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ABSTRACT 

A zone model for the developmeii~ of a fire in a single compartment with one opening is 
studied to obtain explicit formulae for the critical conditions for occurrence of flashover and 
its temporal characteristics. In addition to previous studies, generalisation is presented for 
walls of arbitrary thermal inertia. The correlation between the model and previous models is 
also examined. Under reasonable assumptions all models are shown to be described by the 
same mathematical problem. This suggests that the formulae obtained for critical conditions 
and temporal characteristics can be used for any of the models observed. Results are 
illustrated for an experimental fire box used in many experiments. 
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NOTATION 

surface area 
dimensionless parameters ( i  = 0,1,2,3,4) 
constants in (5 ) ,  (6) 
vent discharge coefficient 
specific heat capacity 
fractional height of the thermal discontinuity plane 
net heat gains of smoke layer 
height 
convective heat transfer coefficient 
dimensionless parameters in (5), (6) 
net heat losses from the hot zone 
characteristic enthalpy flux in the Table 

mass 

m:,t = f C , P O & H V ( ~ -  D) characteristic mass outflux through opening 
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x. 
A = Ah, / xAh, 

SUBSCRIPTS 

jet 

spr 
v 

characteristic/critical value 
convection 
expansion 
gaslsmoke 
induction (as ti), initial 
initial buoyant plume 
spread across ceiling 
vents 

INTRODUCTION 

dimensionless parameters in (5) 
heat release rate of  fire 

parameter in the Table 
incident heat flux to the fuel bed from the fire 
parameters in the Table 
temperature 
time 
total time for fire growth from ignition to flashover 

effective convective heat transfer coefficient in [ I ]  
dimensionless parameter in (6) 
emissivity of upper layer and of smoke 
parameters in the Table 
measure of thermal inertia of walls 
parameter in the Table 
parameter in the Table 
efficiency of the combustion process 
dimensionless heat release parameter for fire 

heat of combustion, heat of vaporisation of solid fuel 

characteristic radiation feedback factor 
dimensionless constant 

dimensionless temperature, variable of integration 
density 
Stefan-Boltzman constant 
dimensionless time 

C 
D 
f 
H 
in, out 
R 
U, L 
W 

combustion 
thermal discontinuity 
fire bed, fuel 
enthalpy outflux 
influx, outflux through vent 
radiation 
upper~lower zone 
walls 

Flashover phenomena (the transition from a small growing fire to a fully developed fire) often 
accompany the development of compartmented fires. It is well understood that these 
phenomena are realised because of enhancement of the burning rate by factors, such as 
radiation from a hot smoke layer, saturation of the compartment environment by oxygen from 
the external atmosphere through an opening, etc. 



Theoretically, flashover is studied principally using the zone modelling approach, which gives 
simple and physically clear statements of the physical processes involved. Most attention has 
been given to flashover occurring when the burning rate of a fire is enhanced by the heat 
radiated from the hot smoke collected under the ceiling of a simple room with one opening. 
This enhancement is usually referred to as positive feedback [I]. 

Clear understanding of the problem was made possible when the zone modelling approach was 
combined with thermal explosion theory [I] .  Further development of this approach has also 
been made by Bishop et al. [2], and Holborn et al. [3, 41 with the application of modem non- 
linear dynamics. 

There are still many issues to be addressed in this field. Only recently (see 15-71) the critical 
conditions were stated explicitly and the temporal characteristics obtained for compartment 
walls of higMow thermal inertia. This work aims to further develop these relationships for 
flashover to include to arbitrary thermal inertia, and also to give comparison with some 
previous models. 

DESCRIPTION OF THE MODEL 

In an enclosure with one opening flashover may be described by four stages [5, 81. Following 
ignition, the combustion process in the fire bed results in the formation of a 'starting' buoyant 
jet that impinges upon the compartment ceiling. Following this step of duration t,,,, the hot 

combustion products spread along the ceiling, in the time t,,, . After the time t,,, + t,,, there 

exists a well-stirred ceiling layer of combustion products whose properties are roughly 
homogeneous, and the zone modelling approach can be applied. The third stage, of duration 
texp is the expansion and thickening of the hot layer filling downwards from ceiling height 

until the lower boundary of the hot layer approaches the upper level of the opening. In the 
fourth stage (of duration ti) the mass flows through the opening rearrange. Some part of the 
combustion products flows out of the opening, the zone interface and neutral location exist at 
a level within the opening. The hot smoke and warming room boundaries radiate heat back to 
the fire. Radiative feedback can enhance the reaction rate so that the fire accelerates and 
rapidly reaches its fully developed stage. If the fire does not flashover it will bum in a quasi- 
steady low-intensity fashion. 

The full time for flashover given by tit, =tie,  + t,pr +texp +t, has been explicitly given in a 

previous paper [5] where each stage was separately considered for a given, fixed fire area and 
for walls of large or small thermal inertia. Here we will consider the fourth stage of the 
development of the smoke layer assuming the initial temperature of the hot layer 8, = 7; l To 
(T,  is the ambient room temperature) as was found from a heat balance consideration of the 
gas inside the compartment during the stage of expansion [5, 91. Note that if the total energy 
released by the fire until the end of the expansion stage is much less than the total heat energy 
that is stored within the smoke layer then 6,  = 1 as was demonstrated in [5]. 

The model used in this paper was described in detail in [5]. A fire compartment with one 
opening (window) is considered under the following main assumptions: the compartment can 
be divided into two zones that may be represented by average temperatures; flashover takes 



place during the early development of the fire, and average density and temperature of the 
lower zone may be assumed to be its initial value ( p ,  = po,TL = T, ) ;  the wall surfaces 

surrounding the zones can be described by two temperatures, the lower zone and wall surfaces 
below the thermal discontinuity are at the initial temperature; the depth of the hot layer (and 
accordingly the fractional height of the thermal discontinuity plane) is assumed to be a 
constant during the fourth stage of development leading to flashover (see [5,  91). 

The fire area does not change appreciably and can be assumed to be constant, during the fire 
development the pressure inside the compartment does not significantly differ from the initial 
(atmospheric) pressure, i.e. the vent area is large enough. The temperature of the walls 
T, = T, + P(T  - T,) ,  where 0 < p < 1 represents the thermal response of the walls ( P  = 1 for 

walls of low thermal inertia and P = 0 for walls of large thermal inertia). We do not account 
here for factors such as fuellair exhaustion. The emissivity of the upper layer is assumed to be 
unity. 

The governing equation of the model is of the form of a heat flux balance for the hot smoke 
layer which can be written in the form (see [2, 51): 

where t is the time, T is the smokehot zone temperature, m is the total mass in the hot layer, 
c, is the specific heat capacity. On the right hand side G ( T )  is the net heat gain and L(T)  is 

the net heat loss from the hot zone. In (1) we have ignored the rate of increase in the enthalpy 
of the hot layer via mass increase, since it is usually small in relation to the total heat balance 
of the hot layer. Applying classical thermal explosion theory, [lo] the critical conditions are 
given by G = L ,  G' = L'. Expressions for G and L, and all relevant physical relationships 
are given in detail in [ 5 ] .  

For the purpose of this paper we introduce the dimensionless temperature 0 = T I T ,  and time 

z = t l t, ( t ,  = mc,& I a, (i, is the heat release rate) to yield ( I )  in the form [ 5 ] :  

where d ~ '  = uodz and the coefficients a, to a, are given in the Table, in the second column 
headed [ 5 ] .  The ith row of the table gives expressions for parameter a, . For shorter notation 

each parameter is given in combination with some dimensionless parameters written in 
column 1. The four dimensionless parameters a,, a,, u,. and a,  are ratios of characteristic 

heat transfer rates. A linear temperature dependence (T - T,)  1 2T0 was substituted in place 

of (T - T,)''? 1 TT,"' in the u, term describing the enthalpy mass outflux through the vent. 

This is of sufficient accuracy over the temperature range of interest. The critical conditions 
for flashover mentioned above in these non-dimens~onal variables are: 



where 0, is the critical temperature. 

CRITICAL TEMPERATURE 

From this formulation (4) the critical temperature is expressed in a cubic polynomial that will 
in general have three roots. One of these roots is always a real value (complex roots appear in 
conjugate pairs), and this is the critical temperature that we require. Critical temperature is an 
injective (ie. one-to-one) function of p. The trigonometric method [I I] applied to (4) yields 
the critical temperature: 

where h = 12p 1 3/'12, C = q 1 h3, and the constants p = (8a1a, - 3 4 )  l8a:, 

q = (8a:a, +4ala3a, -a:)I8a:, alr=1-al+a,+a,r,+a,r~-3a,r,4,  r, = a 3 / 4 a l .  Figure 1 

shows the critical dimensionless temperature for the range of values of P .  The example of a 
0.4m cubical compartment as used in [3] with an 185x185 mm2 fuel tray and a O.lm opening 
width was used. In addition to the data in [3] the height of the discontinuity above the floor 
was taken to be half the room height, and the emissivity of smoke was taken to be unity. 

FIGURE 1. Variation of critical dimensionless temperature with thermal inertia of enclosure 
walls for example compartment described below 



The values of the governing parameters also vary with thermal inertia. The greater the thermal 
inertia of the walls, the more heat is lost to the walls in heating them and thus the greater the 
critical temperature for flashover. 

The effect of tt,e thermal inertia of the walls is remarkable. In this example the difference 
between the critical temperatures at the two extremes p = 0,1 is approximately 260 K. This 
shows the great importance of the heat transfer properties of the compartment walls. 

THE CRITICAL CONDITIONS 

A solution of the quartic polynomial (3) is possible using the radical method and gives the 
four roots: 

where u is given by: u = h,, . cos[$ cos? c,,] + p I 3 ,  and ht, = +.is, 
C, = 4(& p' + q2  - $ pr)  1 h,' . For quasi-steady development two of the roots (6) will be 

real values 0,, < 0,,. If flashover does not occur then the lower of these roots is the steady- 

state temperature 0,, = 0,, . As any point (a,, a,, a,, a,) in the quasi steady region moves 

towards the flashover region (for example as the fire develops and walls warm), the two real 
roots converge towards the critical temperature O.,, ,  + 0.. Thus for a point on the critical 
boundary the discriminant of 0,, and 0,, in (6) must vanish. In addition to (5) this yields: 

The critical boundary between regimes of quasi steady development and flashover must satisfy 
both of the conditions (3) and (4), and thus must satisfy (5) and (7). This gives: 

For p = 0, 1 we have p = 0 and the heat balance simplifies to the same form as in [ 5 ,  61. 

The critical relationship between parameters a , ,  a, plotted from (8) on Fig. 2. where we have 
used the same example of a 0.4m cubical compartment as used in [3] for 
a, = 0.0138P '(1 - P)will vary continuously with P.  In the two extreme cases P = 0,l the 

critical relationship in the plane of the parameters a,, a, is the same [5]. In Figure 2 the two 
lines plotted for these cases coincide exactly. 



FIGURE 2. Variation of critical boundary with thermal inertia 

For intermediate values the boundary curve is smoothly translated down and then back up the 
a, axis, with a maximum deviation of approximately 0.025 in a,. 

The non-monotonic dependence of the critical boundary on P can be understood from 
consideration of the behaviour of the values of a, and a,. The parameters a, and a, 

characterise radiation heat exchange with the compartment walls, arising from the binomial 

expansion of T$ = [q + P(T - &)]4 at P # 0 , l .  

Physically as P increases from 0 to 1 the heat feedback from the hot walls to the smoke layer 
by re-radiation increases, and the radiation losses to the walls decrease. Thus the two 
parameters have maxima for walls of intermediate values of thermal inertia. The greatest 
flashover area on Fig. 2 occurs when the product a, .a, has a maximum (at P = 5 / 8). 

THE INDUCTION PERIOD 

Inverting (2) and integrating gives the temporal characteristic for the fire development in the 
fourth stage c.1 development: 

This integration may be performed by factorising the polynomial on the right hand side of (3) 
in terms of its four roots (6). In the limit 9 >> 1 and for parameters a, to a, inside the 
flashover range of parameters this gives the induction period for development to flashover. 
Figure 3 shows several curves plotted by this analytic method. 



FIGURE 3. Variation of dimensionless induction period z, with thermal inertia of the walls. 

Here the same example of a 0.4m cubical compartment is used as before for different widths 
of the compartment opening, which are given next to each curve on the figure in meters. 

If the thermal inertia of the walls increases (smaller P )  then the losses to the walls increase 
and the induction period is longer. Furthermore for larger openings the losses are greater, and 
again the induction period increases. The critlcal opening size of the compartment for 
flashover decreases as thermal inertla increases. 

COMPARISON OF MODELS 

All zone models for early fire development in a ventilated enclosure are derived from similar 
thermo-physical considerations, often using similar assumptions to represent elements of the 
same group of phenomenon. The question arises whether or not the expressions obtained in 
this work in terms of the general parameters a , ,  a,, a,, a, can be used for other models. How 
general are these expressions and how general is the model? Given also the proliferation of 
studies and developments over recent years it is increasingly useful to compare the models and 
indeed look at the framework for comparisons. 

In this section we shall examine four models [I], [2] (see also [3]), [ S ]  (see also [6,7]) with the 
developments described in this paper, [12] and their differences. We will demonstrate that 
each can be reduced to the same mathematical problem under reasonable assumptions, and 
show that the formulae and results given in [5] are general. The relationship between some 
earlier models has been given in [13]. 

For the comparison of models we must explicitly write the heat balance equation for each 
model in the form (1) using our notation and then introduce the dimensionless variables as 
described after (1). After this procedure each of the models is described by a first order non- 
linear ordinary differpntial equation. These equations give the rate of change in upper layer 
temperature with time as polynomials of temperature of whole order. This representation with 



whole order polynomials is possible using our approximation for the enthalpy mass outflux 
through the vent, see above text after equation (2). 

Consider the model presented in [I]. This is described by equation (2) with the parameters in 
the Table, column three headed [I]. In [I]  a linear representation for radiation heat losses 
from the smoke layer was used. This linearisation makes it possible to eliminate the wall 
surface temperature T, from the governing equations. The effective heat transfer coefficient 
U is introduced as a result (which will have a value of approximately 10 w / m 2 / ~ )  depending 
implicitly on the thermal inertia of the walls. The parameters a, and a, are therefore zero. 
Indeed taking P = 0, l  in our parameters (see the Table, column 2) gives expressions for 
al,a2,%,a4 close to those from 111. This may be seen by comparing the second and third 
columns of the Table. 

The principal difference between the parameters from our model and those in [ l ]  is the 
presence of a non-linear radiation loss term making a, smaller than in [I]. A consequence of 
this is that we predict greater critical temperatures and a longer induction period when 
flashover occurs, and also we can conclude that flashover is slightly more likely to occur 
using the model in [ l ]  because of this over estimate in a,. 

In models [2] and [12] the non-dimensional governing equation includes an extra term -a,8' 

(a ,  = k,) arising because the enthalpy outflux through the opening mc,cpT,(8 - 1) is 

expressed in terms of the mass flux from the fire lit, - (€I4 - 1) via the mass conservation 

relationship m<, = ma + ritf . However since the parameter 1 << 1 (characteristic of the 

heating of smoke by the fire), the parameter a, is small too and for many fuels may be 

neglected. For the data in [3] it is found that a, = 1.42 ~ 1 0 "  << 1 which is small enough to 

be neglected. Then the process is described by equation (2). 

In the model 1121 the hot wall surface temperature T, was found by numerical solution of the 
heat conduction equation for the wall. The representation (2) is made possible in this case by 
reasonably assuming the same dependence of wall temperature on the smoke layer temperature 
as was used in [2,3] and [5] .  

The models [3] and [12] both introduce a convective heat transfer term to increase the heat 
flux to the fire bed 9".  To our mind including this convective term, in the case of a diffusion 
flame, requires some additional arguments. 

Our model [S] includes the reasonable assumption that the density of the lower zone is close to 
its initial value ( p ,  = p,). This makes it possible to the detennine the position of the neutral 
plane, and avoids an analysis of complicated situations that can arise if the interface and 
neutral plane are not coincident (see [13]), this issue is resolved in a different manner in [14]. 

The term a, in [I], which is responsible for the enhancement of burning rate, is the simplest 
reasonable expression. This form was sugpested in [I]  (compare the term a, in the second and 
third columns of the Table) and contains only one empirical constant (with the sense of 
emissivity) derived from experiments as in [3]. In the case of walls having high thermal 



inertia, p = 0 ,  this expression coincides with that in [2] if it is additionally accepted that the 
emissivity is one. In [14] a more complicated form for this term was suggested. This results 
in the appearance of extra constants, which need to be determined. 

The models [2] and [12] contain different view factors and emissivities in the parameters 
a,, a , ,  a,, a,, a,, but each of the parameters contains the same physical sense and the 
relationship between a, and a, is the same since the same expression for 

7;, = T,, + P(T - T,,) was used. Comparison is clearest if the cases P = 0 , l  are considered, 

but here we give the most general expressions for the Table. 

Calculations using the example data from [3] show that the models [2,3] and [12] predict 
greater critical temperatures and longer induction periods than our model. Furthermore our 
model predicts that it is easier to achieve flashover from a given room and fire geometry. 
However, the most general conclusion is that under reasonable assumptions all the models are 
described by the same mathematical problem with coefficients a, to a, given in the table. The 
consequence of this is that the same general formulae for critical conditions and 
temperatureltime characteristics obtained may be applied to all four models. Furthermore, the 
full picture of development from ignition to flashover specified in [5] is general and can 
include any zone model to describe the fourth stage of the entire process.. 

CONCLUSION 

The model of flashover in a compartment with one opening described in this work generalises 
results previously obtained in [5] to compartment walls of arbitrary thermal inertia. With this 
generalisation the analytic expressions for critical temperature and critical conditions are 
obtained. The time history of the system is obtained by integration. 

Physically, an increase in the thermal inertia of the walls results in increased critical 
temperature. The boundary between the regime of quasi-steady low-intensity fire 
development and the regime of development to flashover varies non-monotonically in the 
plane of the main dimensionless parameters ( a , , a , )  with the thermal inertia of the 
compartment walls. 

The general formula obtained have a broader meaning than just within the model suggested by 
the authors. It is shown in the work that at least three other zonal models for flashover reduce 
to the same mathematical problem using reasonable assumptions. 

This demonstrates that formula (5) for critical temperature, (8) for critical conditions, and also 
(9) for the time development of the fire to flashover can be validly used for the models 
examined. The parameters a , ,  a,, a,, a, should be calculated in the way tabulated in this work. 
Further verification of the model against experimental data is under way. 
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