of signal recordings over a total 
observation time of 12 years from different locations at the hospital and the steel work. 

FIGURE 5 shows the distribution of the maximum of xd(t) during the simulations in the 
fire case for each of t,he test fires. Combined with the distribution of xd(t) in the non-fire 
case (FIGURE 6 left) obtained through one run over the whole non-fire database the 
above made choice of the thresholds ST becomes clear. 

For these values of ST and the delay lengths LT the detection rate n d  in % and the 
average detection times tD are shwon in figure FIGURES 7 and 8. A detection time of 



FIGURE 5 :  Distribution of maximum xd(t) for the 180 simulations of each of the six test 
fires TF1 to TF6. 

0s corresponds to no detection of the fire. For the calculation of the detection times only 
the detected fires are used. The corresponding false alarm rate estimates & (simulation 
time 15 years) are shown in FIGURE 6 right. 

In general the behaviour of the average detection time tD in FIGURE 7 is straight forward 
since we have a linear detection algorithm (14). The poor detection of TF2 (ST = 0.9) 
and the loss of TF6 (ST = 0.8,0.9) in FIGURE 8 shows the problems of this detection 
principle. Furthermore the detection times of TF3 (ST = 0.8,O.g) and TF2 (ST = 0.9) 
(FIGURE 7) are unacceptaple long. 

FIGURE 6: Distribution of xd(t) in nonfire situations (left) and estimated false alarm 
rates & per year for the threshold detector (right). 



FIGURE 7: Detection times of EN 5419 test fires for the 3-channel threshold detector 



FIGURE 8: Percentages of detected fires for the 3-channel threshold detector 



CONCLUSION 

The VAR model was presented as a model for non-stationary multi-channel discrete-time 
processes. The necessary extensions for the modelling of fire signals were described. An 
application of the simulation technique to a simple multi-sensor fire detection algorithm 
focussing on the detection capability was given. The simulation results give quantitative 
estimates for the detection time and rate and the false alarm rate of the algorithm for 
various parameter combinations. The simulation technique hence is well applicable to 
comparative studies of multi-sensor fire detection algorithms. 
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