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ABSTRACT 

To recognize a fire, a person usually considers all information he can obtain such as the size 
of flame, the amount of smoke generated by the source, the location of flammable materials 
and other related conditions. The criteria for recognizing a fire are unclear and vary from 
person to person but human judgment is generally correct. This paper describes a fire 
detection system which uses a multi-layered neural network, which has been considered 
effective in recognizing and judging a situation with obscure factors such as a fire. This 
system uses the output of three different sensors: temperature, smoke and gas, and processes 
their output data to obtain information about the fire source, such as the heat release rate and 
the generation rate of smoke and gas. The real time data values and the previously collected 
data are then applied to a multi-layer neural network to obtain judgments about the state of 
the fire. After intensive studies, a new type of fire detection system has been achieved, which 
can not only form a proper analysis of gradually spreading fires but can also resolve one of the 
existing problems, false alarms caused by transient inputs, by identifying then suppressing 
them. 
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INTRODUCTION 

When a person sees and recognizes a fire, the criteria include the size of the origin, the degree 
of flame spread, and the environmental conditions. These criteria are unclear and vary from 
person to person because they may depend on that person's experience and impressions made 
by various types of information. However, most people can handle those types of information 
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properly and form a judgment which is generally correct. We have directed our attention to a 
neural network, which is an information processing system similar to the human judgment 
mechanism and has been considered effective in recognizing and judging a situation with 
"fluctuating" and "obscure" factors. If fue recognition were performed in a similar manner to 
that of humans by the neural network, false alarms would be reduced. 

Neural networks are roughly classified into two types: multi-layered and interconnecting. 
Since real-time processing is desirable for fire analysis, we have adopted a multi-layered 
network which has a simple structure and can be modified through training signals at any time. 
However, incorporation of this multi-layered neural network alone has little effect in 
identifying the effect of transient inputs (N.B. caused by cigarette smoke) which may cause 
false alarms in existing fire detection systems. To resolve this problem, we have arranged the 
input layer of the neural network to form a delay circuit enabling to include previously 
collected data as inputs. This type of approach was found successful as described hereafter. 

SYSTEM CONSIDERATION 

For fire judgment, a person may perform multivariate analysis of physical and chemical 
phenomena caused by a fire with his all senses. Thus, an intelligent fue alarm system should 
be based on multivariate measurement utilizing the outputs of different sensors. It is also 
important to note that people generally consider the condition of the fue source and its 
environment directly. Information such as the temperature and the smoke concentration near 
the ceiling is rather less important than the size of flame and the smoke generation rate. Thus, 
the information obtained by the ceiling mounted sensors should be converted to the 
parameters representing the conditions of the fire source itself[l-51. In addition, some 
routines should be added which forms a judgment which closely resembles the process 
humans follow during information processing. 

Fig. 1 shows a block diagram of the fire detection system used in this study. The outputs 
obtained from the sensors are temperature T, extinction coefficient psp, and gas concentration 
G p  To obtain the source information, a mathematical fire model ASET-B is used, which is a 
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FIGURE 1 Block diagram of fire detection system. 



simple zone model to calculate the averaged values for temperature, smoke concentration and 
gas concentration near the ceiling using as input the fire source conditions such as the heat 
release rate, smoke generation rate and gas generation rate[6-81. In our system, this model is 
used in 'reverse' to obtain the source information of heat release rate (Qf), smoke generation 
rate (Qsmk), and gas generation rate (Q,) from the corresponding sensor outputs. The 
temporal differentials dQf/dt, dQsmk/dt, and dQJdt are also calculated. These quantities are 
then normalized with the respective predetermined normalization coefficients. These 
normalized quantities are then applied to the neural network. It should be noted that the 
normalization coefficients should be determined by how the room is used, since human 
judgment concerning these quantities is generally different. Finally, the neutral network 
outputs the danger level of the fire. 

MODEL FIRE EXPERIMENTS 

Materials and method 

In order to analyze the human criteria of the judgment, a series of model fire experiments 
have been made. The size of the test room was 6.26 m (L) x 10.12 m (W) x 3 m (H). 
Temperature, smoke, and gas sensors were installed on the ceiling with 1 m horizontal 
distance from the center. A C-A (chromel-alumel) thermocouple was used as the temperature 
sensor, an extension-type smoke density meter was used as the smoke sensor and a 
semiconductor (Sn02) gas sensor was used for gas concentration measurement. This gas 
sensor is sensitive to CO gas which may be the most harmful to humans amongst the various 
gases generated from combustion. 

Real fires may start in a variety of conditions, thus the combustion materials for the 
experiments were selected to produce conditions as similar as possible to those of real ones. 
As typical liquid fuels, normal heptane and ethanol were used. Wood was used to produce a 
flaming fire and a smoldering fire. The shape and weight of these combustion materials and 
the method of ignition conformed to appropriate IS0 standards or EN standards for testing 
fire detection systems. In addition to these standard materials, curtains, fusumas (Japanese 
papered sliding doors), and chairs were used to attempt to produce fires like those actually 
observed in a real situation. Moreover, smoking cigarettes, fish and chicken being grilled 
with a gas cooker, a kerosene heater and a gas heater, were used to produce false alarm 
conditions. The position of the source in every case was at the center of the test room. 

Human judgment of fire 

Judgment by sight 
As mentioned previously, the human criteria used to judge whether the situation is dangerous 
or not may include the size of the fire source, the degree of the flame spread, and other 
environmental conditions. In order to find how these criteria are related to actual parameters 
such as the heat release rate and the smoke generation rate, some view tests were conducted. 

13 males aged 21 to 24 years were used as the test subjects of the view test. During the view 
test, the test subjects were asked to form a judgment when they thought the situation was 



dangerous, while observing the changing conditions of the fue sources. During the initial 
stage of the test fire, the percentage of test subjects who thought the situation was dangerous 
is small, but the percentage gradually increased as the fire source developed with an 
increasing heat release rate and smoke generation rate. By plotting this percentage with the 
quantities of actual parameters such as the heat release rate, a logistic curve can be obtained 
showing at about what quantity a person usually think that the situation has become 
dangerous. Similar experiments were repeated to obtain similar logistic curves for smoke 
generation rate and CO gas generation rate. It should be noted here that any generated CO gas 
cannot be seen with human eyes, so the correlation has been made assuming that human 
judgment of the CO gas is similar to that of smoke. 

It is expected that not only the actual quantities of the source parameters such as the heat 
release rate but also their temporal differentials are important in the human judgment, because 
people may judge the situation more dangerous when they see a f i e  quickly spreading than 
when they see a slowly spreading f i e .  Thus similar correlation has been made with the 
temporal differentials of the above mentioned three parameters. 

The logistic curves thus obtained for the six parameters -- the heat release rate, smoke 
generation rate, gas generation rate, and their temporal differentials -- were then used to 
obtain the lesson signal for the neural network, which is described in more detail in the latter 
section. 

Normalization 
Further adjustment is needed to the above mentioned parameters, because the actual 
quantities handled by the neural network are not the actual values of the fire parameters but 
the logistic values between 0 to 1.0. To normalize each quantity and its differential form, 
therefore, data collected from the numerous fire and non-fire experiments previously made 
were used. 

Fig. 2 shows two examples of the normalization factors: (a) heat release rate, (b) differential 

FIGURE 2 Normalization of quantities and their differential forms: (a) Heat release rate; 
(b) Differential of heat release rate. 
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FIGURE 3 Neural network with delay circuit. 

of heat release rate. The maximum values of the normalization factor Sf, Ssmk, and S, 
corresponding respectively to the quantities of generated heat, smoke, and CO gas were 25 
kW, 0.2 g.s-1, and 2.5 ges-1. The maximum values of the normalization factor S&, Sdsmk, and 
S&, used for the differential forms were 0.3 kW.s-1, 3.0 mges-2, and 19 mg.s-2, respectively. 
To represent the degree of decrease in each quantity a negative value is also used for 
normalization. 

Neural Network Design 

Multi-layered Neural Network Incorporating a Concept of "Time" 
Fig. 3 shows a multi-layered neural network incorporating a concept of " h e " .  This network 
consists of three layers: an input layer with 6 x n units, a hidden layer with m units, and an 
output layer with 1 unit. 

The vertical axis of the input layer shows 6 different input signals corresponding to the actual 
quantities and their time differential forms. The horizontal axis of the input layer shows the 
time of the delay circuit, which is a product of the unit delay time T and the delay count (n-j). 
For example, S1,(nrj) through S6,(n-j) correspond to the quantities and their time differential 
forms obtained (n-j)T seconds before the current time. 

Assuming that a set of input signals were applied at a certain point in time. The k'th unit has 
an internal condition uk in the hidden layer and the output has a condition f(uk) as represented 
by the following expressions (1) and (2), respectively: 



where oi,(,-j),k is the weight coefficient of the paths between the input and hidden layers and 
Ok is the threshold for the hidden layer units. 

The output layer has an internal condition u* and an output f(u*) represented by the following 
expressions (3) and (4), respectively: 

where 6&* is the weight coefficient of the paths between the hidden and output layers and e* 
is the threshold for the output layer unit. 

For optimizing the weight coefficients, a commonly used technique, the back-propagation 
method[91, was applied. 

Lessons Given to the Neural Network 
The characteristic of the neural network is generally modified through a repetition of lessons 
of similar patterns. However, since each fire has its own process, no two fires have the same 
pattern. The lessons used in this study are the sets fire data which varies with time and the 
lessons were done as such that each set of data applied at each sample timing is a separate 
lesson. More specifically, the values of the weight coefficient shown in Fig. 5 are corrected 
with the back-propagation method at each timing when the h'th combination of an input signal 
Si,(n-j) and a training signal d is applied. The values of the weight coefficient o and the 
threshold 0 are corrected to minimize the value of the error function E, defined as follows 
with the difference between the values of the training signal d(h) and the output signal f(u(h)*): 

where p is the number of combinations of the input signal SiAnj) and the training signal d. 

Now the error signal 6@)* can be expressed as follows: 

Then the correction value Am@&* for the weight coefficient ~ ( h ) ~ *  can be calculated by the 



following equation: 

where q is a lesson constant and a is a convergence constant. This means that the error signal 
6@)* of the output layer is inversely transferred to the hidden layer through A ~ ( h - l ) ~ *  of the 
previous combination (h- 1). 

Accordingly, the corrected weight coefficient o(h+lIk* can be expressed as follows: 

Similarly, the error signal 6(hlk for the k'th unit in the hidden layer is given by the following 
expression: 

which means the error signal 6@)* of the output layer can be inversely transferred to the 
hidden layer. 

Then the correction value A w ( ~ ) ~ , ( ~ - ~ ) , ~  for the weight coefficient o @ ) ~ , ( ~ ~ ~ ) , ~  between the input 
and hidden layers can be given by the following expression: 

which means that the error signal 6@lk of the hidden layer was inversely transferred to the 
input layer. 

Accordingly, the corrected weight coefficient ~ @ + l ) ~ , ( ~ - ~ ) , ~  can be expressed as follows: 

~ ( ~ + ' ) i . ( n - j ) . b  = ~ ( ~ ) i . ( n - j ) , i l  + A ~ ( ~ ' i , ( n - ~ ) , t .  (11) 

For a value of h, the weight coefficient is corrected with Eq. (8) with the values for k = l  
through m and then corrected again with Eq. (11) with the values for i=l through 6, j= l  
through n, and k=l  through m. Similar correction is also made to the thresholds 9(h)* and 
9014. Completion of these operation through the combinations h=l through p in time series 
constitutes a single lesson in our sense, which should be repeated as necessary. 

ACTUAL LESSONS GIVEN TO NEURAL NETWORK 



Training Signals for Fire and Non-fire Situations 

Training signals for fire situations 
Actual data of the heat release rate (Qf), smoke generation rate (Qsnk), and CO generation 
rate (Q,) collected through fire experiments using such as wooden chair, polyurethane foam, 
cloths and other materials were used as training signals (d) for the fire situations 

Fig. 4 shows the burning wooden chair experiment. In this case, the heat release rate Qf,, the 
smoke generation rate Qsmk and the CO generation rate were rather small during the initial 
stage while the seat surface was smoldering. The peak of the smoke generation rate at about 
400 second shows the instant when the flame was about to ignite the seat back of the chair. 
During the initial stage, Qf shows a small increase at about 150 seconds, and Qsmk shows a 
small increase at about 200 second. The training signal was designed to give a rise to 0.2 and 
a succeeding fall represent these variations. To match another increase in the quantity Qd at 
a point of 380 seconds, the training signal was design to give another rise to 0.2. When the 
seat back ignited at approximately 420 seconds, Qf and Qsnk showed a steep increase and Q,, 
started to increase with some delay. This stage corresponds to the point in time when the 
flame had spread to the entire chair. The training signal was set to show a steep rise so that it 

FIGURE 4 Quantities of heat, smoke and CO generated in a flue experiment and the 
corresponding training signal. 

FIGURE 5 Quantities of heat, smoke, and CO generated in a non-fire experiment and the 
corresponding training signal. 



reaches 1.0 after approximately 500 seconds when Qfreaches approximately 25 kW. 

Training signal for non-fire situations 
The training signal for non-fire situations was generated with simulated false alarm sources 
such as grilling of fish over a gas cooker. This kind of situation may usually cause the existing 
fire alarm systems to give a false alarm because an sufficient amount of smoke is generated. 
Fig. 5 shows the variation of the three parameters and the training signal designed for this 
experiment. Qf shows a peak at about 200 second but keeps rather constant during the whole 
experiment. The designed training signal has a rise to 0.2 and the succeeding fall to show this 
stage. Once the fish started to bake, Qsmk shows some peaks after 250 seconds. The existing 
fire alarm systems may give a false alarm at about the point of 507 seconds, but the training 
signal was designed to give a peak of 0.2 at this stage. 

Optimizing Number of Units in the Hidden Layer 

With the neural network tuned as above, the effect of parameters such as the number of delay 
units (n), and the number of hidden layer units (m) were studied. In this study, the unit delay 
time T of the delay circuit was set as 5 seconds. The number of delay units (n) studied was 5 
to 9 (which means 30 to 54 units in the input layer), and the number of hidden layer units (m) 
studied was 5 to 10. The number of combinations of input and training signals (h) was 45, and 
the number of lessons applied was up to 1000. In addition, a lesson constant h of 0.25 and a 
convergence constant a of 0.9 were used. 

With 5 hidden layer units (m=5), the deviation curve showed some uncertainty after 300 to 
600 lessons had been given. However, when the number of units was more than 6, the 
deviation curve converged to a certain value with no uncertainty and produced a result that 
was virtually identical to that with the minimum number (m=5). This means that 6 hidden 
layer units (m=6) is sufficient to minimize the deviation. Similarly, the deviation curve did not 
show any considerable difference with the number of delay units more than 6. Thus, with 5 
second unit delay time, 6 delay units in the input layer (n=6) and 6 units in the hidden layer 
(m=6) were considered to be a best combination . 

VERIFICATION 

f(u*) for Fire Situations 

To test the neural network optimized with the lessons as described above, signals obtained 
from experimental fines were applied. Fig. 6 shows the variation of Qf, Qd, and Q,, and the 
output signal f(u*) during an experimental curtain fire. AU the three parameters began to rise 
approximately 45 seconds when the lower edge of the curtain was ignited. At approximately 
55 seconds, the Qf exceeded 25 kW, the level which everyone feels is dangerous. Similarly, 
the quantity Qd exceeded the threshold 0.2 g.s-1 at a point of approximately 67 seconds. 
With these input signals, the output signal f(u*) representing the danger level reached 1.0 at 
approximately 70 seconds indicating that the fire had become dangerous. At approximately 75 
seconds when the curtain was burned out but still smoking, the quantity Q, reached 
approximately 2.6 ges-1 while the quantities Qf and Qd decreased to low but non-zero values. 



The signal f(u*) remained at 1.0, indicating that the f i e  was still dangerous. Similar 
successful results were obtained with other experimental fires such as of liquid fuels and 
wood. 

f(u*) for Non-fire Situations 

As a test for non-fire situations, chicken was skewered and grilled over the open flame of a 
gas cooker. Fig. 7 shows the variation of the three sourse parameters and the output signal 
f(u*). The quantity Qf increased slightly to approximately 7 kW after the gas cooker was lit. 
The quantities Qsmk and Q, were slightly increased by smoke and gas generated when the 
chicken was gnlled. The output signal f(u*) showed a slight rise up to approximately 0.23 at 
the highest. This curve is different from that of the former example of the real fire case, 
indicating that a discrimination between f i e  and non-fire situations is possible. Similar results 
were obtained with other experiments using cigarrette smoke, gas and kerosene heaters. 

f(u*) for Transient Inputs 

Finally, the non-fire phenomena caused by transient inputs were studied, which may be 
caused when cigarette smoke is directly blown in to the sensor. Pseudo inputs were used for 
this investigation. 

t (s) t is) 
FIGURE 6 Quantities of heat, smoke, and CO and output signal f(u*) of the neural network 
for a fire situation (a curtain fire). 

FIGURE 7 Quantities of heat, smoke, and CO and output signal f(u*) of the neural network 
for a non-fire situation (chicken was grilled on a gas cooker). 



FIGURE 8 Output signal f(u*) of the neural network for transient inputs (each quantity of (a) 
heat, (b) smoke, or (c) CO is applied seperately). 

Fig. 8 shows the variation of the maximum output signal f(u*) with different peak values and 
pulse width (W) of transient rectangular inputs. Fig. 8 (a), (b) and (c) shows respectively the 
seperate effect of Qf, Qsmk, and Q,,. In the case of Qf, the effect is rather steep. With the pulse 
width less than 5 seconds, the output signal f(u*) remains lower than 0.2 showing that f(u*) is 
suppressed properly. If the pulse width aproaches 20 seconds, however, the value of f(u*) 
increases up to approximately 0.75 with the peak heat release rate of 17.5 kW. This output is 
considered approproate, because this heat release rate is comparable to that of normal heptane 
pool fire of 200 mm pan size. 

In Fig. 8 (b) of the Qsmk case, in the range of smoke generation rate between 0.06 and 0.2 g.s- 
1, the output f(u*) is not become more than 0.2 with the pulse width shorter than 20 seconds. 
Thus the present system may not give false alarms even though cigarette smoke is directly 
blown in to the sensor. Fig. 8 (c) shows the case of Q,. The output becomes higher only 
when a large quantity of CO gas (0.75 to 2.5 gs-1) is generated. which is considered to give 
harmful effect to humans. With rest of the conditions, the output f(u*) remains less than 0.2 
indicating the similar suppression effect of the smoke case. The test results shown in Figs. 8 
(b) and (c) indicate that the output f(u*) is suppressed properly because these situations may 
not occur in any real fire situations. 

CONCLUSION 

A fire detection system incorporating a multi-layered neural network with a concept of "time" 
has been proposed. After intensive studies on the performance of the system, we found that: 

1) The proposed system can make a highly reliable judgment on fire and non-fire situations 
based on the output f(u*) calculated from the singnals of three different sensors. 

2) The neural network with a delay cuicuit, which handles the the previously collected data as 
well as the actual data obtained from different sensors, can reduce false alarms caused by 
transient variation of output of a single sensor. 
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